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Abstract

This paper develops a method for semiparametric partially linear regression model when all variables measured
with errors whose densities are unknown. ldentification is achieved using the availability of two error-
contaminated measurements of the independent variables. This method is likened to kernel deconvolution method
which relies on the assumption that measurement errors densities are known. However with this deconvolution
method, convergence rates are very slow. Hence, estimating a regression function with super smooth errors is
extremely difficult and in literature the authors only have studied the case that the errors are ordinary smooth. We
could tackle this problem with the Fourier representation of the Nadaraya-Watson estimator, because this method
can handle both of super smooth and ordinary smooth distributions. In literature studying asymptotic normality
also has difficulty because of the same smoothing problem. With this study we could manage to show asymptotic
normality of parametric part. Monte Carlo experiments demonstrated the performances of £ and §,(t) in the
application part.

Keywords: Errors in variables, Kernel deconvolution, Partially linear model, Semiparametric regression, Monte-
Carlo Simulation.

Tiim Degiskenleri Bilinmeyen Hatali Yar1 Parametrik Regresyon Modeli

Oz

Bu makale ile degiskenleri hatali Olgiilmiis yar1 parametrik kismi dogrusal regresyon modelinde hatalarin
yogunluklar1 bilinmediginde kullanilabilecek bir yontem gelistirilmektedir. Bagimsiz degiskenlerin hata bulagmig
iki Ol¢iimiiniin mevcudiyeti tanimlamayi saglamak i¢in kullanilir. Bu yontem, ol¢iim hatalar1 yogunluklarmin
bilindigi varsayimina dayanan kernel dekonvoliisyon yontemine benzetilir. Bununla birlikte, bu dekonvoliisyon
yonteminde, siiper diizgiin hatalarin varliginda bir regresyon fonksiyonunun tahmin edilmesi, yakinsama oranlari
¢ok yavas oldugu i¢in son derece zordur. Bu durum nedeniyle, literatiirde yazarlar sadece hatanin olagan diizgiin
dagilima sahip oldugu durumlarda ¢alismislardir. Bu problemi Nadaraya-Watson tahmin edicisinin Fourier
temsiliyle ¢ozebiliriz, ¢linkii bu yontem hem siiper diizgiin hem de olagan diizgiin dagilimlarin istesinden gelebilir.
Literatiirde asimptotik normallik g6steriminde de ayn1 diizlestirme probleminden dolayr zorluk ¢ekilmektedir. Bu
caligma ile parametrik kismin asimptotik normalliginin gosterimi de saglanabilinmistir. Uygulama boliimiinde,
Monte Carlo simiilasyon denemeleri ile 8 ve §,,(t)'nin performanslar incelenmistir.

Anahtar kelimeler: Degiskenleri hatali modeller, Kernel dekonvoliisyonu, Kismi dogrusal model, Yari
parametrik regresyon, Monte-Carlo simiilasyonu.

1. Introduction

Measurement error in predictors causes loss of information and biases and even misleading conclusions
for inference [1]. Three main effects of measurement error are:
e It causes bias in parameter estimation for statistical models.
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e It leads to a loss of power, sometimes profound, for detecting interesting relationship among
variables.
e It masks the features of the data, making graphical model analysis difficult [2].

The bias resulting from the presence of measurement error in the explanatory variables is a
common problem in regression analysis [3]. Although numerous solutions to this problem have been
derived for parametric and nonparametric regression models, the corresponding problem in
semiparametric specifications has remained relatively unexplored. In this paper a semiparametric
partially linear regression model when possibly all variables measured with errors is considered. This
study presents a new semiparametric estimator which expands the classic Nadaraya Watson kernel
estimator to enclose the cases of all variables have errors and the error ridden regressors. In literature
semiparametric regression model with errors in all variables are only studied when the error has a known
function. Contrary to the popular estimators, our estimator do not require any knowledge about the
distribution of the measurement error. Beside this, because estimating a regression function with super
smooth errors is extremely difficult, as the convergence rates are very slow, the authors only have
studied the case that the errors are ordinary smooth. We could tackle this problem with the Fourier
representation of the Nadaraya-Watson estimator because this method can handle both of super smooth
and ordinary smooth distributions. In literature studying asymptotic normality also has difficulty
because of the same smoothing problem. With this study it could be seen that £, and 62 are
asymptotically normal. The average values of 15 replicates of 3, and 3 are handle with the simulation
study through Monte Carlo experiments. The performances of the estimator 3, of 8 and the estimate g,
of g are encouraging.

