

International Journal of Agriculture, Forestry and Life Sciences

Review Article

www.ijafls.org

Int J Agric For Life Sci 3(2): 378-386(2019)

Organic fig (Ficus carica l.) growing: determination of pesticide residues

Nilda ERSOY 💿

Akdeniz University, Vocational School of Technical Sciences, Program of Organic Farming, Antalya/Turkey

Corresponding author email: nildaersoy@akdeniz.edu.tr

Abstract

Food production has very important strategy in today's world. While half the world struggle with famine, the other half wants food stuffs they produce and consume to be secure. When it is said secure food, foods which is not harmful to health, do not contain any physical, chemical and microbiological residues and also of which traceability provided come to mind. Traceability of agricultural products has become the most important issue to provide food security. In organic farming based on traceability principles, pesticide residue analyzes are carried out in the final products and certified if the pesticide problem does not occur in the product. In this study, the pesticide residues on fig fruit, *Ficus carica* L., grown by organic agricultural methods was examined. The fig trees were grown in İsafakılar village of İncirliova district of Aydın city in Western Part of Turkey. The residue analyses were done by GC-MS/MS and LC-MS/MS chromatographies. 506 active substances in used pesticides during the cultivation period were analyzed by LC-MS/MS chromatography meanwhile 113 active substances of pesticides by GC-MS/MS chromatography device were analyzed in fig fruit. This study was conducted in years of 2017 and 2018 consecutively. Detactable pesticide residues have not been measured in the samples.

Key words: Fig, Organic Farming, Pesticides, Residues

Received: 27.11.2019

Accepted: 23.12.2019

Published (online): 23.12.2019

Introduction

The fig tree (*Ficus carica* L.) is one of the unique *Ficus* species widely spread in tropical and subtropical countries which has edible fruits with high commercial value (İrget et al. 2008). Turkey is one of the most important genetic origins of fig in the world, Around 60 thousand farmers have been producing figs in Turkey. The sector employs about 250-300 thousand people. The most favourable areas for the cultivation of figs which is one of the rare fruits mentioned in the name holy books and the highest quality and the most grown in Turkey are big and small Menderes basins where dried fig production is widely common (Yılmaz et al., 2017).

Turkey is the world leader in fig production and export issues. Especially the superiority of the dried fig quality is undisputed. Generally more than half of world exports are covered in dried figs from Turkey Overall, more than half of world exports is provided in dried figs from Turkey (%55) (Anonymous 2019).

Turkey's figs mainly produced in Aydın and İzmir provinces where 60% and 14% of national production were obtained respectively in 2017. Additionally, Marmara, Mediterranean, Black Sea and Southeast Anatolia regions are able produce fresh figs for consumers. The most favourable areas for the cultivation of figs are Big and Small Menderes basins where dried fig production is widely common. Organic fig production started in Turkey in 1984– 1985 and showed an increasing trend parallel to the demand from European companies (Mordoğan et al., 2013). Generally, 30% of fig productions are consumed as fresh figs and the rest (70%) are sold as dried figs either in national or export to international markets. According to Turkish Statistical Instute (TÜİK) data of 2018, fig production was 306.499 tons. 93.005,4 tons of this production is organic. Therefore 1/3 of the figs we produce are organic. This ratio is on an upward trend and it is likely that we will be producing more organic figs in the coming years.

Organic crop production has begun to play an important role because of vital danger caused by environmental pollution through synthetic chemicals (Altındişli and Ertem, 1998). In organic agriculture, in order to obtain the organic certificate of the final product, the residual analysis of many pesticides, for example fig fruits, must be performed in accredited laboratories. If residual problems occur, the product is not certified to be organic. In this research, pesticide residues on fig fruit that grown in İsafakılar village of İncirliova district of Aydın city are analysed.

Cite this artile as:

Ersoy, N. 2019 Organic fig (Ficus carica l.) growing: determination of pesticide residues. *Int. J. Agric. For. Life Sci.*, 3(2): 378-386.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Material and Methods Materials

The experiment was carried out in the fig garden in İsafakılar village of İncirliova district, Aydın, Turkey. The garden was established in 1969 with Sarılop fig variety. The experiment was set up to have 3 replications and 15 trees in each replication, according to the design of randomized block design. Farmer didn't use any pesticides to fig orchard. Necessary samples were taken at the harvest time from the trees included in the experiment and analyzes were carried out.

In the experiment, pesticides given in Table 1 and 2 are searched in the examples of fig fruit, which

are the materials. All extraction studies and residue analysis of the examples made in Proanaliz Food Control Laboratory.

All the solvents and chemicals (water, acetonitrile, methanol, formic acid, acetic acid and ammonium formate) used as mobile phases in example extractions are chosen in accordance to a profound quality. Pesticide standards are prepared at least a 90% rate of purity. Extractions and clearance of the examples are generalized in accordance with AOAC (International Official Methods of Analysis) methods (Lehotay, 2007).

