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Abstract: The evaluation of the preferences based utility function is a goal of the human cantered control (management) design. The 

achievement of this goal depends on the determination and on the presentation of the requirements, characteristics and preferences of 

the human behaviour in the appropriate environment (management, control or administration of complex processes). The decision 

making theory, the utility and the probability theory are a possible approach under consideration. This paper presents an approach to 

evaluation of human’s preferences and their utilization in complex problems. The stochastic approximation is a possible resolution to the 

problem under consideration. The stochastic evaluation bases on mathematically formulated axiomatic principles and stochastic 

procedures. The uncertainty of the human preferences is eliminated as typically for the stochastic programming. The evaluation is 

preferences-oriented machine learning with restriction of the “certainty effect and probability distortion” of the utility assessment.The 

mathematical formulations presented here serve as basis of tools development. The utility and value evaluation leads to the development 

of preferences-based decision support in machine learning environments and iterative control design in complex problems. 
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1. Introduction 

The aspiration for quantity measurements, estimations and 

prognosis at all phases of the decision making and problem-

solving is natural. But this task is carried out with very scarce 

initial information, especially in the initial development phase in 

complex problems and situations. In the initial stage of a decision 

process the heuristic of the investigator is very important, because 

in most of the cases there is a lack of measurements or even clear 

scales under which to implement these measurements and 

computations. This stage is often outside of the strict logic and 

mathematics and is close to the art, in the widest sense of the 

word, to choose the right decision among great number of 

circumstances and often without associative examples of similar 

activity. The correct assessment of the degree of informativity 

and usability of these types of knowledge requires careful 

analysis of the terms measurement, formalization, and admissible 

mathematical operations under the respective scale, which do not 

distort the initial empirical information. 

In the paper we describe approaches and methods for 

measurement and analytical presentations of empirical and 

scientific knowledge expressed as preferences. Due to 

multidisciplinary nature of the cognitive process and to 

multidisciplinary nature of the fields of applications our choice of 

scientific methods is oriented toward the utilization of the 

stochastic programming, the theory of measurement and utility 

theory [1], [7], [11], [13], [19]. In this manner we can pose the 

decision making problem as a problem of constructing value and 

utility functions based on stochastic recurrent procedures as 

machine learning, which can later be used in decision support, in 

intelligent information systems and human-adapted design 

process of optimization problems in complex systems with 

human participation. Validate mathematical evaluation of the 

human preferences as utility (value) is the first step in realization 

of a human-adapted design process and decision making [3], [11], 

[20].  

The analytical description of the expert's preferences as value or 

utility function will allow mathematically the inclusion of the 

decision maker (DM) in the model description of the complex 

system "Technologist-process" [18]. Value based design is a 

systems engineering strategy which enables multidisciplinary 

design optimization. Value-driven design creates an environment 

that enables optimization by providing designers with an 

objective function [5]. The objective (value/utility) function 

inputs the important attributes of the system being designed, and 

outputs a score. In this way we introduce the Model-driven 

decision making. Model-driven decision making and control 

emphasizes access to and manipulation of a statistical, financial, 

optimization, or simulation models and uses data and parameters 

provided by users to assist decision process in analyzing a 

complex situation. The American psychologists Griffiths and 

Tenenbaum by analyzing intuitive evaluations in the conditions 

of repetitive life situations have proved the statistical optimality 

of human assessments [8]. The idea of this study is that humans 

process the new data about the surrounding world by interpreting 

them in the framework of a built in their consciousness 

probability model. That means that the Bayesian approach was a 

natural basis on which human beings form their decisions, using 

their previous empirical experience expressed as preferences [7], 

[11], [20]. In such case the utility theory and its prescription to 

make decision based on the optimal mathematical expectation of 
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the utility has another scientific validation as methodology in the 

decision making.  

We will demonstrate this system engineering, value driven 

approach within two examples, determination of the equilibrium 

points in competitive trading, modeled by the Edgworth box and 

the control design based on the human evaluation of the best 

growth rate of a biotechnological process. 

