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Abstract-Based on the Taylor series expansion (TSE) and employing the technique of differential transform method (DTM), 

three new meshless approaches which are called Meshless Implementation of Taylor Series Methods (MITSM) are presented. 

In particular, Strong Form Meshless Implementation of Taylor Series Methods (SMITSM) are studied in this paper.  Then, the 

basic functions are used to solve a 1D second-order ordinary differential equation and 2D Laplace equation by using the 

SMITSM. Comparisons are made with the analytical solutions and results of Symmetric Smoothed Particle Hydrodynamics 

(SSPH) method. We also compared the effectiveness of the SMITSM and SSPH method by considering various particle 

distributions, nonhomogeneous terms and number of terms in the basic functions. It is observed that the MITSM has the 

conventional convergence properties and, at the expense of CPU time, yields smaller L2 error norms than the SSPH method, 

especially in the existence of nonsmooth nonhomogeneous problems.    

Keywords:Meshless methods, Taylor series, element free method, strong form, heat transfer, differential transform method. 

 

1. Introduction 

Meshless Smoothed Particle Hydrodynamics (SPH) 

method, proposed by Lucy [1] to study three-dimensional 

(3D) astrophysics problems, has been successfully applied to 

analyze transient fluid and solid mechanics problems. 

However, it has two shortcomings such as inaccuracy at 

particles on the boundary and tensile instability. Many 

techniques have been developed to alleviate these two 

deficiencies among which are Corrected Smoothed Particle 

Method (CSPM) [2, 3], Reproducing Kernel Particle Method 

(RKPM) [4-6] and Modified Smoothed Particle 

Hydrodynamics (MSPH) method [7-10]. The MSPH method 

has been successfully applied to study wave propagation in 

functionally graded materials [9], can capture the stress field 

near a crack-tip, and simulates the propagation of multiple 

cracks in a linear elastic body [10]. The SSPH method has 

been applied to 2D homogeneous elastic problem 

successfully [11].  On the other hand, the SSPH method [11-

13] is more suitable for homogeneous boundary value 

problems, cannot be easily applicable to nonlinear problems, 

requires at least fourth order terms in basis functions for the 

buckling problems which increases the CPU time.  

Motivated by the fact that the SSPH method may not 

yield accurate results for solving nonhomogeneous problems 

due to its underlying formulation, an alternative approach is 

investigated especially for nonhomogeneous problems [14]. 

Three different implementations of MITSM including the 

approach presented in [14], called Meshless Implementation 

of Taylor Series Method I, II and III  (MITSM) are presented 

in this paper. 

The method presented in [14] requires all derivatives of 

the kernel function which restricts the choice of the kernel 

function and only uses all derivatives of the basis function. 

However, Meshless Implementation of Taylor Series Method 

I does not require the derivatives of the kernel function and 

may use any type of kernel function including a constant. On 

the other hand, Taylor Series Method II uses all derivatives 

of both basis and kernel functions. 

Although the SSPH method and MITSM depend on 

TSEs, the main difference between these two approaches is 

as follows: the SSPH method calculates the value of the 

solution at a node by using the values of the solution at the 

other nodes and then substitute it into the governing 

differential equation; thus, nonhomogeneous terms in the 
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governing differential equation are also evaluated pointwise 

at the nodes. This approach results in approximation errors 

especially in the existence of nonsmooth nonhomogeneous 

terms. On the other hand, the proposed MITSM approach 

substitute the TSEs of the solution and nonhomogeneous 

term into the governing differential equation and then utilize 

exact recursive relations between the coefficients of the 

expansions of the solution and nonhomogeneous term; it 

yields improvement in accuracy that is verified by solving 

numerical examples in Section 4. The MITSM can be applied 

to arbitrary boundary geometries, nonlinear problems, and 

strong and weak formulations. In particular, Strong Form 

Meshless Implementation of Taylor Series Methods 

(SMITSM) are investigated in this paper, whose results are 

compared with the analytical solutions and solutions of the 

SSPH method. It is shown that the two of SMITSM has the 

conventional convergence properties and yields smaller L2 

error norms in numerical examples than the SSPH method, 

especially in the existence of nonsmooth nonhomogeneous 

terms. 