Table 1. Active substances	examined in fig fruit	t examples on LC-MS/MS device.
	chammed in the firm	

	Detection Detect						
No	Analit	Limit	No	Analit	Limit		
110		μg/kg	110		μg/kg		
1	1-Naphthyl acetamide(0.010)	0.010	254	Fosthiazate	0.010		
2	2,4-D (0.010)	0.010	255	Fuberidazole	0.010		
3	3,4,5 Trimethacarb (0.010)	0.010	256	Furalaxyl	0.010		
4	Abamectin (0.010)	0.010	257	Furathiocarb	0.010		
5	Acephate (0.010)	0.010	258	Halfenprox	0.010		
6	Acequinocyl (0.010)	0.010	259	Halosulfuron Methyl	0.010		
7	Acetamiprid (0.010)	0.010	260	Haloxyfop-2-Ethoxy-Ethyl	0.010		
8	Acetochlor (0.010)	0.010	261	Heptanafos	0.010		
9	Acibenzolar-S-Methyl (0.010)	0.010	262	Hexaconazole	0.010		
10	Aclonifen (0.010)	0.010	263	Hexaflumuron	0.010		
11	Acrinathrin (0.010)	0.010	264	Hexazinone	0.010		
12	Alachlor	0.010	265	Hexythiazox	0.010		
12	Aldicarb	0.010	265	Imazalil	0.010		
13	Aldicarb-Sulfone	0.010	267	Imazamox	0.010		
14	Aldicarb-Sulfoxide	0.010	268	Imazapic	0.010		
15 16	Allethrin	0.010	268	Imazapyr	0.010		
10	Ametoctradin	0.010	209	Imazaquin	0.010		
17	Ametryn	0.010	270	-	0.010		
18 19	Amidosulfuron	0.010	271	Imazethapyr Imazosulfuron	0.010		
19 20	Amisulbrom	0.010	272	Imibenconazole	0.010		
20 21	Amitraz	0.010	273				
21 22	Amitrole	0.010	274	Imidachloprid Indoxacarb Sum	$\begin{array}{c} 0.010\\ 0.010\end{array}$		
22 23	Anilazine	0.010	273 276				
				Iodosulfuron methyl sodium	0.010		
24 25	Anilofos	0.010	277	Ioxynil	0.010		
	Aramite	0.010	278	Ipconazole	0.010		
26	Asulam	0.010	279	Iprobenfos	0.010		
27	Atrazine	0.010	280	Iprodione	0.010		
28	Azaconazole	0.010	281	Iprovalicarb	0.010		
29	Azamethiphos	0.010	282	Isazofos	0.010		
30	Azimsulfuron	0.010	283	Isocarbofos	0.010		
31	Azinphos-Ethyl	0.010	284	Isoprocarb	0.010		
32	Azinphos-Methyl	0.010	285	Isoproturon	0.010		
33	Aziprotryne	0.010	286	Isoxaben	0.010		
34	Azocyclotin	0.010	287	Isoxadifen Ethyl	0.010		
35	Azoxystrobin	0.010	288	Isoxaflutole	0.010		
36	Barban	0.010		Isoxathion	0.010		
37	Beflubutamid	0.010	290	Kinetin	0.010		
38	Benalaxyl	0.010	291	Kresoxim-methyl	0.010		
39	Bendiocarb	0.010	292	Lenacil	0.010		
40	Benfuracarb	0.010	293	Linuron	0.010		
41	Benomyl	0.010	294	Lufenuron	0.010		
42	Bensulfuron methyl	0.010	295	Malaoxon	0.010		
43	Bentazone	0.010	296	Malathion	0.010		
44	Benthiovalicarb Isopropyl	0.010	297	Maleic Hydrazide	0.010		
45	Benzoximate	0.010	298	Mandipropamide	0.010		
46	Bifenox	0.010	299	MCPA	0.010		

