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Abstract

This paper discusses several structural and fundamental properties of the k**-order slant
Toeplitz operators on the Lebesgue space of the n- torus T", for integers £ > 2 and n > 1.
We obtain certain equivalent conditions for the commutativity and essential commutativity
of these operators. In the last section, we deal with the spectrum of a k*"-order slant
Toeplitz operator on L?(T") and investigate the conditions for such an operator to be an
isometry, hyponormal or normal.
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1. Introduction

The class of Toeplitz operators possesses extensively vast literature, which contains
immense informations and implications. The algebraic and C*- algebraic view points of
Toeplitz operators have resulted into profound and adequate theory. Toeplitz operators
were introduced in the commencement of 20th century by O. Toeplitz. The theory of
Toeplitz operators is related with different areas like C*-algebra, function theory and
certain other fields of operator theory. A matrix A = (a;;): j>0 is called a Toeplitz matrix
if a;j = a;+1,j41. Toeplitz operator on H?(T), the Hardy-Hilbert space, is defined to be
the compression of a multiplication operator on L?(T) to the space H?(T), where T is the
unit circle in the complex plane C. Over the years, several researchers have given different
generalizations of Toeplitz operators. Toeplitz and Hankel operators [10] exhibit crucial
roles in the study of each other, together with their significant features.

Ho [7,8] introduced the notion of a slant Toeplitz operator on L?(T), which is closely
related with the multiplication operator. He derived several structural properties of these
operators. The study of k*-order slant Toeplitz operators on L?(T) and its compression
to H%(T) is initiated by Arora and Batra [1]. For adequate literature on these operators
and their applications to wavelets and dynamical systems, one is referred to [6,7,10] and
the references therein. The theory of Toeplitz operators to the Hardy space of the bi-disk
was developed by many mathematicians (see [2,4,5,9]).
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Let D™ be the open unit polydisc in C™ and T", the distinguished boundary of D", de-
notes the n- torus. Although, the function theory on the polydisc (see [11]) is significantly
different from the one on the unit disc, the available theory of multiple Fourier series on
the n- torus enables one to discuss function spaces (e.g. L?(T"), L°(T") ) as well as slant
Toeplitz operators in the higher dimensional setting. In the whole paper, the space of all
Lebesgue integrable functions on T™ and the collection of all Lebesgue square integrable
functions on T” are respectively denoted by L!(T™) and L?(T"). The class of all essentially
bounded measurable functions on T™ is expressed by L>(T"). Any two functions in these
spaces are equal in the sense of equality almost everywhere. The Fourier coefficients of
f € LY(T") are given by

2 27 27r ” " {101+ + o O)
fm1,m2,...,mn 27T / / e’ L. ,€Z ")6 WML mnbn) 0, dl, . . .dbf,,

n—times

for m; € Z,1 < i < n. If the Fourier coefficient fy,, m,.....m,, = 0for each (m1,ma,...,my,) €
Z", then f = 0 (see [12, Theorem 1.7 (Chapter VII)]). The multiple Fourier series can
be seen or treated as Fourier transformation of functions in L!(T"). Therefore, by the
multiple Fourier series [12] on T", the spaces L?(T") and H?(T") can be written as

L2(Tn) = f:f(ZhZQ?"'aZn): Z fm1,m2, ng{nlzgnQ"'erna

(m1,ma, ,mn)EL"

> Mmmamal® <00t

(ma,ma, - ,mn)€EL"

and

HZ(TTL) = f:f(21,22,...,2n) - Z fml,mz, mnz’{nlzgnQ'”Z:Lnn)

(ma,ma, ;mn) €LY

Z |fm1,m27'“7mn|2 < o0,

(ma,ma,— mn) €L

where Z and Z, are respectively the set of all integers and the set of all non-negative
integers. Clearly, the space L?(T") is a Hilbert space with the norm given by the inner
product

2r 27 ) ' ‘ A ‘
<f g 2 / / f 01 ez 2 ... ,619")9(6191,6292,"‘ 7616"L)d91d92...d0n,
7T

n—times

The class {€m, mo, mp © (M1, M2, ..., my) € ZL}, where €pm, .. m, (21,22 ,2n) = 21"
25" ... 2™ deduces an orthonormal basis of H?(T"). The space H?(T") can be shown as
a closed subspace of L?(T") such that for f € H?(T"),

(fs emi,ma,...my) =0 if m; <0 for at least one j, 1 < j < n.