2. Differential Transform Method 

In this study, the DTM technique is employed to develop 

the MITSM. It is noteworthy that when the DTM is applied 

to ordinary differential equations, it exactly coincides with 

the traditional Taylor series method [15] where applications 

of TSEs and DTM are presented in detail. The 3D 

differential transform of a function        is defined as 

follows 

               
 

      
[
              

       ]
       

(1) 

where         is the original function and          is the 

transformed function. The inverse differential transform of 

         is given by 

         ∑ ∑ ∑                
   

 
   

 
         (2) 

Some of the fundamental theorems on differential 

transform can be found in [16-21]. 

3. Strong Form Meshless Implementation of Taylor 

Series Methods (SMITSM) 

In this section, three different basis function 

formulations based on the DTM are given for 1D and 2D 

dimensional cases. These methods are named as followings; 

1. Strong form meshless implementation of Taylor 

series method I (SMITSM I),  

2. Strong form meshless implementation of Taylor 

series method II (SMITSM II) and  

3. Strong form meshless implementation of Taylor 

series method III (SMITSM III)  

3.1 Strong form meshless implementation of Taylor series 

method I 

 

One Dimensional Case: 

For a function     which has continuous derivatives up 

to the (n+1)th order, the value of the function at a point 

    located in the neighborhood of the point      can be 

written through the DTM as follows 

      ∑            
  

    (3) 

By introducing the two matrices     and  , equation (3) 

can be cast into the following form 

                                            (4) 

where 

            [      
        

          
 ]  

   [                         ]
 (5) 

Elements of the matrix    are the unknown variables that 

can be defined as 

      
 

  
[
       

   ]
    

(6) 

Depending on the number of unknowns of the matrix 

  ,the derivatives of the                       are obtained. 

By neglecting the sixth and higher order terms in the DTM 

expansions, the formulation of the SMITSM I for a 1D 

problem can be written as follows 
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Then multiply both sides of the basis function and its 

derivatives given above by        
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(8) 

In the compact support of the kernel function 

      associated with the point           shown in Fig. 

1, let there be   particles. 

 

 

 

 

 

 

 

 

 

Fig. 1. Distribution of the particles in the compact support of 

the kernel function       associated with the point   
        

Let’srewrite equation (8) with respect to the compact 

support domain shown in Fig. 1, evaluate this equation at 

every particle in the compact support domain of        and 

sum each side over these particles, then 
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      (  )  ∑ (     )

  

   

      (     )   

 (9) 

Then, we can solve a set of simultaneous linear algebraic 

equations given by equation (9) for the unknowns of    for 

all particles. 

Two Dimensional Case: 

For a function       which has continuous derivatives 

up to the (n+1)th order, the value of the function at a point 

        located in the neighborhood of the point   
        can be written through the DTM as follows 

       ∑ ∑              
       

  
   

 
   (10) 

With the same approach used for 1D case, the following 

equation can be written 

                                       (11) 

where 

       [      
       

        
       

   

      
       

          
       

 ]  

   [                                         

                 ]
 (12) 

Elements of the matrix    are unknown that can be 

defined as 

        
 

    
[
          

      ]
       

            (13) 

By applying the same procedures given for 1D case and 

neglecting the third and higher order terms in the DTM 

expansions, the formulation of the SMITSM I for a 2D 

problem can be written as follows 
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(14) 

The set of simultaneous linear algebraic equations given 

in equation (14) can be solved for the unknowns of    for all 

particles. The formulation for 3D problems can be obtained 

in a similar fashion as described above. 