	Bifentrin Binapacryl	$\begin{array}{c} 0.010\\ 0.010\end{array}$	300 301	Mecarbam Mecoprop (MCPP)	0.010 0.010
	Bioresmethrin	0.010	301	Mecoprop-P (MCPP-P)	0.010
	Bispyribac	0.010	302	Meeoprop-1 (Meeri-1) Mepanipyrim	0.010
	Bitertanol	0.010	304	Mephosfolan	0.010
	Boscalid	0.010	305	Mepronil	0.010
	Bromacil	0.010	306	Meptyldinocap	0.010
	Bromophos methyl	0.010	307	Mesosulfuron Methyl	0.010
	Bromophos-Ethyl	0.010	308	Mesotrione	0.010
	Bromoxynl	0.010	309	Metaflumizone	0.010
57 E	Bromuconazole	0.010	310	Metalaxyl	0.010
58 E	Bupirimate	0.010	311	Metalaxyl M	0.010
59 E	Buprofezine	0.010	312	Metamitron	0.010
	Butafenacil	0.010	313	Metazachlor	0.010
	Butocarboxim	0.010	314	Metconazole	0.010
	Butocarboxim-sulfone	0.010	315	Methabenzthiazuron	0.010
	Butocarboxim-sulfoxide	0.010	316	Methacrifos	0.010
	Butoxycarboxim	0.010	317	Methamidophos	0.010
	Butralin	0.010	318	Methidathion	0.010
	Buturon	0.010	319	Methiocarb	0.010
	Butylate	0.010	320	Methiocarb sulfone	0.010
	Cadusafos	0.010	321	Methiocarb sulfoxide	0.010
	Campheclor	0.010	322	Methiocarb Sum	0.010
	Campheclor-methyl	0.010	323	Methomyl	0.010
	Campheclor-oxon	0.010	324	Methomyl oxime	0.010
	Campheclor-oxon-sulfone	0.010	325	Methomyl Sulfone	0.010
	Campheclor-oxon-sulfoxide	0.010	326	Methoxyfenozide	0.010
	Campheclor-sulfone	0.010	327	Metobromuron Matalashlar	0.010
	Campheclor-sulfoxide	0.010	328	Metolachlor	0.010
	Carbaryl Carbendazim	$\begin{array}{c} 0.010\\ 0.010\end{array}$	329 330	Metolcarb	$\begin{array}{c} 0.010\\ 0.010\end{array}$
	Carbofuran	0.010	330 331	Metosulam Metoxuron	0.010
	Carbosulfan	0.010	332	Metribuzin	0.010
	Carboxin	0.010	333	Metrofenone	0.010
	Carfentrazone-Ethyl	0.010	334	Metsulfuron-Methyl	0.010
	Chlorantraniliprole	0.010	335	Mevinphos	0.010
	Chlorbromuron	0.010	336	Milbemectin A3	0.010
	Chlorbufam	0.010	337	Milbemectin A4	0.010
	Chlorfenvinphos	0.010	338	Molinate	0.010
	Chlorfluazuron	0.010	339	Monocrotophos	0.010
	Chloridazon	0.010	340	Monolinuron	0.010
	Chlormequat chloride	0.010	341	Monuron	0.010
	Chlorotoluron	0.010	342	Myclobutanil	0.010
90 C	Chloroxuron	0.010	343	Naled (Dibrom)	0.010
91 (Chlorpropham	0.010	344	Naphthalene Acetamide (NAD)	0.010
92 (Chlorpyrifos (0.04)	0.004	345	Napropamide	0.010
	Chlorpyrifos-Methyl	0.010	346	Napthol-1	0.010
	Chlorsulfuron	0.010	347	Neburon	0.010
	Chlortal-dimethyl	0.010	348	Nicosulfuron	0.010
	Chlorthiamid	0.010	349	Nitenpyram	0.010
	Chromafenozide	0.010	350	Norfluazuron	0.010
	Cinidon-ethyl	0.010	351	Novaluron	0.010
	Clethodim	0.010	352	Nuarimol	0.010
	Clethodim Iminsulfone	0.010	353	Ofurace	0.010
	Clethodim Iminsulfoxide	0.010	354	Omethoate	0.010
	Clethodim Sulfoxide	0.010	355	Orthosulfamuron	0.010
	Climbazole	0.010	356	Oxadiazon	0.010
	Clodinafop-proparpyl ester	0.010	357	Oxadixyl	0.010
	Clofentezine	0.010	358	Oxamyl	0.010
	Clomazone	0.010	359	Oxasulfuron	0.010
	Cloquintocet-methylhexyl-e	0.010	360	Oxycarboxin	0.010
	Clothianidin	0.010	361	Oxyfluorfen Boelebuterzel	0.010
	Coumaphos	0.010	362	Paclobutrazol Pornovon Ethyl	0.010
	Crimidine Cyanazine	0.010	363	Paraoxon Ethyl Borroyon Mathyl	0.010
(vanazme	0.010	364	Paraoxon Methyl	0.010