2. Measurement, Scales, Preferences, Value and 
Utility Evaluation 

The objective of value based decision making is to develop a 

mathematical framework (econometric) for management and 

modeling of complex systems. The aspiration for measurements, 

quantity estimations and prognosis is natural but the correct 

assessment requires careful analysis of the terms measurement, 

formalization and admissible mathematical operations. In 

complex processes, there is a lack of measurements or even 

clearly identifiable scales for the basic heuristic information. 

Internal human expectations and heuristic are generally expressed 

by qualitative preferences. The common sources of information 

in such a basic level are the human preferences. According to 

social-cognitive theories, people's strategies are guided both by 

internal expectations about their own capabilities of getting 

results, and by external feedback [3]. Probability theory and 

expected utility theory address decision making under these 

conditions [11].  

The mathematical description on such a fundamental level 

requires basic mathematical terms like sets, relations and 

operations over them, and their gradual elaboration to more 

complex and specific terms like functions, operators on 

mathematically structured sets as well, and equivalency of these 

descriptions with respect to a given real object. In the last aspect 

of equivalency of the mathematical descriptions we enter the 

theory of measurements and scaling [13,19].  
People’s preferences contain uncertainty of probabilistic nature 

due to the qualitative type of both the empirical expert 

information and human notions. A possible approach for solution 

of these problems is the stochastic programming [1, 15, 18]. The 

uncertainty of the subjective preferences could be considered as 

an additive noise that could be eliminated, as is typical in the 

stochastic approximation procedures. The main objective is the 

productive merger of the mathematical exactness with the 

empirical uncertainty in the human notions.  

We start by a brief introduction in the measurement theory. 

System with relations (SR) is called the set А in conjunction with 

a set of relations  Ri , iI, I=1,2,3,...,n defined over it and we 

denote it by (А, (Ri), iI). In this manner we introduce an 

algebraic structure in the set А.  Relation of congruency is called 

a relation of equivalency () (reflexive, symmetric and transitive 

relation) defined over the basic set А, if the property of 

substitution is satisfied, i.e. from the fulfillment of relations (x1, 

x2, x3, ....,xhi)Аhi and  (xjyj) for every  j=1, 2, 3 4,...,hi it follows 

that Ri(x1, x2, x3, ....,xhi)=Ri(y1, y2, y3, ....,yhi) for  i, iI . We say 

that the relation of equivalency (2) is coarser than the 

equivalency (1), if the inclusion (1)  (2) is satisfied. It is 

known that there always exists a coarsest relation (А) over the 

SR (А, (Ri ), iI ). This means that if two elements are in 

congruency (xАy), then they are undistinguishable with respect 

to the properties in the set А (the real object under investigation), 

described with the set of relations ((Ri ), iI ). If we factorize the 

set А by the coarsest congruency (А), then in the factor set А/А 

the congruency (А) is in fact equality (=). A SR (А, (Ri), iI), in 

which the congruency (А) is coarsest is called irreducible. In this 

case SR (А/А,(Ri ), iI ) is irreducible.  

A homomorphism is an image f, f: А→B between two systems 

with relations SR (А,(Ri ), iI) and SR (B, (Si ), iI) from the 

same type. The systems with relations SR (А,(Ri ), iI) and SR 

(B, (Si ), iI) are from the same type if for which  i, iI and (x1, 

x2, x3, ....,xhi) Ri
  is satisfied Ri(x1, x2, x3, ....,xhi)  Si (f(x1), f(x2),  

f(x3),  ...., f(x hi)). 

DEFINITION: We call k-dimensional scale every 

homomorphism from irreducible empirical system into a number 

system SR (А, (Qi), iI).  

The empirical system of relations SR (А, (Ri ), iI) is an object 

from the reality with the properties described by the relations ((Ri 

), iI), while the numbered system of relations SR (B, (Si ), iI) 

is a mathematical object which reflects the properties of the real 

object. For example the set B could be the k-ary Cartesian 

product of the set of the real numbers Rк. 

