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Abstract
This paper discusses several structural and fundamental properties of the kth-order slant
Toeplitz operators on the Lebesgue space of the n- torus Tn, for integers k ≥ 2 and n ≥ 1.
We obtain certain equivalent conditions for the commutativity and essential commutativity
of these operators. In the last section, we deal with the spectrum of a kth-order slant
Toeplitz operator on L2(Tn) and investigate the conditions for such an operator to be an
isometry, hyponormal or normal.
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1. Introduction
The class of Toeplitz operators possesses extensively vast literature, which contains

immense informations and implications. The algebraic and C∗- algebraic view points of
Toeplitz operators have resulted into profound and adequate theory. Toeplitz operators
were introduced in the commencement of 20th century by O. Toeplitz. The theory of
Toeplitz operators is related with different areas like C∗-algebra, function theory and
certain other fields of operator theory. A matrix A = (ai,j)i,j≥0 is called a Toeplitz matrix
if ai,j = ai+1,j+1. Toeplitz operator on H2(T), the Hardy-Hilbert space, is defined to be
the compression of a multiplication operator on L2(T) to the space H2(T), where T is the
unit circle in the complex plane C. Over the years, several researchers have given different
generalizations of Toeplitz operators. Toeplitz and Hankel operators [10] exhibit crucial
roles in the study of each other, together with their significant features.

Ho [7, 8] introduced the notion of a slant Toeplitz operator on L2(T), which is closely
related with the multiplication operator. He derived several structural properties of these
operators. The study of kth-order slant Toeplitz operators on L2(T) and its compression
to H2(T) is initiated by Arora and Batra [1]. For adequate literature on these operators
and their applications to wavelets and dynamical systems, one is referred to [6, 7, 10] and
the references therein. The theory of Toeplitz operators to the Hardy space of the bi-disk
was developed by many mathematicians (see [2, 4, 5, 9]).
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Let Dn be the open unit polydisc in Cn and Tn, the distinguished boundary of Dn, de-
notes the n- torus. Although, the function theory on the polydisc (see [11]) is significantly
different from the one on the unit disc, the available theory of multiple Fourier series on
the n- torus enables one to discuss function spaces (e.g. L2(Tn), L∞(Tn) ) as well as slant
Toeplitz operators in the higher dimensional setting. In the whole paper, the space of all
Lebesgue integrable functions on Tn and the collection of all Lebesgue square integrable
functions on Tn are respectively denoted by L1(Tn) and L2(Tn). The class of all essentially
bounded measurable functions on Tn is expressed by L∞(Tn). Any two functions in these
spaces are equal in the sense of equality almost everywhere. The Fourier coefficients of
f ∈ L1(Tn) are given by

fm1,m2,...,mn = 1
(2π)n

∫ 2π

0

∫ 2π

0
. . .

∫ 2π

0︸ ︷︷ ︸
n−times

f(eiθ1 , · · · , eiθn)e−i(m1θ1+...+mnθn)dθ1dθ2 . . . dθn,

formi ∈ Z, 1 ≤ i ≤ n. If the Fourier coefficient fm1,m2,...,mn = 0 for each (m1,m2, . . . ,mn) ∈
Zn, then f ≡ 0 (see [12, Theorem 1.7 (Chapter VII)]). The multiple Fourier series can
be seen or treated as Fourier transformation of functions in L1(Tn). Therefore, by the
multiple Fourier series [12] on Tn, the spaces L2(Tn) and H2(Tn) can be written as

L2(Tn) =

f : f(z1, z2, . . . , zn) =
∑

(m1,m2,··· ,mn)∈Zn

fm1,m2,··· ,mnz
m1
1 zm2

2 · · · zmn
n ,

∑
(m1,m2,··· ,mn)∈Zn

|fm1,m2,··· ,mn |2 < ∞

 ,

and

H2(Tn) =

f : f(z1, z2, . . . , zn) =
∑

(m1,m2,··· ,mn)∈Zn
+

fm1,m2,··· ,mnz
m1
1 zm2

2 · · · zmn
n ,

∑
(m1,m2,··· ,mn)∈Zn

+

|fm1,m2,··· ,mn |2 < ∞

 ,

where Z and Z+ are respectively the set of all integers and the set of all non-negative
integers. Clearly, the space L2(Tn) is a Hilbert space with the norm given by the inner
product

〈f, g〉 = 1
(2π)n

∫ 2π

0

∫ 2π

0
. . .

∫ 2π

0︸ ︷︷ ︸
n−times

f(eiθ1 , eiθ2 , · · · , eiθn)g(eiθ1 , eiθ2 , · · · , eiθn)dθ1dθ2 . . . dθn.

The class
{
em1,m2,··· ,mn : (m1,m2, . . . ,mn) ∈ Zn+

}
, where em1,··· ,mn(z1, z2 · · · , zn) = zm1

1
zm2

2 . . . zmn
n , deduces an orthonormal basis of H2(Tn). The space H2(Tn) can be shown as

a closed subspace of L2(Tn) such that for f ∈ H2(Tn),
〈f, em1,m2,...,mn〉 = 0 if mj < 0 for at least one j, 1 ≤ j ≤ n.

Many mathematicians use multi-index notations namely dθ, zm and m for dθ1dθ2 . . . dθn,
zm1

1 zm2
2 . . . zmn

n and (m1,m2, . . . ,mn) respectively. However, we prefer the latter notations
to have better visualization of functions in multi-variable cases. From now on, an analytic
function f in L2(Tn) is a function, whose Fourier coefficients fm1,m2,...,mn = 0, whenever
mj < 0 for at least one j, 1 ≤ j ≤ n. Note that here the notion of an analytic function
is not the same as in the case of complex plane. By a co-analytic function in L2(Tn)
we mean a function whose complex conjugate is analytic in the above sense. Also, the
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symbol Zk stands for the set {0, 1, 2, . . . , k − 1} for k ≥ 2. Motivated by the work of Ho
[7, 8], we extended the notion of slant Toeplitz operators to the space L2(Tn) in [3]. In
this paper, we discuss various properties of kth-order slant Toeplitz operators and obtain
results describing spectra and spectral radii of these operators.