112 113	Cyanofenphos Cyazofamid	$0.010 \\ 0.010$	365 366	Parathion-Ethyl Parathion-Methyl (0.002)	0.010 0.002
115	Cyclanilide	0.010	367	Pebulate	0.002
114	Cycloloxydim	0.010	368	Penconazole(0.005)	0.010
115	Cyflufenamid	0.010	369	Pencycuron	0.003
17	Cyhalofop	0.010	309	Pendimethalin	0.010
18	Cyhalofop butyl	0.010	370	Penoxsulam	0.010
19	Cyhalofop diacid	0.010	372	Pethoxamid	0.010
20	Cyhexatin	0.010	372	Phenmedipham	0.010
20	Cymoxanil	0.010	373	Phenothrin	0.010
22	Cyproconazole	0.010	374	Phentoate	0.010
23	Cyprodinil	0.010	376	Phorate	0.010
23	Cyromazine	0.010	370	Phorate Sulfone	0.010
25	Daminozide	0.010	378	Phosalone	0.010
26	Demeton(O+S)	0.010	378	Phosmet	0.010
27	Demeton-S-Methyl	0.010	380	Phosmet oxon	0.010
28	Demeton-S-Methyl-Sulfone	0.010	381	Phosphamidon	0.010
28 29	Demeton-S-Methyl-Sulfoxide	0.010	382	Phoxim	0.010
30	Desmedipham	0.010	383	Picolinafen	0.010
31	Desmetryn	0.010	383	Picoxystrobin	0.010
32	Diafenthiuron	0.010	385	Pinoxaden	0.010
32 33	Dialifos	0.010	385	Pirimicarb	0.010
	Di-Allate	0.010		Pirimicarb Desmethyl	
34 25			387		0.010
35	Diazinon	0.010	388	Pirimicarb Desmethyl Formamido	0.010
36	Dichlofenthion	0.010	389	Pirimiphos-Ethyl Dirimiphos Mathad	0.010
37	Dichlofluanid	0.010	390	Pirimiphos-Methyl	0.004
38	Dichlorprop	0.010	391	Prochloraz	0.010
39	Dichlorvos (DDVP)	0.010	392	Profenofos	0.010
40	Diclobutrazol	0.010	393	Profoxydim	0.010
41	Diclofop-Methyl	0.010	394	Profoxydim lithium	0.010
42	Dicloran	0.010	395	Prohexadione calcium	0.010
43	Dicrotophos	0.010	396	Promecarb	0.010
44	Diethofencarb	0.010	397	Promethryn	0.010
45	Difenoconazole	0.010	398	Propachlor	0.010
46	Diflubenzuron	0.010	399	Propanil	0.010
47	Diflufenican	0.010	400	Propaquizafop	0.010
48	Dimefox	0.010	401	Propargite	0.010
49 70	Dimethachlor	0.010	402	Propazine	0.010
50	Dimethenamid	0.010	403	Propetamphos	0.010
51	Dimethoate	0.010	404	Propham	0.010
52	Dimethomorph	0.010	405	Propiconazole	0.010
53	Dimetilan	0.010	406	Propisochlor	0.010
54	Dimoxystrobin	0.010	407	Propoxur	0.010
55	Diniconazole	0.010	408	Propoxycarbazone sodium	0.010
56	Dinitramine	0.010	409	Propyzamide	0.010
57	Dinocap	0.010	410	Proquinazid	0.010
58	Dinoseb	0.010	411	Prosulfocarb	0.010
59	Dinoterb	0.010	412	Prosulfuron	0.010
60	Dioxacarb	0.010	413	Prothioconazole	0.010
61	Diphenamid	0.010	414	Prothiophos	0.010
62	Dipropetryn	0.010	415	Pymetrozine	0.010
63	Disulfoton	0.010	416	Pyraclostrobin	0.010
64	Disulfoton Sulfone	0.010	417	Pyraflufen	0.010
65	Disulfoton Sulfoxide	0.010	418	Pyraflufen ethyl	0.010
66	Ditalimfos	0.010	419	Pyrasulfotole	0.010
67	Dithianon	0.010	420	Pyrazophos	0.010
68	Diuron	0.010	421	Pyrethrins	0.010
69	DNOC	0.010	422	Pyridaben	0.010
70	Dodine	0.010	423	Pyridaly	0.010
71	E-Fenpyroxymate	0.010	424	Pyridaphenthion	0.010
72	Emamectin Benzoate	0.010	425	Pyridate	0.010
73	Epichlorohydrin	0.010	426	Pyrifenox	0.010
74	EPN	0.010	427	Pyrimethanil	0.010
			428	Pyriproxyfen	0.010
175	Epoxiconazole	0.010	420	rynpioxyten	0.010