3.2 Strong form meshless implementation of Taylor series 

method II 

 

   

 

   

Compact 

Support 

Domain 



INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES  
Armagan Karamanli, Vol.1, No.3, 2015 

98 

 

One Dimensional Case: 

If we multiply both sides of equation (4) by       , we  

obtain 

                                         (15) 

Depending on the number of unknowns of the matrix   , 

the derivatives of Equation 3.13 are obtained. By neglecting 

the sixth and higher order terms in the DTM expansions, the 

formulation of the SMITSM II  for a 1D problem can be 

written by evaluating equation (15) and its derivatives at 

every particle in the compact support domain of        and 

sum each side over these particles as follows 
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The set of simultaneous linear algebraic equations given 

by equation (16) can be solved for the unknowns of    for all 

particles.  

Two Dimensional Case: 

If we multiply both sides of equation (11) by       , 

we obtain 

                                       (17) 

Depending on the number of unknowns of the matrix   , 

the derivatives of the equation (17) are obtained. By 

neglecting the third and higher order terms in the DTM 

expansions, the formulation of the SMITSM II  for a 2D 

problem can be written by evaluating equation (17) and its 

derivatives at every particle in the compact support domain 

of        and sum each side over these particles as follows 
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3.3 Strong form meshless implementation of Taylor series 

method III 

One Dimensional Case: 

If we multiply both sides of equation (4) by       , we  

obtain 

                                         (19) 

Let’s rewrite equation (19) with respect to the compact 

support domain shown in Fig. 1, evaluate this equation at 

every particle in the compact support domain of        and 

sum each side over these particles, then 

∑  (     ) (  )  ∑  (     )
  

   

  

    (     )    (20) 

Repeating the above procedure regarding the number of 

terms included in    in equation (5) by replacing   with the 

following 

        , 

    
   

   
     

     
   

   
     

      
   

   
     

       
   

   
 

(21) 

and so on. Then, we can solve a set of simultaneous linear 

algebraic equations for the unknowns of    for all particles. 

By neglecting the sixth and higher order terms in the 

DTM expansions, the formulation of the SMITSM III for a 

1D problem can be written as follows 
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(22) 

where 

     [        
        

        
        

   

      
 ] 

   [                                   ]
  (23) 

The set of simultaneous linear algebraic equations given 

by equation (22) can be solved for the unknowns of    for all 

particles. 

Two Dimensional Case: 

If we multiply both sides of equation (11) by       , 

we obtain 

                                       (23) 

Lets rewrite equation (23) with respect to the compact 

support domain shown in Figure 1, evaluate this equation at 

every particle in the compact support domain of        and 

sum each side over these particles, then 

∑ (     ) (  )  ∑ (     )

  

   

  

   

 (     )   

(24) 

Repeating the above procedure regarding the number of 

terms included in    in Equation (12) by replacing   with 

the following 

        , 

        , 

                                   

                , 

               
   

    
 

(25) 

and so on. By neglecting the third and higher order terms in 

the DTM expansions, the formulation of the SMITSM III for 

a 2D problem can be written as follows 
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 (     )   
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where 

     [        
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   [                                   ]
  (27) 

The set of simultaneous linear algebraic equations given 

by equation (26) can be solved for the unknowns of    for all 

particles. 

The formulation for 3D problems can be obtained in 

similar fashions as described above. 

4. Numerical Examples 

The SMITSM I, II and III are applied to three sample 

boundary value problems in this section. Since the SMITSM 

I, II and III and SSPH method depend on TSEs and employ 

strong form formulations, results of these methods are 

compared with each other. Although problem types and 

domains are simple in the following three examples, they are 

chosen due to the reasons that their analytical solutions can 

be derived for comparisons and they illustrate the 

implementation of the SMITSM in a clear way. Nonetheless, 

the SMITSM I, II and III and SSPH method can be easily 

applied to any boundary value problem and complex 

domains in a systematic way. The computer programs that 

are used to solve the numerical problems are developed by 

using Matlab. 