2. Material and Method
2.1. Construction of Estimators

In this section, we firstly consider semiparametric regression model for n observations.
y=XTB + g(x*) + Ay, (1)

where E[Ay|x*] = 0, X is a random vector, x* is a random variable described in [0,1], g(.) is an
unknown function and Ay is an error term which is independent from other variables and have zero
mean.

Due to the nature of the environment or the measurement technique, sometimes variables X and X*
could be measured with errors. So X and X* could be observed as follows:

X* =X+ Ax*,
X=X +4rx, (2)

where, Ax* and Ay are random errors, Ax*, Ay and (X7, X*, Ay)T mutually independent, X* has an
unknown density as f(x*), Ay is an error function has an unknown distribution. Let us define a new
model for the semiparametric regression function in the case of measurement errors in both the linear
and nonparametric parts by using information of the probability of defining the density of this variable
when the density of two error-contaminated measurements of an unobserved random variable is
available. Then we can describe a semiparametric errors in all variables model for the variables Y, X and
X™ as follows:

( y=X"B+g")+Ay,

I xt =x+ Ax™,
4 x“ =x+Ax", 3
Ik x=x"+Ay,

z=x"+4 Az
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Let us denote that (X*, X,Y) is a triple of random vectors and assume
EYIX*,X)=X"B + g(x"), (4)

which shows the conditional expectation of the univariate Y given (X*,X), where X is p, X* is 1
dimensional, B is an unknown (p x 1) dimensional parameter vector and g(.) is an unknown function.

Assumption 1: Az and x* are mutually independent;

E[Ay|x*,Az] = 0, 5)
E[Ax|x*, Az] = 0.

Assumption 2: E[|x*|], E[Ax] and E[|y|] are finite.
Assumption 3: E[y*h 1K (h~(x* — %*))] < oo, for all #, any h > 0 and k = 0,1.
Assumption 4: The Fourier transform of the kernel, k(¢), is

i.  Bounded,

ii.  Compactly supported (without losing generality, we consider the support to be [—1, 1]).
Assumption 5: E(Ax*) =0,Cov(Ax*) = Zp,+ E(Ax™) = 0,Cov(Ax™) = Zp-, E(Ay|X, X*) =0
and Var(Ay|X,X*) = aAzy where aAzy is unknown and 2,,+ > 0,Z,,- > 0.

Assumption 6: Kernel function K (x*) provides following presentations for y,. > 0:

[ee)

f K(cdx' = 1, f(x*)fK(x*)dx*{

—00

=0 j=1..,7—-1
#0 j=Y

)

o (6)
f|x*|f|1<<x*)|dx* <o j=1,.p

And Fourier transform of kernel is k(&) = 1, provided |&| < & for some & > 0.

Because the measurement error is in the both parametric and nonparametric part this problem is more
complex. Firstly, serious boundary problem arising from the measurement error that occurs when
generating the nonparametric estimator should be solved. Then, the parametric parts’ measurement
error, which has a very strong effect on estimation step of the nonparametric function g, should be
considered.