Many mathematicians use multi-index notations namely d@, z™ and m for d61d0s . . . d6,,
{2y 2 and (mq, ma, ..., my) respectively. However, we prefer the latter notations
to have better visualization of functions in multi-variable cases. From now on, an analytic
function f in L?(T") is a function, whose Fourier coefficients fmima,...m, = 0, whenever
m; < 0 for at least one j, 1 < j < n. Note that here the notion of an analytic function
is not the same as in the case of complex plane. By a co-analytic function in L?(T")

we mean a function whose complex conjugate is analytic in the above sense. Also, the
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symbol Zj, stands for the set {0,1,2,...,k — 1} for £ > 2. Motivated by the work of Ho
[7,8], we extended the notion of slant Toeplitz operators to the space L?(T™) in [3]. In
this paper, we discuss various properties of kt"-order slant Toeplitz operators and obtain
results describing spectra and spectral radii of these operators.

2. Commuting operators

This section is mainly devoted to the study of symbols inducing commuting k*"-order
slant Toeplitz operators. We begin with the following known notions.

Definition 2.1 ([8]). A slant Toeplitz operator A, induced by symbol ¢ € L>(T), on
the Lebesgue space L*(T) is given by A, = EM,, where My, is the multiplication operator
on L?(T) with symbol ¢, and the operator E is the linear operator on L?(T) defined by

B(m) = 22 i mis an.even integer
0, otherwise.
Definition 2.2 ([3]). For ¢ € L>®(T") and an integer k > 2, a k'*-order slant Toeplitz
operator Ag 1, with symbol ¢, on the Lebesgue space L?(T™), is defined to be Apkn =
Ey My, where My is the multiplication operator on L?(T™) induced by ¢, and the operator
E}. ., is the linear operator on L?(T") given by
i iz in
Epn (231252 - Z;l") _ )2 2 ...z ifeachijis a m‘ultlple ofk,for1<j<n
0, otherwise.

In fact, the operator Ef , is a bounded linear operator on L?(T") with norm || Eg || = 1.
The k'-order slant Toeplitz operator Ay ., is also a bounded linear operator on L?(T™)
such that [|Ag k|l < ||¢]loo. The operator Ay, induced by ¢ = 1, is nothing but Ej, ,. In
particular, for k = 2, the operator Ay, is known as slant Toeplitz operator on L?(T™).
In [3], it is proved that a bounded operator A on L?(T") is a k'"-order slant Toeplitz
operator if and only if A satisfies the following conditions:

MZ].A = AMZ_k, 1 S] S n.
J

Now, we are in the position to analyze the commutativity of slant Toeplitz operators.
Initially, we start with a result related to Ej,. For the basic properties of Ej, ,,, we refer
[3].

Proposition 2.3. For any two integers k and m (> 2), Ey nEmyn = Egmpn on the space
L?(T™).

Proof. In order to furnish the proof of the result, for any n-tuple (i, s, ...,i,) € Z", we
observe that
i i in

zfmzEm o zf™  if each ij is a multiple of km, for

EynEmn (zil 252 . z%") = 1<j<n
0, otherwise.
= Epmn (zil zéz ... z;") .
The above observation gives that Ej , Ey, n = Egy, p, for all integers k,m > 2. ]

In view of preceding result, one can point out the following conclusion without any
extra effort.

Corollary 2.4. The operators Ey, , and E,, , commute for all integers k,m > 2.
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The next theorem is an attempt towards commutativity of k*’-order slant Toeplitz
operators induced by different symbols and which are of different orders. More precisely,
the following theorem helps to find out the condition on the inducing function so that
kt'-order slant Toeplitz operators commute.

Lemma 2.5. Let k,m > 2 be any two integers and ¢, be functions from the space
L>(T™). Then AgknAypmn = Awkmn, where W is the function in L*(T™) given by
U(z1,29,...,2n) = (27" 25" .o, 20)0(z1, 22, - oy 2n).

Proof. Let ¢,¢ € L>®(T") and k,m € Z such that k,m > 2. Then, by [3, Proposition
3.2], the operator Ay nAy.m.n can be written as

A(;S,k,nAw,m,n = Ek,nM¢Em,nM7,Z)

= EpnEmnMpm o om)My

= EkmnMyp am,.. omyy

= Apr o,y kmns (2.1)
which is in the desired form. This completes the proof. ]

The assertion obtained in the following result helps significantly to arrive at the con-
clusion that the commutativity and essential commutativity for k*"-order slant Toeplitz
operators are equivalent. To deduce the following output, we utilize the fact that Ay p
is compact if and only if ¢ = 0 if and only if Ay, = 0, which is proved in [3].
Theorem 2.6. Let ¢, € L>°(T™) and k, m be two integers such that k,m > 2. Then,
the following statements are equivalent

(1) The operator Ay knAypmn s a compact operator.
(2) Ad),k,nAl/),m,n = 0'
(3) p(21", 25, ..., 20" = 0.