2. Commuting operators
This section is mainly devoted to the study of symbols inducing commuting kth-order

slant Toeplitz operators. We begin with the following known notions.

Definition 2.1 ([8]). A slant Toeplitz operator Aϕ, induced by symbol ϕ ∈ L∞(T), on
the Lebesgue space L2(T) is given by Aϕ = EMϕ, where Mϕ is the multiplication operator
on L2(T) with symbol ϕ, and the operator E is the linear operator on L2(T) defined by

E (zm) =
{
zm/2 if m is an even integer
0, otherwise.

Definition 2.2 ([3]). For ϕ ∈ L∞(Tn) and an integer k ≥ 2, a kth-order slant Toeplitz
operator Aϕ,k,n with symbol ϕ, on the Lebesgue space L2(Tn), is defined to be Aϕ,k,n =
Ek,nMϕ, where Mϕ is the multiplication operator on L2(Tn) induced by ϕ, and the operator
Ek,n is the linear operator on L2(Tn) given by

Ek,n
(
zi11 z

i2
2 . . . zinn

)
=

z
i1
k

1 z
i2
k

2 . . . z
in
k
n if each ij is a multiple of k, for 1 ≤ j ≤ n

0, otherwise.

In fact, the operator Ek,n is a bounded linear operator on L2(Tn) with norm ‖Ek,n‖ = 1.
The kth-order slant Toeplitz operator Aϕ,k,n is also a bounded linear operator on L2(Tn)
such that ‖Aϕ,k,n‖ ≤ ‖ϕ‖∞. The operator A1,k,n, induced by ϕ ≡ 1, is nothing but Ek,n. In
particular, for k = 2, the operator Aϕ,2,n is known as slant Toeplitz operator on L2(Tn).
In [3], it is proved that a bounded operator A on L2(Tn) is a kth-order slant Toeplitz
operator if and only if A satisfies the following conditions:

MzjA = AMzj
k , 1 ≤ j ≤ n.

Now, we are in the position to analyze the commutativity of slant Toeplitz operators.
Initially, we start with a result related to Ek,n. For the basic properties of Ek,n, we refer
[3].

Proposition 2.3. For any two integers k and m (≥ 2), Ek,nEm,n = Ekm,n on the space
L2(Tn).

Proof. In order to furnish the proof of the result, for any n-tuple (i1, i2, . . . , in) ∈ Zn, we
observe that

Ek,nEm,n
(
zi11 z

i2
2 . . . zinn

)
=


z

i1
km
1 z

i2
km
2 . . . z

in
km
n if each ij is a multiple of km, for

1 ≤ j ≤ n

0, otherwise.

= Ekm,n
(
zi11 z

i2
2 . . . zinn

)
.

The above observation gives that Ek,nEm,n = Ekm,n for all integers k,m ≥ 2. �

In view of preceding result, one can point out the following conclusion without any
extra effort.

Corollary 2.4. The operators Ek,n and Em,n commute for all integers k,m ≥ 2.
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The next theorem is an attempt towards commutativity of kth-order slant Toeplitz
operators induced by different symbols and which are of different orders. More precisely,
the following theorem helps to find out the condition on the inducing function so that
kth-order slant Toeplitz operators commute.

Lemma 2.5. Let k,m ≥ 2 be any two integers and ϕ, ψ be functions from the space
L∞(Tn). Then Aϕ,k,nAψ,m,n = AΨ,km,n, where Ψ is the function in L∞(Tn) given by
Ψ(z1, z2, . . . , zn) = ϕ(zm1 , zm2 , . . . , zmn )ψ(z1, z2, . . . , zn).

Proof. Let ϕ, ψ ∈ L∞(Tn) and k,m ∈ Z such that k,m ≥ 2. Then, by [3, Proposition
3.2], the operator Aϕ,k,nAψ,m,n can be written as

Aϕ,k,nAψ,m,n = Ek,nMϕEm,nMψ

= Ek,nEm,nMϕ(zm
1 ,zm

2 ,...,zm
n )Mψ

= Ekm,nMϕ(zm
1 ,zm

2 ,...,zm
n )ψ

= Aϕ(zm
1 ,zm

2 ,...,zm
n )ψ,km,n, (2.1)

which is in the desired form. This completes the proof. �
The assertion obtained in the following result helps significantly to arrive at the con-

clusion that the commutativity and essential commutativity for kth-order slant Toeplitz
operators are equivalent. To deduce the following output, we utilize the fact that Aϕ,k,n
is compact if and only if ϕ = 0 if and only if Aϕ,k,n = 0, which is proved in [3].

Theorem 2.6. Let ϕ, ψ ∈ L∞(Tn) and k, m be two integers such that k,m ≥ 2. Then,
the following statements are equivalent

(1) The operator Aϕ,k,nAψ,m,n is a compact operator.
(2) Aϕ,k,nAψ,m,n = 0.
(3) ϕ(zm1 , zm2 , . . . , zmn )ψ = 0.

Proof. In view of relation (2.1), the operator Aϕ,k,nAψ,m,n can be expressed as
Aϕ,k,nAψ,m,n = Ekm,nMϕ(zm

1 ,zm
2 ,...,zm

n )ψ.

This expression gives that the operator Aϕ,k,nAψ,m,n is a km-th order slant Toeplitz oper-
ator, induced by ϕ(zm1 , zm2 , . . . , zmn )ψ. With the help of [3, Proposition 2.8 and Theorem
2.13], one can easily conclude the desired equivalent statements. �

An immediate output can be derived from the latter is that the product of two kth-order
slant Toeplitz operators induced by ϕ, ψ ∈ L∞(Tn) is a compact operator if and only if
ϕ(zk1 , zk2 , . . . , zkn)ψ is the zero function. Using the preceding result appropriately, it is easy
to obtain the following

Corollary 2.7. Let ϕ, ψ be two functions from the space L∞(Tn). Then, the following are
equivalent:

(1) The operators Aϕ,k,n and Aψ,m,n essentially commute.
(2) The operators Aϕ,k,n and Aψ,m,n commute.
(3) ϕ(zm1 , zm2 , . . . , zmn )ψ − ϕψ(zk1 , zk2 , . . . , zkn) = 0.