In the scale definition the correspondence f0: А→ Rк is not simply 

defined. In general sense, there exists entire class of scales 

converting the irreducible empirical system of relations SR (А, 

(Ri), iI) into the number system SR (Rк, (Si), iI). We denote 

this class of homomorphisms by (А, Rк). Every homomorphism 

of (А, Rк) is injective because the empirical system is 

irreducible and surjective with regard to f(A)).  

Let A0 be a subset of А. We denote by GА(A0) all injective 

inclusion (partial endomorphism) from SR (А0, (Ri ), iI) in SR 

(А, (Ri ), iI). If a scale f0(А, Rк) is given, then we can 

characterize the whole class of scales (А, Rк)  in the following 

way: ( А, Rк) =ₒ f0 / where  GR
к(f0(A)). In other words two 

scales are equivalent with precision up to a partial endomorphism 

GR
к(f0(A)). The elements of GR

к(f0(A)) are called admissible 

manipulations of the scale  f0 [19]. An example is the 

measurement of the temperature. If the scale f0(.) is the 

temperature in Celsius, then every partial endomorphism is an 

affine correspondence of the type (x)=аx+b, aR, bR and a>0. 

The temperature in Kelvin is determined by shifting the zero 

point by b, bR and by changing the magnitude by multiplying 

by a, a>0. 

From the definition of the measurement and scale it follows that 

there are infinitely many types of scales. In informal terms 

measurement is an operation in which a given state of the 

observed object is mapped to a given denotation. An example is 

the so-called nominal scale which is an expression of the 

equivalence of two phenomena only. Let X be the set of 

alternatives (XRm). Let x and y be two alternatives ((x,y)X2). 

For this weakest scale the following axioms are valid:  

1. ((xy  xy)≡1)  ((xy  xy)≡0)  xx;  

2. (xy  yx); 

3. ((xy  xz)   yz).  

Here () denotes equivalence and () is the opposite (non-

equivalence). The above three properties define the relation 

equivalence, which splits the set X into non overlapping subsets 

(classes of equivalence). In this scale only the Kronecker symbol 

may be used as a measure.  

When the observed phenomenon allows to distinguish the 

differences between states and to compare them by preference a 

stronger scale needs to be used – the ordering scale. The 

preference in the ordering scale is denoted by (xy).  In 

accordance with a long-standing tradition, xy is taken to 

represent “x is better than y”. In this scale together with the above 

three axioms two more are satisfied:  

4. (x  x) for  xX, ((x  y)    (y  x));  

5. (xy  y z)   x z.  
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If incomparable alternatives exist, then the scale is called partial 

ordering. Under these five axioms an analytical preferences 

representation by value function u(.) is searched for. A value 

function is a function u(.) for which it is fulfilled ((x, y)X2, xy) 

 (u(x)>u(y)) [11]. In this definition, in addition to axioms (4, 

5), weak connectedness is also assumed (x y)  ((yx)  (x 

y)). Depending on the type of the function – continuous, partially 

continuous or discrete – there exist different types of scales, 

measuring the above relations. A transformation with an arbitrary 

monotonous function leads to another ordinal scale (admissible 

manipulations , GB (f0(A)). When using those scales, apart 

from comparison by magnitude, we can search the minimum and 

maximum of the function as feasible mathematical operations. 

Under this scale it is impossible to talk about distance between 

the different alternatives.  

If together with the ordering of the alternatives, the distance 

between them can be evaluated, we can talk about interval scale. 

For these scales the distances between the alternatives have the 

meaning of real numbers. For these scales the central moments 

and the variance are sensible evaluations and have physical 

meaning, whereas the mathematical expectation depends on the 

origin of the scale and thus is unfeasible. The transition from one 

interval scale to another is achieved with affine transformation 

𝒙 = 𝒂𝒚 + 𝒃, (𝒙, 𝒚) ∈ 𝑿𝟐, 𝒂 > 𝟎, 𝒃 ∈ 𝑹.
 

Among these type of 

scales is also the measurement of the utility function by the so 

called “gambling approach”. We emphasize that the calculations 

are done with numbers related to the distances between the 

alternatives, and not with the numbers relating to the alternatives 

themselves. For instance, if we say that a body is twice as warm 

as another in Celsius, this will not be true if the measurements 

were done in Kelvin. 