Proof. In view of relation (2.1), the operator Ay Ay mn can be expressed as
A(b,k,nAw,m,n = Ekm,nMgS(z{",z;",...,z;{L)d)'

This expression gives that the operator Ay j Ay m.n is a km-th order slant Toeplitz oper-
ator, induced by ¢ (21", 25", ...,27")1. With the help of [3, Proposition 2.8 and Theorem
2.13], one can easily conclude the desired equivalent statements. O

An immediate output can be derived from the latter is that the product of two k*"-order
slant Toeplitz operators induced by ¢,1 € L°°(T") is a compact operator if and only if
gb(zlf , 272“ sy Z,,ki)i/) is the zero function. Using the preceding result appropriately, it is easy
to obtain the following

Corollary 2.7. Let ¢, be two functions from the space L>°(T™). Then, the following are
equivalent:

(1) The operators Ay kn and Ay, essentially commute.
(2) The operators Ay k.n and Ay mpn commute.

(3) o(21", 28", ., 2 — (e, 25, .. 25) = 0.
Proof. In order to prove the result, consider the following expression

A¢7k7nAw7mvn - vamvnA¢7k7n = EkmvnM¢(zr7zgl77zgl)w - EkmvnM(],sw(Z]f,Zé:,,Z?k{)

= EemanMom o amyp— gk 2. k)
The result follows by the use of Theorem 2.6 and essential commutativity and commuta-
tivity of operators. O

In particular, for & = m, Corollary 2.7 lead to the following conclusions about the
kth-order slant Toeplitz operators Aprn and Ay gn.
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Corollary 2.8. The following statements are equivalent for ¢, € L>(T"):

(1) AgknAykn = ApknApkn-
(2) Agpn and Ay k. essentially commute.

(3) qs(zic’ Zé? ct Z'Z?L)w - 1/}(2(]]?’ Z%? MR Zﬁ)gb = 0'
If ¢ € L*°(T™), given by

¢(217 22’ A ,Zn) - Z d)ml’m%._,’ng{anng o .. ZZLn

(m1,ma,...,mn)€EZL"

satisfies ¢(2f, 25, ..., 2%) = ¢ then for each (i1, ia,...,i,) € Z", it can be seen that
0= <¢>(zlf,z§, . .,z,";) — ¢(z1,22,. .. ,zn),zilz;2 - zf{‘>
qﬁ%%% — @iy ia,...,ins if each ¢; is a multiple of k, 1 < j <n
B —Biin,sins otherwise.

The more significant form of the above expression is the following

¢i iy in, if each i; is a multiple of k, for 1 < j <n
Dirizyeein = o FFH ) (2.2)
0, otherwise.
If each i; is a multiple of k for 1 < j < n. Then, by using equation (2.2), it can be obtained
that ¢, iy, .in = Pmi,mo,...,m, such that at least one m;, 1 < j < n, is not divisible by
k. Therefore, in view of (2.2) again, we get that ¢;, i, i, = 0 for all nonzero n-tuple
(i1,12,...,1p) € Z", which gives that ¢ = ¢g,.. 0 (constant function).
We are aware with the fact that MyE}y , = A¢<Z§,Z§’”,zﬁ)’k’n, which leads us to a con-
clusion that Ej, and My commute if and only if ¢ is a constant. In the next result, we
intend to establish a generalized version of the above mentioned conclusion.

Theorem 2.9. The operators My and Ay, commute if and only if the expression
G(2F, 25, . 2E 0 = ¢ is satisfied for ¢, € L°(T™). Further, if + is invertible, then
the following statements are equivalent:

(1) MyAy kn = Ay kMg

(2) ¢ is a constant function.

Proof. To prove the desired equivalent statements, consider the operators Ay i, My and
MyAy k.n, which can be respectively written as

Ay knMp = EpnMpp = Apg ki and MyAypn = Agcr b kg s

19
The preceding expressions and the injectivity of the mapping (¢ — Ay k. ), which is
shown in [3], are enough to declare that My Ay, . n = Ay knMy if and only if ok, 2k, 2R
Y = ¢y
Further, we assume that 1 is an invertible function of L°°(T"™), then by the above
observation, it is evident that My Ay i n = Ay knMg is equivalent to gb(zlf, zlg, ... zk) = ¢.

’ren

This completes the proof. O

Being E}, ,, a kt"-order slant Toeplitz operator, the above theorem provides an immediate
inference that the operator Ej, and the multiplication operator My, induced by ¢ €
L°°(T™), commute if and only if ¢ is a constant.

3. Properties

This section highlights certain structural properties, which are associated to k*"-order
slant Toeplitz operator on L?(T™). It also deals with C*-algebraic aspects linked to the
kt'-order slant Toeplitz operators. Ultimately, the section includes significant observations
made for spectral properties of k*-order slant Toeplitz operators.
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The following theorem reveals the connection between weighted composition operators
and k"-order slant Toeplitz operators. The weighted composition Cy, i is a bounded
operator on L?(T") given by Cy (f) = ¢ - (f o H), where H is a mapping from T" to
itself such that H (21, 20,...,2,) = (2§, 25, ... 2F).