4.1 1D Nonhomogeneous Boundary Value Problem 

Consider the following 1D nonhomogeneous ordinary 

differential equation 

   

                                         (28) 

The boundary conditions are given by       and 

        . The analytical solution of this boundary value 

problem is given by 

     
 

  
                              (29) 

The above boundary value problem is solved by using 

the SMITSM I, II and III and SSPH method for the particle 

distributions of 5, 20 and 100 equally spaced particles in the 

domain    [0,2]. The following Revised Super Gauss 

Function in [11] is used as the kernel function since it 

resulted in the least L2 error norms in numerical solutions 

presented in [13] 

       
 

  √   
{          

     
    

} (30) 

where  |   |   is the radius of the support domain 

which is set to 2,   is the smoothing length,   is equal to the 

dimensionality of the space (i.e.,  =1, 2 or 3) and G is the 

normalization parameter having the values 1.04823, 1.10081 

and 1.18516 for λ = 1, 2 and 3, respectively. It is chosen that 

the smoothing length h equals to the minimum distance   

between two adjacent particles. 

Numerical results obtained by using the SMITSM I, II 

and III and SSPH method are compared with the analytical 

solutions, and their convergence and accuracy features are 

evaluated by using the following global L2 error norm 

‖     ‖  
[∑      

 
       

 
   

   ]
   

[∑        
 

   
   ]

                 (31) 

where    
 

 is the value of numerical solution   at the     

node and       
 

 is the value of analytical solution at the     

node. Considering equation (28), we can obtain the following 

equation by using the DTM technique 

                       

                                          
 

  
[
    

   ]
    

                       (32) 

By using equation (32), one can solve for the coefficients 

               and      in terms of                and 

     for all particles located in the compact support domain 

of a particle. The sixth and higher order terms are neglected 

in derivations since they are equal to zero for this problem. 

Following, the expressions for                and 

     for each particle are assembled to obtain global 

equations, boundary conditions are imposed and then the 

resulting equation system is solved. Note that      and      

are already defined by boundary conditions for particle 

number 1; thus, there is no unknown for particle number 1 

located atx=0. 

The global L2 error norms of the solutions of the 

SMITSM I, II, and III and SSPH method are given in Table 

1.toTable 4.where different numbers of particles and terms in 

expansions are considered. The results in Table 1.to Table 

4.are obtained for the parameter values of d and h giving the 

best accuracy for each method. 

In Table 1., it is observed that the SMITSM II, and III 

and SSPH method give the lowest error for the numerical 

solution obtained by using 3 terms. The SMITSM I always 

give the highest error norm when it is compared to other 

methods. 
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The SMITSM I cannot provide satisfactory result for the 

compact support domain radius of 2  by using 5 nodes., 

Table 1.Global L2 error norm for different number of nodes 

– 3 term 

Meshless 

Method 

Number of Nodes 

5 Nodes 20 Nodes 100 Nodes 

SMITSM I * 1.4129277 0.15680171 

SMITSM II 1.0455434 0.0542322 0.0020706 

SMITSM III 1.0455434 0.0542322 0.0020706 

SSPH 1.0454434 0.0542322 0.0020706 
*
There is no solution for the compact support domain radius 

d=2. 

Table 2.Global L2 error norm for different number of nodes 

– 4 term 

Meshless 

Method 

Number of Nodes 

5 Nodes 20 Nodes 100 Nodes 

SMITSM I * 0.05299339 0.0020771 

SMITSM II 1.0455434 0.0542322 0.0020706 

SMITSM III 1.0455434 0.0542322 0.0020706 

SSPH 1.0455434 0.0542322 0.0020706 
*
There is no solution for the compact support domain radius 

d=2. 

In Table 2., it is found that there is no difference 

between the methods in terms of global L2 error norm for 

different number of nodes by using 4 term in the TSE 

expansion. The SMITSM I cannot provide satisfactory 

results for the compact support domain radius of 2 by using 5 

nodes. 