Proof. In order to prove the result, consider the following expression
Aϕ,k,nAψ,m,n −Aψ,m,nAϕ,k,n = Ekm,nMϕ(zm

1 ,zm
2 ,...,zm

n )ψ − Ekm,nMϕψ(zk
1 ,z

k
2 ,...,z

k
n)

= Ekm,nMϕ(zm
1 ,zm

2 ,...,zm
n )ψ−ϕψ(zk

1 ,z
k
2 ,...,z

k
n).

The result follows by the use of Theorem 2.6 and essential commutativity and commuta-
tivity of operators. �

In particular, for k = m, Corollary 2.7 lead to the following conclusions about the
kth-order slant Toeplitz operators Aϕ,k,n and Aψ,k,n.
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Corollary 2.8. The following statements are equivalent for ϕ, ψ ∈ L∞(Tn):
(1) Aϕ,k,nAψ,k,n = Aψ,k,nAϕ,k,n.
(2) Aϕ,k,n and Aψ,k,n essentially commute.
(3) ϕ(zk1 , zk2 , . . . , zkn)ψ − ψ(zk1 , zk2 , . . . , zkn)ϕ = 0.

If ϕ ∈ L∞(Tn), given by

ϕ(z1, z2, . . . , zn) =
∑

(m1,m2,...,mn)∈Zn

ϕm1,m2,...,mnz
m1
1 zm2

2 . . . zmn
n

satisfies ϕ(zk1 , zk2 , . . . , zkn) = ϕ then for each (i1, i2, . . . , in) ∈ Zn, it can be seen that

0 =
〈
ϕ(zk1 , zk2 , . . . , zkn) − ϕ(z1, z2, . . . , zn), zi11 z

i2
2 . . . zinn

〉
=

ϕ i1
k
,

i2
k
,..., in

k

− ϕi1,i2,...,in , if each ij is a multiple of k, 1 ≤ j ≤ n

−ϕi1,i2,...,in , otherwise.
The more significant form of the above expression is the following

ϕi1,i2,...,in =

ϕ i1
k
,

i2
k
,..., in

k

, if each ij is a multiple of k, for 1 ≤ j ≤ n

0, otherwise.
(2.2)

If each ij is a multiple of k for 1 ≤ j ≤ n. Then, by using equation (2.2), it can be obtained
that ϕi1,i2,...,in = ϕm1,m2,...,mn such that at least one mj , 1 ≤ j ≤ n, is not divisible by
k. Therefore, in view of (2.2) again, we get that ϕi1,i2,...,in = 0 for all nonzero n-tuple
(i1, i2, . . . , in) ∈ Zn, which gives that ϕ = ϕ0,0,...,0 (constant function).

We are aware with the fact that MϕEk,n = Aϕ(zk
1 ,z

k
2 ,...,z

k
n),k,n, which leads us to a con-

clusion that Ek,n and Mϕ commute if and only if ϕ is a constant. In the next result, we
intend to establish a generalized version of the above mentioned conclusion.

Theorem 2.9. The operators Mϕ and Aψ,k,n commute if and only if the expression
ϕ(zk1 , zk2 , . . . , zkn)ψ = ϕψ is satisfied for ϕ, ψ ∈ L∞(Tn). Further, if ψ is invertible, then
the following statements are equivalent:

(1) MϕAψ,k,n = Aψ,k,nMϕ

(2) ϕ is a constant function.

Proof. To prove the desired equivalent statements, consider the operators Aψ,k,nMϕ and
MϕAψ,k,n, which can be respectively written as

Aψ,k,nMϕ = Ek,nMψϕ = Aψϕ,k,n and MϕAψ,k,n = Aϕ(zk
1 ,z

k
2 ,...,z

k
n)ψ,k,n.

The preceding expressions and the injectivity of the mapping (ϕ 7−→ Aϕ,k,n ), which is
shown in [3], are enough to declare thatMϕAψ,k,n = Aψ,k,nMϕ if and only if ϕ(zk1 , zk2 , . . . , zkn)
ψ = ϕψ.

Further, we assume that ψ is an invertible function of L∞(Tn), then by the above
observation, it is evident that MϕAψ,k,n = Aψ,k,nMϕ is equivalent to ϕ(zk1 , zk2 , . . . , zkn) = ϕ.
This completes the proof. �

Being Ek,n a kth-order slant Toeplitz operator, the above theorem provides an immediate
inference that the operator Ek,n and the multiplication operator Mϕ, induced by ϕ ∈
L∞(Tn), commute if and only if ϕ is a constant.

3. Properties
This section highlights certain structural properties, which are associated to kth-order

slant Toeplitz operator on L2(Tn). It also deals with C∗-algebraic aspects linked to the
kth-order slant Toeplitz operators. Ultimately, the section includes significant observations
made for spectral properties of kth-order slant Toeplitz operators.



Multivariate analogue of slant Toeplitz operators 683

The following theorem reveals the connection between weighted composition operators
and kth-order slant Toeplitz operators. The weighted composition Cϕ,H is a bounded
operator on L2(Tn) given by Cϕ,H(f) = ϕ̄ · (f ◦ H), where H is a mapping from Tn to
itself such that H(z1, z2, . . . , zn) = (zk1 , zk2 , . . . , zkn).

Theorem 3.1. Let ϕ be an element of the space L∞(Tn). Then, A∗
ϕ,k,n, the adjoint of

Aϕ,k,n, is a weighted composition operator Cϕ,H , where H is defined as above.

Proof. Suppose that ϕ ∈ L∞(Tn) is of the form

ϕ(z1, z2, . . . , zn) =
∑

(m1,m2,...,mn)∈Zn

ϕm1,m2,...,mnz
m1
1 zm2

2 . . . zmn
n .