’ren

Theorem 3.1. Let ¢ be an element of the space L>°(T™). Then, AG s the adjoint of
Agp ko, 1 a weighted composition operator Cy pr, where H is defined as above.
Proof. Suppose that ¢ € L>°(T") is of the form

m1 , m2 mn.

D(21,29,...,2,) = Z O ma,mn 2129 2y
(mlzm27~~-ymn)€Zn

As we know that the action of the adjoint Azs, ko of kt-order slant Toeplitz operator on
basis elements of L?(T") is given by

* _ n mi ., m2 m
&,k,nCi1,...in (217 B2y« Zn) - Z ¢ki1fm1,ki27m2,...,kinfmn21 Zog T2y "
(m1,ma...,mp)EL™
_ i ki1—m1 _kis—mo kin—m
= Z Pt ma,mn 21 29 ezt "
(m1,ma...,mn)EL™
= [¢(21, 2y e ,Zn)} . [6117127.“’7;” (¢] H(Zl, 2y e e oy Zn)],

for each (i1,12,...,in) € Z". By the use of linearity of A%, , we get that A7, (f) =

¢-(foH)=Cyr(f). This completes the proof. O

We begin with an observation that if ¢ € L>°(T") then so is E,(¢). To show the
desired conclusion, we utilize the frequently used fact that Ey , My Ly, = Mg, (), which
is already seen in [2, Lemma 3.12]. It gives that

Ek,nAZ7k7n = EkanMa)Ezvn = MEk,’VL((Z_b)'

Since the operator Ek,nAz,k,n is bounded, hence M By () is bounded. This implies that

Epn(¢) € L>=(T").

By a positive function on T", we mean a function ¢ on T" such that ¢(z1, 22,...,2,) >0
almost everywhere and in this case we write ¢ > 0 almost everywhere. As a consequence
of the preceding observation, we have the following.

Theorem 3.2. If ¢ is an element of L (T™) such that ¢ > 0 almost everywhere. Then,
Ein(¢) > 0 almost everywhere on T™.

Proof. Let ¢ be a positive element of the space L (T™). For the accomplishment of the
. N .
proof, consider the operator A \/$,k,nA oo which can be expressed as

* . * _
A ¢,k,nA\/g7k7n - EkynM|\/$|2Ek,n - MEk,n(@'
Since the operator A Jok nAi/g on is positive, therefore Mg, (4) is also positive. We know

that the multiplication operator is positive if and only if the inducing function is positive.
Hence, in view of the above observation, Ej ,(¢) is a positive element of L>°(T™). This
completes the proof. O

The above theorem can be rephrased as the operator Ej, sends a positive element of
L*°(T™) into a positive element of the same space, which provides a trivial consequence in
the following form.

Corollary 3.3. Let ¢, 1 be two functions of the space L*°(T™) such that ¢ > 1 > 0
almost everywhere. Then, Ej n(¢) > Ey ., (¢) almost everywhere on T™.
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1 L
In the paper [3], it is already shown that [[A7) || = [|Pm |5 and r(Ap k,n) = Trllz_@oH(I)mHgg",
where m € N, 7(Ag 1. n) denotes the spectral radius of Ay , and ®,, can be expressed as

CI)m = Ek,n (|¢’2 Ek,n (|¢’2 Ek,n ( o Ek,n (’¢’2) e ))) - AER};{’”(D' (3'1)

m—times

1
In particular, the norm of Ay, is given as || Ag gl = | Ek.n(|6]*)[|%. This observation
brings out the following.

Corollary 3.4. Let ¢ be an inner function. Then, the spectral radius of Ay induced
by ¢ is 1.

Now, we would like to derive a relation between the spectral radii of operators Ay p
and Ay k. for ¢,¢ € L>°(T") such that |¢| > |1)| > 0 almost everywhere (in short a.e.).

Theorem 3.5. If ¢, ¢ are two elements of L (T™) with the condition that |¢p| > || > 0
almost everywhere on T™. Then, ||A§)kn|| > ||Az’k,n|] and r(Ag kn) > 7(Aypkn), where
p€N.

Proof. Suppose that ¢, are functions in L*°(T") such that |¢| > || > 0 a.e. on T",
which gives that |¢|> > |¢|> > 0 a.e. on T™. By the use of Theorem 3.2, one can have

Eim (|¢|2) > Egn (|¢\2) a.e. on T

Similarly, it is easy to see that

Ekn Ufb‘QEk,n (|¢’2)} > Egn U?MQEk,n (|¢]2)} a.e. on T".