3. Results and Discussion
3.1. Generation of the Estimators

Let us take
UX*H X)) =xt—EXT|X") = x—EX|X*) + Ax™,
UX X)) =x"—EX|X") = x—EX|X*) +Ax~,
UX*HX)+UX™,X* Axt + Ax~
U(x# x*) L )2 ( ]_ x—E(XIX*)+—[ > ]
= x — E(X|X*) + Ax* and
UlY,X*)=y—EXIX") = [x —EXIX)]"B + Ay,

where, X* is the mean of X* and X~ which are the consecutive measurements of X. This variable is
added to the model for convenience of presentation. Define the function w(x*) = 0 which is in [a, b],
inf . sup
where 0<agx*gbf(x)San*Sb
avoiding the boundary problem arising from the denominator of the kernel estimator ([4]). Let us take

f(x*) < oco. This assumption plays an important role in
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Sy = E [U(x*, x)u(x*, x*) w(x)

= E{[x — EXIX")][x — EXIX)]Tw(x*)} + Ew(x*)Z,+

LS +S553 4, ()
S, = E[u(X*, X")U(Y, X")w(x")]| = SB,
S, =E [(Ay - Ax#Tﬁ)zw(x*)],

where, S = E{[x — E(X|X")][x — EXIX)]"w(x")},S; = E(w(x*)). Let f(y,x* x*) denote the

density of (Y, X*,X*) and

g1(x*) =EXY|X" =x"), T

g (x*) = E( X" = x*) A (gn(x*), ...,glp(x*)) .

Let us define S as a positive definite matrix (S > 0), then the formula of B, g(x*) and o3, are
-1

ﬁ = (Sl - S3ZAX#) Sz,

g(x*) . g1(x") — g, (x)7B,

O'Azy = S_: - ,BTZAx#ﬁ.

In this way estimations of 3, g and aAzy are turned to the estimation of S;, S, S3, S, and g4, g-.

Suppose that

{XJ'# (Xﬁ,Xf;, : 'XJ?;)T' YJ"XJ'*’}
1<j<n
is a sample which size is n and is taking from model (3). Then the estimators of £, aAzy and g are acquired
by the following procedure:
Step 1: Estimator of f(x*) is defined as f(x*) = My(%*,h,), Where h, is bandwidth and,

1
Mo 1) = o [ K(REBo(©exp(—ig)ag

where ¢ (&) = exp (fj%d(), where i = v—1 and m,(¢) = E[aexp(ifz)] fora = 1, .

Step 2: Joint density function estimator f(y,x ,x*) of (Y, X* X*) can be defined as:

FO.xtx) = WZ]_[ ( ) ()| 5z xradresplice - #91de]

Step 3: Estimators of gl (x ) and g, (x*) defined as
Y1 K (O —2)/R)Y;  Eyh 'K (" —2)] M hy)
" Ko(Gr—x9)/h)  E[RTK(TI e = %)) Mo(& hy)
S Ka(GF =2 /R)XF E[XPRTK (TN — 7)) My Ry
n k(G- —%)/h)  E[RIKGAI G —FD] Mo(®, hy)

g\ln(f*; hn) =

g\Zn(f*; hn) =

where M, (2, hy) = 5= [ k(h§) b1 (Dexp(—iEX)AE, ¢1(§) = o (§) yé?
m #(f)
my(§) = E[anp(ifZ)] for a = 1, y*. Moreover, for ¢,(&) = ¢, (§) (g) = E[x} exp(i&x")]

My (7 h)—— f k(hE) o (E)exp(—iE %) dé

m #(5)
= f () (§) ey exp(—ig7 )

[ J#exp(ifz)] s
TFlewpen] O PTETIE

E[Xf]E[exp(ifz)]
Elexp(i§z)]

= %j k(h&)E[exp(i&x™)]