177 178	Etaconazole Ethametsulfuron Methyl	$\begin{array}{c} 0.010\\ 0.010\end{array}$	430 431	Quinalphos Quinclorac	0.010 0.010
178	Ethiofencarb	0.010	431	Quinterorac	0.010
179	Ethiofencarb-sulfone	0.010	432	Quinoxyfen	0.010
180	Ethiofencarb-sulfoxide	0.010	433	Resmethrin	0.010
181	Ethion	0.010	434 435	Rimsulfuron	0.010
182		0.010	435 436		0.010
	Ethiprole			Rotenone	0.010
184	Ethirimol	0.010	437	Sethoxydim Silubia fam	
185	Ethofenprox	0.010	438	Silthiofam	0.010
186	Ethofumesate	0.010	439	Simazine	0.010
187	Ethoprophos	0.010	440	Spinetoram	0.010
188	Ethoxyquin	0.010	441	Spinosad	0.010
189	Ethoxysulfuron	0.010	442	Spirodiclofen	0.010
90	Ethylene thiourea	0.010	443	Spiromesifen	0.010
191	Etoxazole	0.010	444	Spirotetramat	0.010
192	Etridiazole	0.010	445	Spirotetramat-Enol	0.010
193	Etrimfos	0.010	446	Spirotetramat-Enol-Glucoside	0.010
194	Famoxadone	0.010	447	Spirotetramat-Ketohydroxy	0.010
195	Famphur	0.010	448	Spirotetramat-Monohydroxy	0.010
196	Fenamidone	0.010	449	Spiroxamine	0.010
197	Fenamiphos	0.010	450	Sulcotrione	0.010
98	Fenarimol	0.010	451	Sulfosulfuron	0.010
199	Fenazaquin	0.010	452	Sulfotep	0.010
200	Fenbuconazole	0.010	453	Sulprofos	0.010
201	Fenbutatin oxide	0.010	454	Tebuconazole	0.010
202	Fenhexamid	0.010	455	Tebufenozide	0.010
203	Fenitrothion	0.010	456	Tebufenpyrad	0.010
204	Fenobucarb	0.010	457	Tebupirimfos	0.010
205	Fenoxyaprop-P-ethyl	0.010	458	Teflubenzuron	0.010
206	Fenoxycarb	0.010	459	Tembotrione	0.010
207	Fenpiclonil	0.010	460	Temephos	0.010
208	Fenpropathrin	0.010	461	TEPP(O.O-TEPP)	0.010
209	Fenpropidin	0.010	462	Tepraloxydim	0.010
210	Fenpropimorph	0.010	463	Terbufos	0.010
211	Fensulfothion	0.010	464	Terbumeton	0.010
212	Fenthion	0.010	465	Terbuthylazine	0.010
213	Fenthion Oxon	0.010	466	Terbutryn	0.010
214	Fenthion Oxon Sulfone	0.010	467	Tetramethrin	0.010
215	Fenthion Oxon Sulfoxide	0.010	468	Tetraconazole	0.010
216	Fenthion-Sulfone	0.010	469	Thiabendazole	0.010
217	Fenthion-Sulfoxide	0.010	470	Thiacloprid	0.010
218	Fentin acetate	0.010	471	Thiamethoxam	0.010
219	Fentin Hydroxide	0.010	472	Thidiazuron	0.010
220	Fipronil	0.010	473	Thifensulfuron-methyl	0.010
221	Flamprop-M-Isopropyl	0.010	474	Thiobencarb	0.010
222	Flazasulfuron	0.010	475	Thiodicarb	0.010
223	Flonicamid	0.010	476	Thiofanox	0.010
224	Florasulam	0.010	477	Thiofanox Sulfone	0.010
225	Fluazifop-p-butyl	0.010	478	Thiofanox Sulfoxide	0.010
226	Fluazinam	0.010	479	Thiophanate-methyl	0.010
227	Flubendiamide	0.010	480	Tolclofos-Methyl	0.010
228	Flubenzimine	0.010	481	Tolfenpyrad	0.010
228	Flucycloxuron	0.010	482	Topramezone	0.010
230	Flucythrinate	0.010	483	Tralkoxydim	0.010
231	Fludioxonil	0.010	484	Triadimefon	0.010
232	Flufenacet	0.010	484	Triadimenol	0.010
232	Flufenoxuron	0.010	485 486	Tri-allate	0.010
233 234	Flumioxazine	0.010	480 487	Triasulfuron	0.010
234 235		0.010	487 488		0.010
	Fluometuron			Triazophos Tribonuron Mathul	
236	Fluopicolide	0.010	489	Tribenuron-Methyl	0.01
237	Fluopyram	0.010	490	Trichlorfon Trichloropot	0.01
238	Fluorochloridone	0.010	491	Trichloronat	0.010
239	Fluoroglycofen Ethyl	0.010	492	Triclopyr	0.010
240 241	Fluoxastrobin	0.010	493	Tricyclazole	0.010
1/11	Flupyrsulfuron Methyl	0.010	494	Tridemorph	0.010

242	Fluquinconazole	0.010	495	Triethyl Phosphate	0.010
243	Fluroxypyr	0.010	496	Trifloxystrobin	0.010
244	Flurtamone	0.010	497	Triflumizole	0.010
245	Flusilazole	0.010	498	Triflumuron	0.010
246	Flutolanil	0.010	499	Triflusulfuron Methyl	0.010
247	Fluxapyroxad	0.010	500	Triforine	0.010
248	Fomesafen	0.010	501	Trinexapac Ethyl	0.010
249	Fonofos	0.010	502	Triticonazole	0.010
250	Foramsulfuron	0.010	503	Tritosulfuron	0.010
251	Forchlorfenuron	0.010	504	Uniconazole	0.010
252	Formetanate	0.010	505	Vamidothion	0.010
253	Formetanate hydrochloride	0.010	506	Zoxamide	0.010

Table 2. Active substances examined in fig fruit examples on GC-MSD device.