As we know that the action of the adjoint A∗
ϕ,k,n of kth-order slant Toeplitz operator on

basis elements of L2(Tn) is given by

A∗
ϕ,k,nei1,...,in(z1, z2, . . . , zn) =

∑
(m1,m2...,mn)∈Zn

ϕ̄ki1−m1,ki2−m2,...,kin−mnz
m1
1 zm2

2 . . . zmn
n

=
∑

(m1,m2...,mn)∈Zn

ϕ̄m1,m2,...,mnz
ki1−m1
1 zki2−m2

2 . . . zkin−mn
n

= [ϕ̄(z1, z2, . . . , zn)] · [ei1,i2,...,in ◦H(z1, zn, . . . , zn)],

for each (i1, i2, . . . , in) ∈ Zn. By the use of linearity of A∗
ϕ,k,n, we get that A∗

ϕ,k,n(f) =
ϕ̄ · (f ◦H) = Cϕ,H(f). This completes the proof. �

We begin with an observation that if ϕ ∈ L∞(Tn) then so is Ek,n(ϕ). To show the
desired conclusion, we utilize the frequently used fact that Ek,nMϕE

∗
k,n = MEk,n(ϕ), which

is already seen in [2, Lemma 3.12]. It gives that

Ek,nA
∗
ϕ,k,n = Ek,nMϕ̄E

∗
k,n = MEk,n(ϕ̄).

Since the operator Ek,nA∗
ϕ,k,n is bounded, hence MEk,n(ϕ̄) is bounded. This implies that

Ek,n(ϕ̄) ∈ L∞(Tn).
By a positive function on Tn, we mean a function ϕ on Tn such that ϕ(z1, z2, . . . , zn) ≥ 0

almost everywhere and in this case we write ϕ ≥ 0 almost everywhere. As a consequence
of the preceding observation, we have the following.

Theorem 3.2. If ϕ is an element of L∞(Tn) such that ϕ ≥ 0 almost everywhere. Then,
Ek,n(ϕ) ≥ 0 almost everywhere on Tn.

Proof. Let ϕ be a positive element of the space L∞(Tn). For the accomplishment of the
proof, consider the operator A√

ϕ,k,n
A∗√

ϕ,k,n
, which can be expressed as

A√
ϕ,k,n

A∗√
ϕ,k,n

= Ek,nM|
√
ϕ|2E

∗
k,n = MEk,n(ϕ).

Since the operator A√
ϕ,k,n

A∗√
ϕ,k,n

is positive, therefore MEk,n(ϕ) is also positive. We know
that the multiplication operator is positive if and only if the inducing function is positive.
Hence, in view of the above observation, Ek,n(ϕ) is a positive element of L∞(Tn). This
completes the proof. �

The above theorem can be rephrased as the operator Ek,n sends a positive element of
L∞(Tn) into a positive element of the same space, which provides a trivial consequence in
the following form.

Corollary 3.3. Let ϕ, ψ be two functions of the space L∞(Tn) such that ϕ ≥ ψ ≥ 0
almost everywhere. Then, Ek,n(ϕ) ≥ Ek,n(ψ) almost everywhere on Tn.
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In the paper [3], it is already shown that ‖Amϕ,k,n‖ = ‖Φm‖
1
2∞ and r(Aϕ,k,n) = lim

m→∞
‖Φm‖

1
2m∞ ,

where m ∈ N, r(Aϕ,k,n) denotes the spectral radius of Aϕ,k,n and Φm can be expressed as

Φm = Ek,n
(
|ϕ|2Ek,n

(
|ϕ|2Ek,n (. . . Ek,n︸ ︷︷ ︸

m−times

(|ϕ|2) . . .
)))

= Am|ϕ|2,k,n(1). (3.1)

In particular, the norm of Aϕ,k,n is given as ‖Aϕ,k,n‖ = ‖Ek,n(|ϕ|2)‖
1
2∞. This observation

brings out the following.

Corollary 3.4. Let ϕ be an inner function. Then, the spectral radius of Aϕ,k,n induced
by ϕ is 1.

Now, we would like to derive a relation between the spectral radii of operators Aϕ,k,n
and Aψ,k,n for ϕ, ψ ∈ L∞(Tn) such that |ϕ| ≥ |ψ| ≥ 0 almost everywhere (in short a.e.).

Theorem 3.5. If ϕ, ψ are two elements of L∞(Tn) with the condition that |ϕ| ≥ |ψ| ≥ 0
almost everywhere on Tn. Then, ‖Apϕ,k,n‖ ≥ ‖Apψ,k,n‖ and r(Aϕ,k,n) ≥ r(Aψ,k,n), where
p ∈ N.

Proof. Suppose that ϕ, ψ are functions in L∞(Tn) such that |ϕ| ≥ |ψ| ≥ 0 a.e. on Tn,
which gives that |ϕ|2 ≥ |ψ|2 ≥ 0 a.e. on Tn. By the use of Theorem 3.2, one can have

Ek,n
(
|ϕ|2

)
≥ Ek,n

(
|ψ|2

)
a.e. on Tn.

Similarly, it is easy to see that

Ek,n
[
|ϕ|2Ek,n

(
|ϕ|2

)]
≥ Ek,n

[
|ψ|2Ek,n

(
|ψ|2

)]
a.e. on Tn.

Equivalently, we get that Φ2 ≥ Ψ2 a.e. Again, in a similar way, one can show that Φp ≥ Ψp

a.e. for p ∈ N, where Φp and Ψp are given by (3.1). In view of [2, Lemma 3.12 and Theorem
3.13], the preceding relation yields the desired result. �

By a trigonometric polynomial on Tn, we mean a function ϕ on Tn with Fourier series
of the form

ϕ(z1, z2, . . . , zn) =
∑

(m1,m2,...,mn)∈Zn

−Mi≤mi≤Mi,1≤i≤n

ϕm1,m2,...,mnz
m1
1 zm2

2 . . . zmn
n ,

whereMi’s are nonnegative integers. Equivalently, without loss of generality, trigonometric
polynomial ϕ on Tn can be defined as

ϕ(z1, z2, . . . , zn) =
∑

(m1,m2,...,mn)∈Zn

−M≤mi≤M,1≤i≤n

ϕm1,m2,...,mnz
m1
1 zm2

2 . . . zmn
n , (3.2)

where M is a nonnegative integer.
Next, we look for invariant subspaces of the kth-order slant Toeplitz operator with

symbol ϕ being a trigonometric polynomial.