1
= [ KhBLexp(iEx )] exp(—ig")dg
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1
= Ef K(hf)E[X]#exp(ifx*)]exp(_igf*)dsz
1
- Ef x(hS) (f E[x! x*]f(x*)exp(ifx*)dx*) exp(—iéx*)dé
1
B ff %K(hf)exp[if(x* - J?*)]E[x}he x*|f(x)déd x*

from Parseval’s equation;
[ 5= r©expligh=1 (" — 2Ylag =K (k71 (" — 7))
= [hK(h Y (x* — %)) (E[XJ# x*]f(x*)) dx*

= E [n7 K (h7 G — #)E[x} [x]] = E[xf o K (h7 G - 59)],
Step 4: Estimations of S, (¢ = 1,2,3), 8 and g(.) are obtained as:

p
. . )
Sin = f f f(x#_§2n(f*,hn))(x#—§2n(i*,hn)) w(x*)f(y, x*, x*)dx* dydx*,

RP R1 R1

1 8m = f f f (x# — gm(i*,hn)) (y — gln(i*,hn))w(x*)f(y, x#,x*)dx#dydx*,
RP R! Rl

S = [ wadfea,
L R1
] & & 14 A~ A~ ~% A~ ~% ]
.Bn = (Sln - S3nZA#) Sons g(x lhn) = gln(x 'hn) - an(x ;hn)T.Bn-
Step 5: Estimations of S, and aAzy are obtained as:
& %) N 2 *\ £ * *
San = f f f (y —x*Tp, — g(x ,hn)) w(x)f(y, x*, x*)dx*dydx”,
6-1% = §4n/§3n - ﬁrr{ZAx#ﬁn-

3.2. Asymptotic Normality of Parametric Part

Assumption 7:

i i xizi,x;, Ay, Ay, Az;] ;i = 1,...,nis an i.i.d sequence.

i. E[y*?7|zl] < o, E[x?*7/|zl/] < o0; j = 0,1.

iii. The density of x* is nonzero at x* = x".

iv. The functions ¢ () = E[e®*"],¢"0({) = d‘b";o@l Q) = E[y*e®*"], my(Q) = E[e¥?] satisfy

d
¢'0(9)
50 <@+ (8)
for some y,- = 0 and
max{|¢o (O, [¢1 (DI} < (1 + [TDY¢ exp(aylTIFe), 9)
Imy (1 = (1 + )" exp(atn 7 1Pm), (10)

for some vy, ym E R, agp < 0,apy, < 0,84 = 0,8, = 0suchthaty,Bs = 0 and y,,f, = 0.

Assumption 8:
i. E(JIX|I?|X* = x*) is a bounded function of x*, where || X|| is L? norm of X.
ii. S isa positive definitely p X p matrix.
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Theorem 1: Let assumptions 1-8 are provided for any given X*. Furthermore let us take
E (1 + ||Ax#||4 + IAyIZIIXIIZ) < 00,y > 1+ 2y and nh2(+2Y) - oo nh2¥e — 0, where y, (v, = 3)
is an integer given in assumption 6 and y is a smoothness parameter. Then

V(Bn = B) = N(0,21), Vn(63 - 03,) » N(0,2,),

where

Q, =S Cov[& (RIS, @, = Var[&(B, o, )]

for &8 =0, {[(x* — 9:(x") (y = g2 ) — (x* — g &)T)B) + ZpB|wx)}  and
&(B.0d,) = {0, [(ay - ax*"B)*w(x)] — (03, + ﬁTzAx#ﬁ)}%:"*).

Proof: From [3] and [4] we can demonstrate that

V(B = B) = V1 [(Sin = SsnZa) Son — (51 = S3Zaes) 5,

= \/E(S;ln - §3nZAx#)_1 [§2n - (§1n - §3nZAx#)(Sl - 532Ax#)_152]

=v/nst [AZn — S5 = (Sin — S3nZa# ) (S1 — SSZAx#)_l'SZ + 52]