It is observed in Table 3. that the SMITSM I and II 

always give the lowest global L2 error norm for different 

number of nodes by using 5 term in the TSE expansion. The 

SMITSM I cannot provide satisfactory results for the 

compact support domain radius of 2  by using 5 nodes. 

Table 3.Global L2 error norm for different number of nodes 

– 5 term 

Meshless 

Method 

Number of Nodes 

5 Nodes 20 Nodes 100 Nodes 

SMITSM I * 0.0019065 1.6x10
-6

 

SMITSM II 4.5x10
-14

 1.2x10
-11

 2.3x10
-9

 

SMITSM III 3.1x10
-14 

4.9x10
-13

 3.6x10
-12

 

SSPH 0.1258686 **
 

0.0001205 ** 3.6x10
-8 

*
There is no solution for the compact support domain radius 

d=2 

**
The compact support domain radius d is chosen as 4, 

because d=2 results in large L2 error norms or no solution 

with the current smoothing length assumption.It is clear that, 

even with the same number of terms, solutions of the 

SMITSM II and III agree very well with the analytical 

solution; however, those obtained by using the SSPH method 

and SMITSM I differ noticeably from the analytical solution 

especially for 5 nodes and 5 terms in the TSEs. 

It is observed in Table 4 that the SMITSM II and III 

agree very well with the analytical solution. The SSPH 

method cannot provide solution by using 5 nodes in the 

problem domain when it uses 6 terms in TSE. The SMITSM 

I cannot provide satisfactory result for the compact support 

domain radius of 2  by using 5 nodes. 

Table 4.Global L2 error norm for different number of nodes 

– 6 term 

Meshless 

Method 

Number of Nodes 

5 Nodes 20 Nodes 100 Nodes 

SMITSM I * 2.4x10
-13

 3.9x10
-12

 

SMITSM II 7.9x10
-14

 1.4x10
-11

 3.6x10
-9

 

SMITSM III 7.8x10
-14

 3.3x10
-13

 3.6x10
-12

 

SSPH ** 1.3x10
-9 

*** 2.6x10
-9 

*** 
*
There is no solution for the compact supportd=2 

**
 At least 6 nodes are needed to solve the problem.  

***
 The compact support domain radius d is used as 5 because 

d=2, 3 and 4 result in large L2 error norms with the current 

smoothing length assumption.Regarding to the results 

obtained by using 6 terms in the TSEs, the SMITSM I, II and 

III give the lowest L2 error norms.  

4.2 Homogeneous Laplace Equation in 2D 

The Laplace equation in 2D is solved by using the 

SMITSM I, II and III and SSPH method in the domain 

shown in Fig. 2. The governing differential equation and 

essential boundary conditions are given by 

   

    
   

                               (33) 

whereT is the temperature and Tidenote the prescribed 

boundary temperatures. 

The analytical solution of the above boundary value 

problem is given by 

      

  
 ∑

 [       ]

  
    (

   

 
) 

   

     (
   

 
)

    (
   

 
) 
           (34) 

 

Fig. 2. Problem domain and boundary conditions 

When solving this problem, equally spaced 50, 171 and 

629 particles are considered in the domain. The smoothing 

length h is equal to the minimum distance between two 

adjacent particles (i.e.,    ). The following Revised Super 

Gauss Function in [11] is used as the kernel function 

     
 

  √   
{           

     
    

}      (35) 

where  |   |   is set to 4,     and G has the same 

value as in Section 4.1. 

Convergence and accuracy of the SMITSM I, II and III 

and SSPH method are calculated by using the following 

global L2 error norm  
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‖     ‖  
[∑ {     
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[∑ {       
 

          
 

  } 
   ]

   (36) 

where     
 

 and     
 

 are respectively the values of 

numerical solutions of   and   at the     node, and       
 

 

and       
 

 are respectively the values of analytical solutions 

of   and   at the     node. 