Lemma 3.6. Let ϕ be a trigonometric polynomial given by (3.2). Then, we have the
following

(1) The closed linear subspace Hϕ of L2(Tn) spanned by {zi11 z
i2
2 . . . zinn : |ij | ≤ (k −

1)M for 1 ≤ j ≤ n} is invariant under Aϕ,k,n.
(2) The function Φp = Ap|ϕ|2,k,n(1), given by (3.1), is contained in the finite dimen-

sional subspace H|ϕ|2 generated by {zi11 z
i2
2 . . . zinn : |ij | ≤ 2(k−1)M for 1 ≤ j ≤ n}.
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Proof. For the accomplishment of the proof, operate Azm1
1 z

m2
2 ...zmn

n ,k,n on the elements of
Hϕ, which gives that

Azm1
1 z

m2
2 ...zmn

n ,k,n(zi11 z
i2
2 . . . zinn ) =


z

m1+i1
k

1 z
m2+i2

k
2 . . . z

mn+in
k

n , if ij ’s and mj ’s are multiple
of k for 1 ≤ j ≤ n

0, otherwise.

Since
∣∣∣mj+ij

k

∣∣∣ ≤ M for each j such that 1 ≤ j ≤ n. Therefore, we obtain that Hϕ is
invariant under Azm1

1 z
m2
2 ...zmn

n ,k,n and hence under Aϕ,k,n.
The second part is an immediate consequence of part (1). �

The next theorem reveals the relationship between the double commutant of the class
of kth-order slant Toeplitz operators and collection of all bounded operators on L2(Tn).

Lemma 3.7. Let S be the C∗-algebra generated by all k-th order slant Toeplitz operators
on L2(Tn). Then, the double commutant of S is the collection B(L2(Tn)) of all bounded
operators on L2(Tn).

Proof. Let M denotes the C∗-algebra generated by all multiplication or Laurent operators
on L2(Tn). Then, by [2, Lemma 2.11(ii)], one can observe that M ⊆ S. Therefore,
S

′ ⊆ M
′ = M, where M

′ and S
′ represent the commutants of the C∗-algebras M and

S respectively. Let T be any element in S
′ . Then, by the preceding inclusion, T is a

Laurent operator Mϕ for some inducing function ϕ ∈ L∞(Tn). Since, Ek,n is a kth-order
slant Toeplitz operator with symbol ϕ ≡ 1, one can point out that TEk,n = Ek,nT i.e.
MϕEk,n = Ek,nMϕ. Consequently, the Theorem 2.9 derives that ϕ is a constant and hence
T is a constant multiple of I, the identity operator. This implies that S

′ = I, where I is
the C∗-algebra generated by the identity operator. Hence, the required result follows. �

Apparently, the preceding lemma and Von-Neumann double commutant theorem yield
the following.

Theorem 3.8. The C∗-algebra (unital) S generated by the collection of all k-th order slant
Toeplitz operators is B(L2(Tn)).

In the following results, we discuss hyponormality, normality, co-isometric, partial iso-
metric and isometric behaviors of our operators.

Theorem 3.9. A necessary and sufficient condition for a k-th order slant Toeplitz operator
Aϕ,k,n to be a partial isometry is that ϕ = ϕ ·E∗

k,nEk,n(|ϕ|2). In particular, if ϕ is invertible
then Aϕ,k,n is a partial isometry if and only if E∗

k,nEk,n(|ϕ|2) = 1.

Proof. We know that an operator T is a partial isometry if and only if T = TT ∗T , which
gives that Aϕ,k,n is a partial isometry if and only if Aϕ,k,n = Aϕ,k,nA

∗
ϕ,k,nAϕ,k,n. Now,

consider the following expression

Aϕ,k,n = Aϕ,k,nA
∗
ϕ,k,nAϕ,k,n

= Ek,nMϕMϕ̄E
∗
k,nEk,nMϕ

= MEk,n(|ϕ|2)Ek,nMϕ

= A[ϕ·Ek,n(|ϕ|2)(zk
1 ,...,z

k
n)],k,n = A[ϕ·E∗

k,n
Ek,n(|ϕ|2)],k,n,

which yields that the operator Aϕ,k,n is a partial isometry if and only if it satisfies Aϕ,k,n =
A[ϕ·E∗

k,n
Ek,n(|ϕ|2)],k,n. The injectivity of the mapping ϕ 7−→ Aϕ,k,n, helps to provide the

required result. The particular case of the theorem is straightforward. �

An illustration in the confirmation of the above theorem is the following.
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Example 3.10. The operator Aϕ,k,n is a partial isometry for ϕ(z1, z2, . . . , zn) = 1
2z1z2

. . . zn +
√

3
2 z

k
1z

k
2 . . . z

k
n. One can easily verify that ϕ ∈ L∞(Tn) and that |ϕ|2 = 1 +

√
3

4 (zk−1
1 zk−1

2 . . . zk−1
n ) +

√
3

4 (z−k+1
1 z−k+1

2 . . . z−k+1
n ), which yields that Ek,n|ϕ|2 = 1 and

hence ϕE∗
k,nEk,n |ϕ|2 = ϕ. Therefore, the desired conclusion follows in view of the above

theorem.

The next result investigates inducing functions ϕ, which give isometric kth-order slant
Toeplitz operators Aϕ,k,n.

Theorem 3.11. A kth-order slant Toeplitz operator on L2(Tn) cannot be isometric.

Proof. If possible, assume that a kth-order slant Toeplitz operator Aϕ,k,n induced by ϕ is
an isometry, where ϕ is of the form

ϕ(z1, z2, . . . , zn) =
∑

(m1,m2,...,mn)∈Zn

ϕm1,m2,...,mnz
m1
1 zm2

2 . . . zmn
n .

Then, for ij ∈ Zk, 1 ≤ j ≤ n, we get that ‖Aϕ,k,nzi11 z
i2
2 . . . zinn ‖ = ‖zi11 z

i2
2 . . . zinn ‖ = 1, which

can be rewritten as ∑
(m1,m2,...,mn)∈Zn

|ϕkm1−i1,km2−i2,...,kmn−in |2 = 1. (3.3)

Also, from the equation (3.3), the norm of ϕ in L2(Tn) becomes

‖ϕ‖2 =
∑

(m1,m2,...,mn)∈Zn

|ϕm1,m2,...,mn |2

=
k−1∑

ij=0,1≤j≤n

∑
(m1,m2,...,mn)∈Zn

|ϕkm1−i1,km2−i2,...,kmn−in |2 = kn.