Na	Analit	Detection	N	A 1:4	Detection
No	Analit	Limit	No	Analit	Limit
1	245T	<u>μg/kg</u>	50	Endeerslfere Dete	<u>μg/kg</u>
1	2,4-5T	0.020	58	Endosulfan, Beta	0.002
2	2-Chloranilline	0.015	59	Endrin	0.015
3	2-Phenyl phenol	0.015	60	Ethalfluralin	0.015
4	3-Chloranilline	0.015	61	Fenchlorphos	0.015
5	4.4 Dichlorobenzophenone	0.020	62	Fenson	0.015
6	4-Chloranilline	0.015	63	Fenvelarate & Esfenvelarate	0.010
7	Aldrin (HHDN)	0.015	64	Fluchloralin	0.015
8	Alpha cypermethrin	0.005	65	Fluotrimazole	0.015
9	Aminocarp	0.015	66	Flurprimidol	0.015
10	Benfluralin	0.015	67	Flutriafol	0.015
11	BHC	0.015	68	Fluvalnate, tau	0.010
12	Bifenazate	0.015	69	Folpet	0.015
13	Biphenyl	0.015	70	Formothion	0.015
14	Bromocyclen	0.015	71	Haloxyfop R Methyl	0.015
15	Bromopropylate	0.010	72	HCL Alpha	0.020
16	Captafol	0.015	73	HCL Beta	0.020
17	Captan	0.010	74	HCL Delta	0.020
18	Carbofuran-3 hydroxy	0.010	75	HCL Gamma	0.020
19	Carbophenothion	0.015	76	Heptachlor	0.015
20	Chlorbenside	0.015	77	Heptachlor Endo ECI	0.015
21	Chlordane-Cis Alpha	0.015	78	Heptachlor Endo ETI	0.015
22	Chlordane Trans Gamma	0.015	79	Hexachlorobenzene	0.020
23	Chlordecone	0.015	80	Iodofenphos	0.015
24	Chlorfenapyr	0.015	81	Isodrin	0.015
25	Chlorfenson	0.020	82	Isofenphos	0.015
26	Chlorobenzilate	0.020	83	Lactofen	0.015
27	Chloroneb	0.015	84	Leptophos	0.015
28	Chlorothalonil	0.020	85	Mefenpyr Diethyl	0.015
29	Chlorthion	0.015	86	Methoprene	0.015
30	Chlozolinate	0.015	87	Methoxychlor	0.020
31	Cyanaphos	0.015	88	Mirex	0.015
32	Cycloate	0.020	89	Nitrothal-isopropyl	0.020
33	Cyfluthrin	0.015	90	Nitrapyrin	0.015
34	Cyflutrin-beta	0.015	91	Nitrofen	0.020
35	Cyhalothrin, Lambda	0.010	92	Oxadargyl	0.015
36	Cypermethrin	0.010	93	Pentachloroaniline	0.015
37	Dazomet	0.020	94	Permethrin	0.010
38	DDD-2.4'	0.020	95	Perhane	0.010
39	DDD-2.4 DDD-4.4'	0.020	96	Procymidone	0.013
40	DDE-2.4'	0.020	90 97	Profuralin	0.020
40 41	DDE-2.4 DDE-4.4'	0.020	97 98	Propamocarb	0.015
41 42	DDE-4.4 DDT-2.4'	0.020	98 99	Qunomethionate	0.015
42 43	DDT-4.4'		99 100	Quintozene	0.003
		0.020		•	
44	Deltamethrin	0.010	101	S-Metolachlor	0.015
45	Dicamba Diablahan'i	0.015	102	Tecnazene	0.020
46	Dichlobenil	0.015	103	Tefluthrin Terkesil	0.015
47	Dicofol	0.010	104	Terbacil	0.015

10	D: 11:	0.01.5	105	m	0.01 5
48	Dieldrin	0.015	105	Tetrachlovinphos	0.015
49	Diethatyl Ethyl	0.015	106	Tetradifon	0.015
50	Dimethypin	0.015	107	Tetrasul	0.020
51	Dinobuton	0.015	108	Thiometon	0.015
52	Dinoseb Asetate	0.015	109	Tolyfuanid	0.020
53	Dioxathion	0.015	110	Transfuthrin	0.015
54	Diphenylamine	0.020	111	Tributtyl Phosphate	0.015
55	Dihenylmercury	0.015	112	Trifuralin	0.010
56	Endosulfan-sulfate	0.002	113	Vinclozolin	0.020
57	Endosulfan, Alpha	0.002			

Methods

Examples' Preparation for Analysis

15 g's examples were homogenized in a mechanical shredders. Other similars of the same example were put into same processes separately. Example amounts that put into extraction were taken from these homogenised examples after weighing.