A stronger scale is the ratio scale. This is an interval scale with 

fixed origin 𝒙 = 𝒂𝒚, (𝒙, 𝒚) ∈ 𝑿𝟐, 𝒂 > 𝟎.  For example the weight 

measurement is in the ration scale. For these scales in addition to 

the previous 5 axioms the following additivity axioms are 

satisfied: 

6. (x=y  z>0)  ((x+z)>y); 

7. x+y=y+x; 

8. (x=y  z=q)  ( x+z=y+q); 

9. q+(x+y)=(q+y)+x. 

The absolute scale is the most powerful. For it the zero and one 

are absolute and it is a one of a kind and unique scale.  

2.1. Value Function and Measurement Scale 

From practical point of view the empirical system of human 

preferences relations is a SR (X,(),()), where () can be 

considered as the relation “indifferent or equivalent”, and () is 

the relation “prefer”. We look for equivalency of the empirical 

system with the numbered system of relations SR (R-real 

numbers, (=), (>)). The “indifference” relation () is based on  

and is defined by ((xy)  xyxy). Let X be the set of 

alternatives (XRm). A Value function is a function (u*: X→R) 

for which it is fulfilled [11]: 

((x, y)X2,xy)(u*(x)>u*(y)).    

It is proved that for a finite set of alternatives and partial ordering 

(axioms 4, and 5) there always exists such a function with 

precision up to monotonous transformation [7]. In this manner we 

can move from the language of binary relations and preferences 

to the language of control criteria as objective value function. The 

assumption of existence of a value function u(.) leads to the 

“negatively transitive” and “asymmetric” relation (), “weak 

order”. A “strong order” is a “weak order” for which is fulfilled 

((xy)(xy  xy).  The existence of a “weak order” () 

over X leads to the existence of a “strong order” over X/ [7]. 

Consequently the assumption of existence of a value function u(.) 

leads to the existence of: asymmetry ((xy) ((xy)), axiom 4), 

transitivity ((xy)  (yz )  (xz), axiom 5) and transitivity of 

the “indifference” relation () (axiom 3). 

The ordering scale was defined via homomorphisms, monotone 

functions. But if we are looking for the equivalency between SR 

(X, (), ()) and SR (R-real numbers, (=), (>)) practically, the 

homomorphisms have to be not only monotonic but continuous as 

well. In this case the ordering in the real numbers R will be 

reflected in the empirical set X with the properties of the interval 

topology generated by the relation (>) in R. Then the term for 

convergence in the measurements coincides with the standard 

generally accepted term for convergence [19]. 

2.2. Utility Function and Measurement Scale 

According to the Utility theory let X be the set of alternatives and 

P is a set of probability distributions over X and XP. A utility 

function u(.) will be any function for which the following is 

fulfilled:  

( pq , (p,q)P2 )  (  u(.)dp   u(.)dq).    

To every decision choice and action corresponds a probability 

distribution of appearance of final alternatives (results). The 

notation  expresses the preferences of DM over P including 

those over X (XP). The interpretation is that the integral of the 

utility function u(.) is a measure concerning the comparison of 

the probability distributions p and q defined over X (figure 1). 

 

Fig.1. Probability distribution and utility function 

There are different systems of mathematical axioms that give 

satisfactory conditions of a utility function existence. The most 

famous of them is the system of Von Neumann and 

Morgenstern’s axioms [7]: 

 (A.1) The preferences relations  and () are transitive, i.e. 

the binary preference relation  is weak order; 

 (A.2) Archimedean Axiom: for all p,q,rP such that (pqr), 

there is an α,β(0,1) such that ((α p + (1-α)r)q) and (q(βp 

+ (1-β)r));  

 (A.3) Independence Axiom: for all p,q,rP and any α(0, 1], 

then (pq) if and only if ((α p + (1- α )r)  (α q + (1- α )r)). 

Axioms (A1) and (A3) cannot give solution. Axioms (A1), (A2) 

and (A3) give solution in the interval scale (precision up to an 

affine transformation): 

((pq)  (v(x)dpv(x)dq  v(x)= au(x)+b,  

   a, bR, a>0, x X)).  