Hence, we obtain that ‖Ek,n(|ϕ|2)‖ = ‖Aϕ,k,n(ϕ̄)‖ = ‖ϕ‖ = k
n
2 . But, we know that

‖Aϕ,k,n‖ = ‖Ek,n(|ϕ|2)‖
1
2∞ and Aϕ,k,n is an isometry. This implies that ‖Ek,n(|ϕ|2)‖∞ = 1.

Since k ≥ 2 and n ≥ 1, so the above observation helps to conclude that
‖Ek,n(|ϕ|2)‖∞ < ‖Ek,n(|ϕ|2)‖2,

which is a contradiction. Hence the conclusion of the theorem follows. �

In the following example, we construct an isometric operator with the help of kth-order
slant Toeplitz operator.

Example 3.12. Let α, β ∈ C and ϕ(z1, z2, . . . , zn) = α(z1z2 . . . zn) + β. Then, one can
observe that Aϕ,k,nA∗

ϕ,k,n = MEk,n(|ϕ|2) and

Ek,n(|ϕ|2) = Ek,n
(
|α|2 + |β|2 + αβ̄z1, z2, . . . , zn + ᾱβ(z1, z2, . . . , zn)

)
= |α|2 + |β|2.

Therefore, the operator 1√
|α|2+|β|2

A∗
ϕ,k,n is an isometry.

Theorem 3.13. The zero operator is the only hyponormal kth-order slant Toeplitz oper-
atoron L2(Tn).

Proof. Let ϕ ∈ L∞(Tn) be given by

ϕ(z1, z2, . . . , zn) =
∑

(m1,m2,...,mn)∈Zn

ϕm1,m2,...,mnz
m1
1 zm2

2 . . . zmn
n .

Suppose that Aϕ,k,n is a hyponormal operator induced by ϕ. Then, we have

‖Aϕ,k,nf‖ ≥ ‖A∗
ϕ,k,nf‖ for all f ∈ L2(Tn). (3.4)
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In particular, for the function f ≡ 1, the relation (3.4) gives that∑
(m1,m2,...,mn)∈Zn

|ϕkm1,km2,...,kmn |2 ≥
∑

(m1,m2,...,mn)∈Zn

|ϕ−m1,−m2,...,−mn |2, (3.5)

which yields that ϕkm1−i1,km2−i2,...,kmn−in = 0 for all ij ∈ Zk, 1 ≤ j ≤ n but (i1, i2, . . . , in)
6= (0, 0, . . . , 0). Also, for f = z1z2 . . . zn, the relation (3.4) reduces to∑

(m1,m2,...,mn)∈Zn

|ϕkm1−1,km2−1,...,kmn−1|2 ≥
∑

(m1,m2,...,mn)∈Zn

|ϕk−m1,k−m2,...,k−mn |2, (3.6)

In view of the above observation, inequality (3.6) helps to conclude that ϕkm1,km2,...

...,kmn = 0. Thus, we obtain that ϕ = 0 and hence Aϕ,k,n = 0. �

Since an isometry is always a hyponormal operator, Theorem 3.11 turns out to be a
particular case of Theorem 3.13. Moreover, one can also draw the following conclusion
from Theorem 3.13.

Corollary 3.14. The only normal kth-order slant Toeplitz operatoron L2(Tn) is the zero
operator.

Now, we intend to establish a condition on the inducing function so that Aϕ,k,n is a
co-isometry.

Theorem 3.15. A kth-order slant Toeplitz operatorAϕ,k,n on L2(Tn) is a co-isometry if
and only if Ek,n(|ϕ|2) = 1.

Proof. We know that an operator T is a co-isometry if and only if TT ∗ = I. Now, consider
the expression Aϕ,k,nA∗

ϕ,k,n = Ek,nMϕMϕ̄E
∗
k,n = MEk,n(|ϕ|2), which provides that Aϕ,k,n on

L2(Tn) is a co-isometry if and only if Ek,n(|ϕ|2) = 1. This completes the proof. �

Now, the following conclusion can be immediately drawn.

Corollary 3.16. The kth-order slant Toeplitz operator Aϕ,k,n is always a co-isometry for
a unimodular inducing function ϕ ∈ L∞(Tn).

The following examples verify the existence of co-isometric kth-order slant Toeplitz
operators.

Example 3.17. Consider the kth-order slant Toeplitz operator Aϕ,k,n induced by ϕ, where
ϕ(z1, z2, . . . , zn) = 1√

1+|α|2
(z1z2 . . . zn + α), α ∈ C. Clearly, ϕ ∈ L∞(Tn) and Ek,n(|ϕ|2) =

1. Therefore, in view of Corollary 3.16, one can conclude that Aϕ,k,n is a co-isometry.

Example 3.18. The operator Aϕ,k,n, where ϕ is as in Example 3.10, is a co-isometric
kth-order slant Toeplitz operator.

Theorem 3.19. A necessary and sufficient condition for a kth-order slant Toeplitz oper-
ator Aϕ,k,n on L2(Tn) to be a co-isometry is that

k−1∑
rj=0,1≤j≤n

∣∣∣∣ϕ(
θ1 + 2r1π

k
,
θ2 + 2r2π

k
, . . . ,

θn + 2rnπ
k

)∣∣∣∣2 = kn on Tn a.e..

Proof. In order to obtain the required condition, we use the fact that an operator T is a
co-isometry if and only if T ∗ preserves the norm. For each f ∈ L2(Tn), computation gives
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the following
‖A∗

ϕ,k,n(f)‖2 = ‖ϕ̄ · E∗
k,n(f)‖2

= 1
(2π)n

∫ 2π

0

∫ 2π

0
. . .

∫ 2π

0︸ ︷︷ ︸
n−times

|ϕ(θ1, . . . , θn)|2|f(kθ1, . . . , kθn)|2dθ1 . . . dθn

= 1
(2kπ)n

∫ 2kπ

0
. . .