Extraction of Examples

Whole examples were homogenised with steel blenders by shredding and 5g's of analyse examples from the main example were weighed and mixed with 10ml's of water and 15ml's of acetonitrile with 1% acetic acid and strongly shaked for 1 minute. Afterwards, 6 g's of waterless magnesium sulfate (MgSO₄) and 1.5 g's of Sodium Acetate

 $(C_2H_3NaO_2.3H_2O)$ is added into falcon tubes and after being shaked for 1 minute, centrifugated for 5 minutes at 4000 rpm rate. As the next step, 8 ml's of examples from the previous examples' high phases were collected for the cleaning process and transported into 15 ml's falcon tubes and mixed with 1.2 g's of waterless MgSO₄ and 0.4 g's of PSA and centrifuged for 5 minutes at 4000 rpm rate, once again. Later, the high phase was transported into viales and kept in a freezer until the device evaluations. As the last injections into LC-MS/MS and GC-MS/MS devices were conducted and residue rates were determined. Chromatographical conditions of LC-MS/MS and GC-MS/MS devices are explained on Table 3 and Table 4.

LC-MS/MS	Agilent 6420	Agilent 6420					
Mobile Phase A	5 mM Amon	5 mM Amonium Formate&Water + Acetonitrile					
Mobile Phase A	Pure methan	ol					
Column	Poroshell 12	0 SB-C18 (3.0 ±	x 100 mm 2.7 M	licron)			
Injection Volume	10 µl						
Flow Rate	0.6 ml/min						
MS Gas Temperature	300°C						
Sheat Gas Temperature	350°C						
The Column Oven	35°C						
Pump Gradient Program	Time	Mobile phase	Mobile phase	Flow rate			
		A %	В %	ml/min			
	0:00	80	20	0.6			
	0:00	80	20	0.6			
	0:20	80	20	0.6			
	1:50	30	70	0.6			
	6:00	5	95	0.6			
	7:50	5	95	0.6			
	7:60	80	20	0.6			
	10:00	80	20	0.6			

Table 3	Chromatogra	nhic Worki	ng Condition	ns of LC-MS/MS

Table 4. Chromatographic Working Conditions of GC/MS						
GC-MS		Agilent 5975				
Carrier gases		Helium				
Column		HP-5MS 30 m × 250 μm × 250	0 μm × 0.25 μm			
Injection Volume		5 µl				
Flow Rate		2.4 ml/min				
Duration of Injection		18.5 min				
MS Gas Temperature		300°C				
Sheat Gas Temperature		350°C				
The Column Oven		35°C				
Inlet temperature program						
Start	Rate of increase (°C/min)	Temperature (°C)	Retention Time (RT)			
			(min)			
1	0	55	0.21			

2	600	325	18.5			
The Column Oven temperature program						
Start	Rate of increase (°C/min)	Temperature (°C)	Retention Time (RT) (min)			
1	0	50	0			
2	50	150	0			
3	20	230	1			
4	8	290	3			
5	0	290	18.5			

Results and Discussion

The findings amount in the study are considered on an average of 3 repetitions of each example in accordance with the "Turkish Food Codex (TGK) Rescript of Maximum Residue Limits of Pesticides Permitted to be Found in Livestock (Official Newspaper: 21.01.2011-27822; Rescript No: 2011/2). Each residue limits of TGK for each pesticide example are given in the tables, separately. In the residue limits of fig fruit examples' examinations, where high-precisioned devices such as GC-MS/MS and LC-MS/MS were used, 506 active substances of pesticides in LC-MS/MS device and 113 active substances of pesticides at GC-MS/MS device were analysed. In this study conducted during the years of 2017 and 2018, any analyzable residues were not observed in the examples of both years. There are no pesticide residues in the fruits of this garden, which has been certified and produced by organic methods. This shows how important it is with organic farming methods, one of the sustainable agricultural techniques, where the traceability of the product is ensured, with the increasing sensitivity to food safety recently. There are also studies that fig has many good properties grown with organic farming methods. Erbay et al. (2011) determined that organic grown figs have higher sugar content and much more hardness than conventionals in the beginning and also the end of the storage. At the same time, Akbaba et al. (2011) observed that the concentration and peak intensity values of Ca, Fe, P, Zn, Cl, K, Na, Mg and Br elements were higher in the fig samples grown under organic farming regime. Likewise, Al, Cu and S levels were found in higher levels in the samples grown under conventional farming regime. Au and Ba were detected only in organic samples. They reported that organic figs are likely to have higher nutritional mineral content. And the fig samples grown under conventional farming regime could contain harmful metals like Al and Cu that might damage the various systems and/or organs of humans and animals. Organic farming techniques not only increase the quality of the product, but also make it more valuable in terms of health.