Equivalently, we get that ®, > Wy a.e. Again, in a similar way, one can show that ®, > ¥,
a.e. for p € N, where ®,, and VU, are given by (3.1). In view of [2, Lemma 3.12 and Theorem
3.13], the preceding relation yields the desired result. ([l

By a trigonometric polynomial on T", we mean a function ¢ on T" with Fourier series
of the form

J— mi .m2 m
O(21,22, ..y 2n) = Z Omama,.mn 21 29 2 20T
(m1,ma,...,mn)EL"
—M;<m;<M;,1<i<n
where M;’s are nonnegative integers. Equivalently, without loss of generality, trigonometric
polynomial ¢ on T™ can be defined as

O(21, 22y -y 2n) = Z Oy g mn 21 2 2T (3.2)
(m1,ma,...,mpn)EL™
—M<m;<M,1<i<n
where M is a nonnegative integer.
Next, we look for invariant subspaces of the k*"-order slant Toeplitz operator with
symbol ¢ being a trigonometric polynomial.

Lemma 3.6. Let ¢ be a trigonometric polynomial given by (3.2). Then, we have the
following
(1) The closed linear subspace Hy of L*(T™) spanned by {225 ... zin - |i;| < (k —
)M for1 < j <n} is invariant under Agj -

(2) The function ®, = A@P,k,n(l)’ given by (3.1), is contained in the finite dimen-

sional subspace H|g42 generated by {20282 20 il < 2(k—1)M for1 < j<n}.



Multivariate analogue of slant Toeplitz operators 685

Proof. For the accomplishment of the proof, operate AZT” 2,
Hy, which gives that

2 g O1 the elements of

mj+i3  motig mp+in
o 20 "oz B izg ®, ifdy’s and my’s are multiple
11 % in\ __ .
Az;nlz;n2.“z;n"7k7n(zll’222 s Z:L ) - of k for 1 S ] S n
0, otherwise.
Since ’mjﬂj < M for each j such that 1 < j < n. Therefore, we obtain that Hy is

invariant under A ST e g and hence under Ay ,,.

z
The second part is an immediate consequence of part (1). ]

The next theorem reveals the relationship between the double commutant of the class
of k'"-order slant Toeplitz operators and collection of all bounded operators on L?(T").

Lemma 3.7. Let 8 be the C*-algebra generated by all k-th order slant Toeplitz operators
on L*(T™). Then, the double commutant of 8 is the collection B(L?(T™)) of all bounded
operators on L%(T").

Proof. Let M denotes the C*-algebra generated by all multiplication or Laurent operators
on L2(T"). Then, by [2, Lemma 2.11(ii)], one can observe that M C 8. Therefore,
8 € M = M, where M and 8 represent the commutants of the C*-algebras M and
8 respectively. Let T be any element in 8'. Then, by the preceding inclusion, 7' is a
Laurent operator My for some inducing function ¢ € L>(T"). Since, Ej,, is a kt'-order
slant Toeplitz operator with symbol ¢ = 1, one can point out that T'Ey, = Ej,T i.e.
MyEy, ,, = Ey, nMg. Consequently, the Theorem 2.9 derives that ¢ is a constant and hence
T is a constant multiple of I, the identity operator. This implies that 8’ =9, where J is
the C*-algebra generated by the identity operator. Hence, the required result follows. [

Apparently, the preceding lemma and Von-Neumann double commutant theorem yield
the following.

Theorem 3.8. The C*-algebra (unital) 8 generated by the collection of all k-th order slant
Toeplitz operators is B(L*(T")).

In the following results, we discuss hyponormality, normality, co-isometric, partial iso-
metric and isometric behaviors of our operators.

Theorem 3.9. A necessary and sufficient condition for a k-th order slant Toeplitz operator
Ay jom to be a partial isometry is that ¢ = ¢-E,’§7nEk,n(|¢|2). In particular, if ¢ is invertible
then Ag i is a partial isometry if and only if Ez’nEk,n(kb\Q) =1.
Proof. We know that an operator T is a partial isometry if and only if T' = TT*T, which
gives that Ay, is a partial isometry if and only if Agr, = A¢,k7nAZ7k7nA¢,k,ﬂ' Now,
consider the following expression
Askn = ApknAgrnAskn

= Ek7nM¢M$EZ’nEk,nM¢

= Mg, (o2 ErnMs

= ApBon(6) (et etk = Al BL i (92)] ko

which yields that the operator Ay, is a partial isometry if and only if it satisfies Ay 1, =
A[¢~E,§,nEk,n(l¢\2)Lk,n' The injectivity of the mapping ¢ —— Ay, helps to provide the
required result. The particular case of the theorem is straightforward. O

An illustration in the confirmation of the above theorem is the following.
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Example 3.10. The operator Ay, is a partial isometry for ¢(z1,22,...,2n) = %,2122
. Zn + ‘{zkzz .zE. One can easily verify that ¢ € L°(T") and that |¢]> = 1 +
@(zlf_lzg_l ) I \/g( TR R 2R which yields that By ,|¢> = 1 and

hence ¢E; , Ey \¢]2 o. Therefore the desn"ed conclusion follows in view of the above
theorem.