From equation (33), we can obtain the following 

recursive equation by using the DTM technique  

 

                                   
                                                                                   (37) 

The vectors   and   can be rearranged as follows 

       [        
        

        
 

        
         

       
   

      
          

       
        

       
 

             
   

      
       

        
       

        
 

         
       

        
  

      
           

       
          

       
  

      
       

          
       

 

             
 ] 

    [                                                 

                               ]
 (38) 

Following, above nodal equations are assembled to 

obtain the global equations; then, boundary conditions are 

imposed and the resulting equation system is solved. To 

evaluate the performance, numerical solutions are obtained 

for 6 terms for the SMITSM I, II and III and SSPH method. 

Numerical solutions obtained by using 6 terms in the 

associated expansions and 50, 171 and 629 nodes are 

presented in Fig. 3, 4 and 5, respectively. 

 

Fig. 3. Temperatures along the y-axis (x=2) computed by the 

SMITSM, SSPH method and analytical solution where 

equally spaced 50 nodes are used 

 

Fig. 4. Temperatures along the y-axis (x=2) computed by the 

SMITSM, SSPH method and analytical solution where 

equally spaced 171 nodes are used 

 

Fig. 5. Temperatures along the y-axis (x=2) computed by the 

SMITSM, SSPH method and analytical solution where 

equally spaced 629 nodes are used 

It is observed in Fig. 3, 4 and 5 that accuracy of the 

SMITSM I, II and III are better than that of the SSPH 

method and all studied methods show convergence as the 

number of nodes is increased. 

The global L2 error norms obtained by the SMITSM I, II 

and III and SSPH method are given in Table 5. It is clear that 

the L2 error norms of the results of the SMITSM I, II and III 

are much lower than those of the SSPH method provided that 

the same number of terms in the associated expansions are 

employed for both methods. 

By using the same number of terms, the SMITSM II 

always gives the lowest global L2 error norm when 

comparing with the other methods. The SSPH method 

always gives the highest L2 error norms for different number 

of nodes in the problem domain. Numerical results also show 

that lower L2 error norms can be obtained for all methods as 

the number of particles distributed in the problem domain is 

increased. 

Table 5.Global L2 error norm for different number of nodes 

Meshless 

Method 

Number of Nodes 

50 Nodes 171 Nodes 629 Nodes 

SMITSM I 3.7853 2.1886 1.2718 

SMITSM II 3.2134 1.6750 0.9927 

SMITSM III 3.7313 1.9813 1.0541 

SSPH 8.4205 4.3004 2.3956 
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4.3 Nonhomogeneous Laplace Equation in 2D 

Nonhomogeneous Laplace equation in 2D is solved by 

using the SMITSM I, II and III and SSPH method in the 

domain shown in Fig. 6. The governing differential equation 

and essential boundary conditions are given by 

   

   
 

   

   
                         ̅    

     ̅      
        

  
  (38) 

whereT is the temperature and   denote the prescribed 

boundary temperatures. 

 

Fig. 6. Problem domain and boundary conditions 

The analytical solution of the above boundary value 

problem is given by 

                                            (39) 

The solution of this problem is obtained by using the 

same node distributions, kernel function and kernel function 

parameters as given in Section 4.2. Convergence and 

accuracy properties of the SMITSM I, II and III and SSPH 

method are examined by using the global L2 error norm 

given by equation (36).  

From equation (38), we can obtain the following 

recursive equation by using the DTM technique 

                           

             
 

    
[
            

     ]
     

 (40) 

Then, the vectors   and   can be written as follows  

         [        
        

        
     

   
         

       
 ] 

   [                                               ]
  

(41) 

The numerical solutions obtained by using 6 terms in the 

associated expansions and 50, 171 and 629 nodes are 

presented in Fig. 7 to Fig. 12. 