∫ 2kπ

0︸ ︷︷ ︸
n−times

∣∣∣∣ϕ(
θ1
k
, . . . ,

θn
k

)∣∣∣∣2 |f(θ1, . . . , θn)|2dθ1 . . . dθn

= 1
(2kπ)n

∫ 2π

0

∫ 2π

0
. . .

∫ 2π

0︸ ︷︷ ︸
n−times

k−1∑
rj=0,1≤j≤n

∣∣∣∣ϕ(
θ1 + 2r1π

k
, . . . ,

θn + 2rnπ
k

)∣∣∣∣2

×|f(θ1, θ2, . . . , θn)|2dθ1dθ2 . . . dθn

= ‖Mψ(f)‖2,

where ψ(θ1, θ2, . . . , θn) =
√

1
kn

k−1∑
rj=0,1≤j≤n

∣∣∣ϕ (
θ1+2r1π

k , θ2+2r2π
k , . . . , θn+2rnπ

k

)∣∣∣2. By the above

computation, the result follows without any extra effort because of the fact that ‖Mψ(f)‖ =
‖f‖ if and only if ψ is unimodular. �

The preceding theorem along with Theorem 3.15 can be drafted in the following form.

Theorem 3.20. For a kth-order slant Toeplitz operator Aϕ,k,n on L2(Tn), the following
are equivalent:

(1) Aϕ,k,n is a co-isometry.
(2) Ek,n(|ϕ|2) = 1.

(3)
k−1∑

rj=0,1≤j≤n
|ϕ (ωr1z1, ω

r2z2, . . . , ω
rnzn)|2 = kn on Tn almost everywhere, where ω is

a kth-root of unity.

In subsequent results, we focus on the study of the spectrum of kth-order slant Toeplitz
operator. In particular, it will be shown that a closed disc is contained in the spectrum
of Aϕ,k,n.

Lemma 3.21. Let ϕ ∈ L∞(Tn) be invertible. Then, the kernel of Aϕ,k,n is the closed span
of S given by

S =
{

(zkm1−p1
1 zkm2−p2

2 . . . zkmn−pn
n )ϕ−1 : mi ∈ Z, (0, 0, . . . , 0) 6= (p1, p2, . . . , pn) ∈ Znk

}
.

Proof. Initially, we claim that the range R(A∗
ϕ,k,n) is closed, which follows immediately be-

cause of the fact that Mϕ̄ is invertible and E∗
k,n is an isometry. We know that R(A∗

ϕ,k,n)⊥ =
ker(Aϕ,k,n), provided that R(A∗

ϕ,k,n) is closed. Therefore, we make an attempt to prove
that R(A∗

ϕ,k,n)⊥ = S. One can observe that the range of A∗
ϕ,k,n is the closed span of S0 ={

ϕ̄ · (zkm1
1 zkm2

2 . . . zkmn
n ) : mi ∈ Z, 1 ≤ i ≤ n

}
. Now, for (i1, i2, . . . , in), (j1, j2, . . . , jn) ∈ Zn

and pm ∈ Zk but not all pm = 0, we have〈
ϕ̄ · (zki11 zki22 . . . zkinn ), ϕ−1 · (zkj1−p1

1 zkj2−p2
2 . . . zkjn−pn

n )
〉

=
〈
(zki11 zki22 . . . zkinn ), (zkj1−p1

1 zkj2−p2
2 . . . zkjn−pn

n )
〉

= 0.

It gives that S ⊆ R(A∗
ϕ,k,n)⊥. Conversely, assume that f ∈ R(A∗

ϕ,k,n)⊥, then〈
ϕ̄ · (zki11 zki22 . . . zkinn ), f

〉
=

〈
(zki11 zki22 . . . zkinn ), ϕ · f

〉
= 0,
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for each (i1, i2, . . . , in) ∈ Zn. In view of the above expression, we obtain that ϕ · f ∈
[I−Pk](L2(Tn)), where Pk is the orthogonal projection of L2(Tn) onto the closed subspace
generated by {zkm1

1 zkm2
2 . . . zkmn

n : mi ∈ Z, 1 ≤ i ≤ n}. The operator (I − Pk) can be
viewed as Mz

p1
1 z

p2
2 ...zpn

n
E∗
k,n, where pi ∈ Zk, but not all pi are 0, 1 ≤ i ≤ n. Thus, we

obtain that ϕ · f = Mz
p1
1 z

p2
2 ...zpn

n
E∗
k,n(g) for some g ∈ L2(Tn), which can be rewritten as

f = ϕ−1 · (zp1
1 z

p2
2 . . . zpn

n ) · g(zk1 , zk2 , . . . , zkn). This yields that f ∈ S. Hence, it follows that
S = R(A∗

ϕ,k,n)⊥. This completes the proof. �

Since the set {ϕ ∈ L∞(Tn) : |ϕ| ≥ ϵ > 0 a.e. for some ϵ} is dense in L∞(Tn). There-
fore, from the above lemma, one can conclude that 0 ∈ σ(Aϕ,k,n).

Lemma 3.22. The point spectra of Aϕ,k,n and Aϕ(zk
1 ,z

k
2 ,...,z

k
n),k,n coincide whenever ϕ ∈

L∞(Tn) is invertible.

Proof. Let λ be an element of σp(Aϕ,k,n). Then, Aϕ,k,n(f) = λf, for some nonzero
function f ∈ L2(Tn). Under the assumption it is clear that Mϕ(f) 6= 0. Therefore, we can
deduce that MϕAϕ,k,n(f) = λMϕf, which is equivalent to Aϕ(zk

1 ,z
k
2 ,...,z

k
n),k,n(ϕ ·f) = λ(ϕ ·f).

This implies that λ ∈ σp(Aϕ(zk
1 ,z

k
2 ,...,z

k
n),k,n).

For the converse, assume that λ ∈ σp(Aϕ(zk
1 ,z

k
2 ,...,z

k
n),k,n). Again, there exists a non zero

function g in L2(Tn) such that Aϕ(zk
1 ,z

k
2 ,...,z

k
n),k,n(g) = λg. Take G = ϕ−1 · g, clearly G 6= 0.