The next result investigates inducing functions ¢, which give isometric k*’-order slant
Toeplitz operators Ag i .

Theorem 3.11. A k'"-order slant Toeplitz operator on L*(T™) cannot be isometric.

Proof. If possible, assume that a k*"-order slant Toeplitz operator Ay i induced by ¢ is
an isometry, where ¢ is of the form

D(21,29,...,2,) = Z O g, mn 21 29 2 2

(1, ) EL

Then, for i; € Zy, 1 < j < n, we get that | Ag g nzi 25> ... 2in || = ||2i' 28 ... 2in || = 1, which
can be rewritten as

> | Gl —in oma—ia..kmn—in | = 1. (3.3)
(m1,ma,....,mn)EL™
Also, from the equation (3.3), the norm of ¢ in L?(T") becomes
lol* = > (b ma s |

(m1,ma,...,mn)EL"
k—1

= > > | Okima i hma iz, o —in |- = K"

1;=0,1<5<n (m1,ma,...,mn ) EL™
Hence, we obtain that ||Ex,(|0])] = |Asrn(d)|l = ¢ = k2. But, we know that
1

| Agrnll = |]Ekn(]¢|2)||§o and Ay, is an isometry. This implies that HEkn(]qb|2)||oo =1.
Since k > 2 and n > 1, so the above observation helps to conclude that

1Ekn (0 leo < 1Exn(6)]l2,

which is a contradiction. Hence the conclusion of the theorem follows. O

In the following example, we construct an isometric operator with the help of k**-order
slant Toeplitz operator.

Example 3.12. Let a, 3 € C and ¢(z1,22,...,2n) = @(z122...2,) + 8. Then, one can
observe that Aqg’k,nA:;’k’n = Mg,  (¢2) and

Ein(|6%) = By (Ia? + 182 + 0Bz, 20, . 20+ @Bz, 22, 2n) ) = |of* + |8

Therefore, the operator WAZ,M is an isometry.

Theorem 3.13. The zero operator is the only hyponormal k"-order slant Toeplitz oper-
atoron L?(T™).

Proof. Let ¢ € L>®(T") be given by

O(21, 22,y 2n) = Z Omyma,.mn 21 2y 2y

(m17m27---7mn)€Z”

Suppose that Ay 1, is a hyponormal operator induced by ¢. Then, we have
[Agknfll > 1A e nfll - forall f e L2(T™). (3.4)
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In particular, for the function f = 1, the relation (3.4) gives that

Z |¢km1,k‘m2,.--7kmn |2 > Z |¢_m17_m2»~~~7_mn |2v (3'5)

(m1,ma,...,mn)EL™ (m1,ma,...,mn)EL"

which yields that @rm,—i\ kmo—is,....kmn—i, = 0 for all i; € Zy,1 < j < n but (i1,i2,...,10)
#(0,0,...,0). Also, for f = z122... 2y, the relation (3.4) reduces to

Z |¢km1—1,km2—1,...,kmn—1‘2 > Z |¢k—m1,k—m2,...,k—mn|2a (36)

(m1,ma,...,mn)EL" (m1,ma,...,mn)€EL"

In view of the above observation, inequality (3.6) helps to conclude that ¢rm, kms,..
....kmn = 0. Thus, we obtain that ¢ = 0 and hence Ay, = 0. ]

Since an isometry is always a hyponormal operator, Theorem 3.11 turns out to be a
particular case of Theorem 3.13. Moreover, one can also draw the following conclusion
from Theorem 3.13.

Corollary 3.14. The only normal k*"-order slant Toeplitz operatoron L?*(T™) is the zero
operator.

Now, we intend to establish a condition on the inducing function so that Ay, is a
co-isometry.

Theorem 3.15. A k'"-order slant Toeplitz operatorAg. ., on L*(T") is a co-isometry if
and only if Exn(|6|*) = 1.

Proof. We know that an operator 7T is a co-isometry if and only if TT™* = I. Now, consider
the expression A¢7k7nA;‘5’k,n = Ek,anqu;EZ,n = Mg, . (1¢|?)» Which provides that Ay, on
L*(T™) is a co-isometry if and only if E,(|¢|>) = 1. This completes the proof. O

Now, the following conclusion can be immediately drawn.

Corollary 3.16. The k" -order slant Toeplitz operator Ay i is always a co-isometry for
a unimodular inducing function ¢ € L>=(T").

The following examples verify the existence of co-isometric k'’-order slant Toeplitz
operators.

Example 3.17. Consider the k*"-order slant Toeplitz operator Ay i induced by ¢, where
O(21,29, ..., 2n) = \/ﬁ(zlzg ...znt+a), a € C. Clearly, ¢ € L>°(T") and Ekn(\¢\2) =

1. Therefore, in view of Corollary 3.16, one can conclude that Ay, is a co-isometry.

Example 3.18. The operator Ay, where ¢ is as in Example 3.10, is a co-isometric
kt'-order slant Toeplitz operator.