In addition to this, in some studies, there are pesticide residues in many products including fig fruit in the literature. Namely, Liu et al.(2020) used the gas chromatography-flame photometric detector (GC-FPD) to detect malathion residues content in vegetables (cherry tomatoes and broccoli) and fruits (mulberries, cranberries, and figs). They found that maximum residual limits (MRLs) of malathion was 1 mg/kg for cherry tomatoes, broccoli, mulberries, cranberries, and 0.2 mg/kg for figs, respectively. These results would be considered as important references for monitoring and assessing the quality safety of agricultural products and protecting consumer health. An other research, Ji et al. (2017) researched on one of the most important mycotoxins, patulin which is produced by a variety of molds (Aspergillus, Penicillium and Byssochlamys), and it has been found in rotting apples, grains, fruits, and vegetables. And researchers investigated 137 fruit products (97 dried fruits, 20 fruit juice and 20 jams) collected from markets in China. They found that dried figs, dried longans (seedless) and dried hawthorn products showed an average of patulin contamination of 87.6mg/kg, 68.4mg/kg and 5.1mg/kg, respectively. At the same time Ciscato et al. (2009), evaluated 140 pesticides residues in tropical fruit species by a multiresidue method using GC and HPLC methodologies. They found on samples of figs and persimmons had the highest violation rates. They suggested that cooperation of producers, to reduce pesticide residues. And Engebretson et al. (2001) found that residues greater than the limit of quantitation for pendimethalin in apple pomace, fresh and dry fig, grass screenings, mint oil, almond hulls, green onion, and tomato pomace (wet and dry).

Conclusion

In this research, pesticide residues on fig fruit that grown in İsafakılar village of İncirliova district of Aydın city are analysed. And no peticides residues found in fig fruit. That is important that studies should be conducted to support and disseminate agricultural techniques such as organic agriculture, which have traceability in consuming healthier products. Considering crop production in organic agriculture, the most obtained product is subjected to residue analysis involving many pesticides in accredited laboratories and certified to be free from any pollution. The product's certificate is a guarantee certificate.

References

Anonymous (2019).

- https://www.nutfruit.org/consumers/news/detail/st atistical-yearbook-2016-17.
- Akbaba U., Şahin Y., Turkez H. (2011). Comparison of Element Contents in Figs Grown Under Organic and Conventional Farming Regimes for Human

Nutrition and Health. Fresenius Environmental Bulletin, 20(10):2594-2600

- Altındişli A., Ertem A. (1998). First International Symposium on Fig. Acta Horticulturae 480:227-232.
- Ciscato C. H. P., Gebara A. B., Monteiro S. H., 2009. Pesticide residue monitoring of Brazilian fruit for export 2006-2007. Food Additives & Contaminants Part B-Surveillance, 2(2):140-145, DOI: 10.1080/19440040903330326
- Engebretson J., Hall G., Hengel M., Shibamoto T. (2001). Analysis of pendimethalin residues in fruit, nuts, vegetables, grass, and mint by gas chromatography. Journal of Agricultural And Food Chemistry, 49(5):2198-2206, DOI: 10.1021/jf010048b
- Erbay B., Dolgun O., Ertan B. (2011). Sensorial and chemical differences between organic and conventional grown figs (*Ficus carica* L. cv. Sarılop). African Journal Of Agricultural Research, 6(16):3911-3918
- İrget M.E., Aksoy U., Okur B., Ongun A.Z., Tepecik M. (2008). Effect of calcium based fertilization on dried fig (*Ficus carica* L. cv. Sarılop) yield and quality. Scientia Horticulturae, 118(4):308-313
- Ji X.F., Li R., Yang H., Qi P.P., Xiao Y.P., Qian M.R. (2017). Occurrence of patulin in various fruit products and dietary exposure assessment for consumers in China, Food Control, 78:100-107, DOI: 10.1016/j.foodcont.2017.02.044
- Lehotay S.J. (2007). Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study. Journal of AOAC International, 2007 Mar-Apr; 90(2):485-520.
- Liu Y., Liu S., Zhang Y., Qin D., Zheng Z., Zhu G., Lv Y., Liu Z., Dong Z., Liao X., Li X. (2020). The degradation behaviour, residue distribution, and dietary risk assessment of malathion on vegetables and fruits in China by GC-FPD, Food Control, 107, 106754, 10.1016/j.foodcont.2019.106754
- Mordoğan N., Hakerlerler H., Ceylan S., Aydın S., Yağmur B., Aksoy U. (2013). Effect of Organic Fertilization on Fig Leaf Nutrients and Fruit Quality. Journal of Plant Nutrition, 36(7):1128-1137, DOI: 10.1080/01904167.2013.780611

TÜİK, (2019). https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (Access Date: 13.11.2019)

Yılmaz S., Gözlekçi S., Ersoy N. (2017). A review of fig sector in Turkey. Acta Hortic. 1173, 409-414, DOI: 10.17660/ActaHortic.2017.1173.70