Consequently, we get that Aϕ,k,n(G) = λ(G). Hence, the desired result follows. �

The next result gives a better visualization of spectrum of slant Toeplitz operators.

Theorem 3.23. Let ϕ be a function of the space L∞(Tn). Then, the spectrum of Aϕ,k,n
is the same as that of Aϕ(zk

1 ,z
k
2 ,...,z

k
n),k,n.

Proof. For the accomplishment of the proof, initially, we claim that σ(Aϕ,k,n) ∪ {0} =
σ(Aϕ(zk

1 ,z
k
2 ,...,z

k
n),k,n) ∪ {0}. In view of the property of the spectrum, we have

σ(A∗
ϕ,k,n) ∪ {0} = σ(Mϕ̄E

∗
k,n) ∪ {0} = σ(E∗

k,nMϕ̄) ∪ {0}
= σ(A∗

ϕ(zk
1 ,z

k
2 ,...,z

k
n),k,n) ∪ {0}.

Thus, the above expression provides the desired claim. One can easily see that 0 ∈
σ(Aϕ(zk

1 ,z
k
2 ,...,z

k
n),k,n). The preceding lemma, if ϕ is invertible, gives that 0 ∈ σp(Aϕ,k,n). If

ϕ is not invertible, then 0 ∈ σapp(Aϕ,k,n) ⊆ σ(Aϕ,k,n). Thus, the above observations bring
out that 0 ∈ σ(Aϕ,k,n) for ϕ ∈L∞(Tn). This completes the proof. �

Theorem 3.24. The spectrum of the kth-order slant Toeplitz operator Aϕ,k,n, induced by
an invertible function ϕ ∈ L∞(Tn), contains a closed disc.

Proof. Let λ be a nonzero element of C and the operator (A∗
ϕ̄−1(zk

1 ,...,z
k
n),k,n−λI) be onto.

Then, for 0 6= g ∈ (I − Pk)
(
L2(Tn)

)
, there exists a nonzero function f ∈ L2(Tn) such

that
(
A∗
ϕ̄−1(zk

1 ,...,z
k
n),k,n − λI

)
(f) = g, where Pk is the projection of L2(Tn) onto the closed

subspace generated by the set {zkm1
1 zkm2

2 . . . zkmn
n : mi ∈ Z, 1 ≤ i ≤ n}. The expression(

A∗
ϕ̄−1(zk

1 ,...,z
k
n),k,n − λI

)
(f) = g can be rewritten as(

A∗
ϕ̄−1(zk

1 ,...,z
k
n),k,n

)
(f) − λPk(f) − λ(I − Pk)(f) = g,

equivalently, (
Mϕ−1(zk

1 ,...,z
k
n)E

∗
k,n

)
(f) − λPk(f) − λ(I − Pk)(f) = g,
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The above expression along with the assumption yields that
(
A∗
ϕ̄−1(zk

1 ,...,z
k
n),k,n

)
(f) −

λPk(f) ∈ R(Pk)∩R(I−Pk) = {0}, where R(T ) represents the range set of T . Thus, the as-
sumption, 0 6= g ∈ (I−Pk)

(
L2(Tn)

)
, helps to arrive at an inference that

(
A∗
ϕ̄−1(zk

1 ,...,z
k
n),k,n−

λPk
)
(f) = 0. Consequently, we get that

λE∗
k,nMϕ−1(λ−1 −MϕEk,n)(f) = 0. (3.7)

Since, Mϕ is invertible, λ 6= 0 and E∗
k,n is an isometry, we get that(

λ−1 −Aϕ(zk
1 ,z

k
2 ,...,z

k
n),k,n

)
(f) = 0, which implies that λ−1 ∈ σp(Aϕ(zk

1 ,z
k
2 ,...,z

k
n),k,n).

If λ ∈ ρ
(
A∗
ϕ̄−1(zk

1 ,...,z
k
n),k,n

)
, the resolvent of the operator A∗

ϕ̄−1(zk
1 ,...,z

k
n),k,n, then, clearly,(

A∗
ϕ̄−1(zk

1 ,...,z
k
n),k,n − λI

)
is onto. Therefore, the above observation yields that

D =
{
λ−1 : λ ∈ ρ

(
A∗
ϕ̄−1(zk

1 ,...,z
k
n),k,n

)}
⊂ σp(Aϕ(zk

1 ,z
k
2 ,...,z

k
n),k,n).

In view of the preceding Lemma 3.22, we have D ⊂ σp(Aϕ,k,n). Since, the resolvent of an
operator is an open subset of the complex plane, so D is an open subset of C and contains
an open disc. The compactness of the spectrum helps to point out that a closed disc is
contained in the spectrum σ(Aϕ,k,n) of Aϕ,k,n. �

A trivial observation can be made from the proof of the above theorem in the following
form.

Corollary 3.25. The spectrum of Aϕ,k,n contains a closed disc of radius equals to

r

(
A∗
E∗

k,n
(ϕ̄−1),k,n

)−1
, where r(·) denotes the spectral radius.

For the particular choice n = 1 and k = 2, the results presented in the paper provide
certain results proved by Ho [7,8] in the one variable case. At the end, we list the following
illustrations related to the spectral radii and norms of these operators.

Example 3.26. For ϕ(z1, z2, . . . , zn) = (zk1zk2 . . . zkn + 1), it can be seen that |ϕ|2 = 2 +
(zk1zk2 . . . zkn) + (zk1zk2 . . . zkn), which yields that

Ek,n(|ϕ|2) = 2 + (z1z2 . . . zn) + (z1z2 . . . zn).

Similarly, we can compute Φm = 2m−1(2 + (z1z2 . . . zn) + (z1z2 . . . zn)). This implies that
‖Φm‖∞ = 2m+1. Thus, the spectral radius r(Aϕ,k,n) =

√
2 and ‖Aϕ,k,n‖ = 2. Therefore,

the operator Aϕ,k,n is not a normaloid.

Example 3.27. Let ϕ(z1, z2, . . . , zn) = α + z1z2 . . . zn, α ∈ C. Then ϕ ∈ L∞(Tn)and the
spectral radius of Aϕ,k,n is given by r(Aϕ,k,n) =

√
1 + |α|2.
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