Theorem 3.19. A necessary and sufficient condition for a k' -order slant Toeplitz oper-
ator A gn on L?(T") to be a co-isometry is that

kz—:l ¢<91+2r17r O + 2ram 9n+2rn”)‘2:kn on T" a.e
rj=0,1<j<n g : ’

Proof. In order to obtain the required condition, we use the fact that an operator T is a
co-isometry if and only if T* preserves the norm. For each f € L?(T"), computation gives
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the following
1Ak (OIF = llo- B (NI

1 2r 27 2w
_ n/ / / 1601, ., )| (K61, .., k0,)[2d6; . .. b,
(2m)"Jo  Jo 0
n—times
1 2km 2km 0, 4] 2
= e, O1,...,0,)?db; ... do,
(2kﬂ)nA A ¢<k7 7k) ’f( 1, ) )’ 1
—_———
n—times
B 1 /2“/2” /27T kil ¢(91+2r17r 9n+2rn7r> 2
 2kmno Jo o ri=01%j<n k B k
n—times
X ]f(&l, 92, e ,Qn)|2d91d92 . d@n
= [IMy(N)I?,
k—1 2
where (61, 0s, ..., 0,) = %j > ‘qﬁ(@ﬁg“”,92+,§7"2“,...,9n+,§m”)‘ . By the above
r;=0,1<j<n
computation, the result follows without any extra effort because of the fact that || My (f)|| =
| f|| if and only if ¢ is unimodular. O

The preceding theorem along with Theorem 3.15 can be drafted in the following form.

Theorem 3.20. For a kt'-order slant Toeplitz operator Apin on L?(T™), the following
are equivalent:

(1) Agkn is a co-isometry.

(2) Ern(|9?) = 1.

(3) S oWz, Wz, .. w™2,)|P = k™ on T almost everywhere, where w is
r;=0,1<j<n

a kt"-root of unity.
In subsequent results, we focus on the study of the spectrum of k*’-order slant Toeplitz

operator. In particular, it will be shown that a closed disc is contained in the spectrum
Of Aqﬁ,k,n-

Lemma 3.21. Let ¢ € L>(T") be invertible. Then, the kernel of Ag j.r is the closed span
of S given by
S = {(zfml*plzgmrpz Ry s € 7,(0,0,...,0) # (p1,D2, .. Pa) € ZZ}

Proof. Initially, we claim that the range R(A;; kn) is closed, which follows immediately be-

cause of the fact that My is invertible and E}  is an isometry. We know that R(A7 km)L =

ker(Agkn), provided that R(AY ) is closed. Therefore, we make an attempt to prove
that 1?(141;‘)7,6’71)l = S. One can observe that the range of A%,  is the closed span of Sy =

b - (zfm1z§m2 Lok imy e 7,1 <0 < n} Now, for (i1,42,...,%n), (J1,J2, -, Jn) € Z"
and p,, € Z; but not all p,,, = 0, we have

<¢3. (hithin | kiny g1 (Kn=pi kiap2 Zﬁjn_pn)>
= <(ziez1zéczz - '27];:/1”)7 (zfjl_plzng—pQ . Z];jn_pn>> —0.
It gives that 5 C R(Az,k,n)l- Conversely, assume that f € R(A:’;,k,yn)J‘, then

(5 (ki i), £ = (R0 ki) g ) =,
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for each (i1,i2,...,i,) € Z". In view of the above expression, we obtain that ¢ - f €
[ — Py](L%(T™)), where Py is the orthogonal projection of L?(T") onto the closed subspace
generated by {zF™zkm2  zkmn i e 7,1 < i < n}. The operator (I — Py) can be
viewed as szlzl;72'”zgnEZ7n, where p; € Zg, but not all p; are 0, 1 < i < n. Thus, we
obtain that ¢ - f = M_p1 oo B} . (g) for some g € L?(T™), which can be rewritten as
f=o¢ b (20282 2kn) . g(2h, 2K, ... 2F). This yields that f € S. Hence, it follows that
S = R(A;k’n) . This completes the proof. O

Since the set {¢ € L>®(T") : |¢| > € > 0 a.e. for some €} is dense in L>°(T™). There-
fore, from the above lemma, one can conclude that 0 € o(Ag k.n)-

Lemma 3.22. The point spectra of Ay, and A¢(Z
Lo°(T™) is invertible.

E2k) kn coincide whenever ¢ €

Proof. Let A be an element of 0,(Agrn). Then, Ayrn(f) = Af, for some nonzero
function f € L*(T™). Under the assumption it is clear that My(f) # 0. Therefore, we can
deduce that MyAg . n(f) = MMy f, which is equivalent to A (202K z ) k(@) = Ao f).