In Fig. 7 to Fig. 9, it is observed that the L2 error norms 

of the SMITSM II and III with the variation of the radius of 

the support domain (where h=∆) are much lower than those 

the SMITSM I and the SSPH method provided that the same 

number of terms are employed in the associated TSEs for 

both methods.  

 

Fig. 7. The global L2 error norms as the radius of the support 

domain (h=∆) varies, where equally spaced 50 nodes are 

used 

 

Fig. 8. The global L2 error norms as the radius of the support 

domain (h=∆) varies, where equally spaced 171 nodes are 

used 

It is observed in Fig. 10 to Fig. 12 that accuracy of the 

SMITSM II and III is better than that of the SMITSM I and 

SSPH method as the smoothing length parameter varies 

provided that the same number of terms are employed in the 

associated TSEs for both methods.  

Numerical results imply that the global L2 error norm of 

numerical solutions increase as smoothing length parameter 

increases for all methods. It is observed that the SSPH 

method is stable for h=1.8∆ and node distribution of 171 

nodes; however, the SMITSM I, II and III are stable even for 

h=2∆ as can be seen in Fig. 10.   

 

Fig. 9. The global L2 error norms as the radius of the support 

domain (h=∆) varies, where equally spaced 629 nodes are 

used 
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Fig. 10. The global L2 error norm as the smoothing length 

varies, where equally spaced 50 nodes are used. 

 

Fig. 11. The global L2 error norms as the smoothing length 

varies, where equally spaced 171 nodes are used 

Fig. 12. The global L2 error norms as the smoothing length 

varies, where equally spaced 629 nodes are used 

 

It is also observed that the SSPH method is stable for 

h=2∆ and node distribution of 629 nodes; however, the 

SMITSM II and III are stable even for h=2.2∆ as can be seen 

in Fig. 12 

Except for 629 nodes in the problem domain, the SSPH 

method always gives the highest global L2 error norm; on the 

other hand, for 629 nodes, the SMITSM I gives the highest 

global L2 error norm. 

 

 

 

 

 

Fig. 13. The convergence rate of the error norm, where 

equally spaced 50 nodes are used 

Fig. 14. The convergence rate of error norm, where equally 

spaced 171 nodes are used 

 

Fig. 15. The convergence rate of the error norm, where 

equally spaced 629 nodes are used 

To find the rate of convergence of numerical solutions 

with respect to the distance between adjacent particles,the 

global L2 error norm is used. The convergence rates of the 

error norm are presented in Fig. 13 to Fig. 15.  

It is observed that the convergence rate of the SSPH 

method is higher than the other methods for 50 nodes.  And 

also SMITSM I, II and III has nearly the same convergence 

rate of error norm for 50 nodes in the problem domain.  

For 171 and 629 nodes, SMITSM I has the highest 

convergence rate or error norm. The converge rate of 

SMITSM II, III and SSPH methods are nearly the same. 
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5. Conclusion 

We presented a new meshless approach called the 

SMITSM I, II and III by using the TSEs and utilizing the 

DTM technique. It is observed that the SMITSM II and III 

yields more accurate results than the SSPH method 

especially in the existence of nonsmooth nonhomogenous 

terms. The SMITSM I, II and III does not involve any 

approximation and its formulations are exact except for the 

truncations in the TSEs. In addition, as the number of terms 

in the TSEs and/or nodes in numerical examples are 

increased, its L2 error norm decreases that is the evidence of 

the convergence of the SMITSM I, II and III.  

Note that CPU times of the SMITSM I, II and III in 

solving numerical examples are much larger than those of the 

SSPH method. Nonetheless, the CPU time and memory 

requirement of the SMITSM I, II and III can be reduced by 

utilizing the block form of the associated equation systems, 

which is not investigated in this paper and will be the subject 

of future studies. 

Even though strong form of the MITSM is considered in 

this paper, the same approach can easily be applied to weak 

formulations that leads to Weak Form Meshless 

Implementation of Taylor Series Method (WMITSM), that 

will be the subject of future studies as well. 
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