=+ns? {(3271 = 5) = (S1 = $3Z0) " [(Sin — SanZaer)S2 = (51 - S32Ax#)52]}

= VS~ {(San = 52) = (S1 = S3%40#) " [(S1n = 51)Sz — (S3n — S5)EpeS2}

= VS~ {(S2n = 52) = (S1 = S3%40#) " [(S1n = 51)Sz — (S3n — S5)EpeS2}

= VS~ {(S2n = 52) = (Sin — S1)(S1 = SaZpy#) ™ Sz + (San — S3)Zp# (S1 = S3Zyer) 2
= \/55;1[@211 —5;) = (Sin = $1)B + (S3n — S3)Z 48]

1 1
= ﬁ;s_l [fjl(ﬁ) —-E (fjl(ﬁ))] +o0 (W) + O(ﬁhyk)

- N(0,5~*Cov[& (B)D.
We can complete the proof for 62 similarly.

3.3. Simulation

To simulate our results we thought both supersmooth and ordinary smooth functions. Hence we create
4 different examples. In Table 1, normal distribution and error function erf(x*) = %fox e~ t*dt show

-1, x* < -1
supersmooth functions, laplace distribution, uniform distribution and S(x*) =4 x*, x* € [-1,1]
1, x*>1
function show ordinary smooth functions.
Table 1. Examples
1 2 3 4
x* = N(0,1) x* = N(0,1) x* = N(0,1) x* = Uniform[—2,2]

Ay,Az - N(0,0.25) Ay,Az - N(0,0.25) Ay,Az — L(0,0.25) Ay,Az — L(0,0.25)
Ay — N(0,0.25) Ay - N(0,0.25) Ay — N(0,0.25) Ay — N(0,0.25)
g&x") = S(x7) g =erf(x) g’ =S(x) g’ = S(x7)
hyt=12(0nn)%%5 h;'=120nn)%%> h;'=12(0nn)%%> h;! =1.2(nn)"?>

We choose n = 100,p = 2,N = 15,8 = (;),agy =025x" =1 and w(x*) = I, {x" < 2}.

The medial values of fifteen copies of 3, and 62 are given in the Table 2. For j,, values corresponding
standart errors are also given. The performance of the §,, is encouraging. As for the estimate g, of g,
the mean square error could be seen in the Table 2. The performance of the g, is also encouraging.
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Table 2. Simulation results

1 2 3 4

- (0.9606 . (0.8704 - (0.9347 - (0.8607
o= (igge) = limsee) = lagete) A= (oony
Sp = (0.4175) Sp = (0.00006) Sp = (0.00044) Sp = (0.00160)
62(x*) = 0.5083 62(x") = 0.0333 62(x*) = 0.1505 62(x*) = 1.5850
glx)=1 g(x*)=08427 gx*)=1 glx) =1

Go(x") =1.1346  §,(x*) = 05975 §,(x*) = 11372 §,(x*) = 1.5125
MSE = 0.7395  MSE = 0.4354  MSE = 0.2542  MSE = 0.3039

4. Discussion and Conclusion

This study presents a new semiparametric estimator which expands the classic Nadaraya Watson kernel
estimator to enclose the cases of all variables have errors and the error ridden regressors. In literature
semiparametric regression model with errors in all variables are only studied when the error has a known
function. Contrary to the popular estimators, our estimator do not require any knowledge about the
distribution of the measurement error. Beside this, because estimating a regression function with super
smooth errors is extremly difficult, as the convergence rates are very slow, the authors only have studied
the case that the errors are ordinary smooth. We could tackle this problem with the Fourier representation
of the Nadaraya-Watson estimator because this method can handle both of super smooth and ordinary
smooth distributions. Our results include Schennach (2004) which is a special case where measurement
errors are in the nonparametric regression. In literature studying asymptotic normality also has difficulty
because of the same smoothing problem. With this study it could be seen that of 8, and g, (t) are
asymptotically normal. The average values of 15 replicates of of £, and 62 are handle with the
simulation study. The performances of the estimator 8, of B and the estimate g,(t) of g are
encouraging.
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