This implies that A € ap(A¢(Z 2k k) k, n)-

DREREE]
For the converse, assume that A € Up(A¢(zf,z§,...,zﬁ),k,n)‘ Again, there exists a non zero

function g in L?(T") such that A¢(zf,z§,,..,z§),k,n(g) = \g. Take G = ¢! - g, clearly G # 0.
Consequently, we get that Ay, (G) = A(G). Hence, the desired result follows. O

The next result gives a better visualization of spectrum of slant Toeplitz operators.

Theorem 3.23. Let ¢ be a function of the space L>(T™). Then, the spectrum of Agkn
s the same as that ofA

z z2, zkY ke

Proof. For the accomplishment of the proof, initially, we claim that o(Agkn) U {0} =
O'(A(b(zizk zk),k,n) U {0}. In view of the property of the spectrum, we have

------
oAy sn) U{0} = o(MgEL) U0} = (B, Mg) U {0}
- G(AZ(z’f,zé,...,zﬁ),k,n) U {O}

Thus, the above expression provides the desired claim. One can easily see that 0 €
U(A¢(z§,z§,...,zk),k,n)- The preceding lemma, if ¢ is invertible, gives that 0 € 0,(Agxn). If

¢ is not invertible, then 0 € oapp(Agkn) € 0(Agkn). Thus, the above observations bring
out that 0 € 0(Ay kn) for ¢ €L>°(T™). This completes the proof. O

Theorem 3.24. The spectrum of the k' -order slant Toeplitz operator Ag kn, induced by
an invertible function ¢ € L*°(T"), contains a closed disc.

Proof. Let X be a nonzero element of C and the operator (Ajé*l(zk Fy kT AI) be onto.
10 n /"™

Then, for 0 # g € (I — P;) (L*(T")), there exists a nonzero function f € L?*(T") such

that (Ag_l(z,ﬁ‘.’zﬁ),k,n — M) (f) = g, where Py is the projection of L?(T") onto the closed

subspace generated by the set {zi™1z5m2 | kma

(A:;—6 — M) (f) = g can be rewritten as

:m; € Z,1 < i < n}. The expression

“L(2fezh) kn

(A5 rotyen) () = APLLE) = AU = P)(S) = 9.
equivalently,

77777777
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The above expression along with the assumption yields that (A;‘;_l (oF zk),k,n) (f) —

19°°9%n
APy(f) € R(Py)NR(I—Py) = {0}, where R(T) represents the range set of T'. Thus, the as-
sumption, 0 # g € (I—P;) (L*(T™)) , helps to arrive at an inference that (AZ—)

AP;)(f) = 0. Consequently, we get that
AB; o My-1(A = MyEy)(f) = 0. (3.7)

Since, My is invertible, A # 0 and Ej ,, is an isometry, we get that

_I(Zf,,..,z,ﬁ),kﬂl_

(A = Ak 2k ok en) (F) = 0, which implies that A" € o (Ayk b ok k)
If A€ p(A],
(45,

), the resolvent of the operator A;‘—)_l then, clearly,

(z’f,...,zfl),k,n (va"wzﬁ)?k»n,

B AI) is onto. Therefore, the above observation yields that
1""7 n/yv

D= {)‘_1 TN E p(Az—l(zf,...,zﬁ),k,n)} - O-P(A¢(z’f,z§,...,z§),k,n)'

In view of the preceding Lemma 3.22, we have D C 0,(Ag ). Since, the resolvent of an
operator is an open subset of the complex plane, so D is an open subset of C and contains
an open disc. The compactness of the spectrum helps to point out that a closed disc is
contained in the spectrum o(Ay xn) of Ag i n- O

A trivial observation can be made from the proof of the above theorem in the following
form.

Corollary 3.25. The spectrum of Agk.n contains a closed disc of radius equals to

-1
r (AE* (¢>1),k,n> , where r(-) denotes the spectral radius.

k,n

For the particular choice n = 1 and k = 2, the results presented in the paper provide
certain results proved by Ho [7,8] in the one variable case. At the end, we list the following
illustrations related to the spectral radii and norms of these operators.

Example 3.26. For ¢(z1, 20,...,2,) = (2825 ... 2F + 1), it can be seen that |¢]> = 2 +

(2hzh . 2F) 4 (2F2h ... 2K), which yields that

Een(|6]?) =2+ (2122 .. 20) + (2122 . . . 20).

Similarly, we can compute ®,, = 2" 1(2 4+ (2122...2,) + (2122 ... 2z,)). This implies that
@]l = 2™+, Thus, the spectral radius r(Apkn) = V2 and ||[Aggn| = 2. Therefore,
the operator Ay, is not a normaloid.

Example 3.27. Let ¢(21,29,...,2,) = @+ 2122...2p, € C. Then ¢ € L*°(T")and the
spectral radius of Ay, is given by r(Agrn) = 1+ |af?.
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