It is known that the assumption of existence of a utility (value) 

function u(.) leads to the “negatively transitive” and 

“asymmetric” relation () and to transitivity of the relation (). So 

far we are in the preference scale, the ordering scale. The 

assumption of equivalence with precision up to affine 

transformation has not been included. In other words we have 

only a value function. For value, however, the mathematical 



 

expectation is unfeasible, but we underline that the mathematical 

expectation is included in the definition of the utility function. 

For this reason it is accepted that (XP) and that P is a convex 

set: ((q, p)P2(q+(1-)p)P, for ).  

Then utility u(.) is determined in the interval scale [7]:  

Proposition 1. If ((x  p(x)=1) pP) and (((q, p)P2)  

(p+(1-q)P, )) are realized, then the utility function 

u(.) is defined with precision up to an affine transformation: 

(u1(.)u2(.)) (u1(.)=au2(.)+b, a>0).   

Following from this proposition, the measurement of the 

preferences is in the interval scale. That is to say, this is a utility 

function. Now it is obvious why in practice the gambling 

approach is used to construct the utility function in the sense of 

von Neumann. The reason is that to be in the interval scale the set 

of the discrete probability distributions P have to be convex. The 

same holds true in respect of the set X. The utility function is 

evaluated by the “gambling approach”. This approach consists 

within the comparisons between lotteries. A "lottery" is called 

every discrete probability distribution over X. We denote as x, 

y, the simplest lottery:  is the probability of the appearance of 

the alternative x and (1-) - the probability of the alternative y. In 

the practice, the utility measurement is based on the comparisons 

between lotteries as is shown in figure 2 [11]. 

 

Fig.2. Gambling approach, comparisons of lotteries 

 The weak points of the gambling approach are the violations of 

the transitivity of the preferences and the so called “certainty 

effect” and “probability distortion” identified by the Nobel 

prizeman Kahneman and Tversky. The violations of the 

transitivity of the relation equivalence () also lead to 

declinations in the utility assessment. All these difficulties 

explain the DM behavior observed in the Allais Paradox [2]. 

Following the research of Kahneman and Tversky and the 

debates about the well known Allais paradox, extensions and 

further developments of von Neumann’s theory were sought [4], 

[10], [21]. Among these theories the rank dependent utility 

(RDU) and its derivative cumulative Prospect theory are currently 

the most popular. In the RDU the decision weight of an outcome 

is not just the probability associated with this outcome. It is a 

function of both the probability and the rank the alternative. 

Based on empirical researches several authors have argued that 

the probability weighting function has an inverse S-shaped form, 

which starts on concave and then becomes convex.  

3. Utility And Value Stochastic Approximation 
Evaluation 

Starting from the properties of the preference relation () and 

indifference relation (), we propose the next stochastic 

approximation procedure for evaluation of the utility function 

u(.). In correspondence with Proposition 1, it is assumed that (X 

 P), ((q,p)P2  (q + (1-)p)P , for ) and that 

utility function u(.) exists. We define two sets:  

Au*={(x,y,z)/(u*(x)+(1-u*(y))>u*(z)}, 

Bu*={(x,y,z)/(u*(x)+(1-u*(y))>u*(z)}, 

where u*(.) is DM’s empirical utility. The next proposition is in 

the foundation of the used stochastic approximation procedures 

[18]: 

Proposition 2. We denote Au={(x,y,z)/(u(x)+(1-

u(y))>u(z)}. If Au1=Au2, then u1(.)=au2(.)+b, a>0. 

The approximation of the utility function is constructed by 

recognition of the set Au [15], [18]. The proposed assessment is 

machine learning based on DM’s preferences. The machine 

learning is a probabilistic pattern recognition (Au*Bu*) and 

the utility evaluation is a stochastic programming pattern 

recognition with noise (uncertainty) elimination. Key element in 

this solution is Proposition 2.  

The evaluation procedure is presented as follows. The DM 

compares the "lottery" x,y, with the simple alternative z, zZ 

("better-, f(x,y,z,=(1)”, "worse-, f(x,y,z,=(-1)”, or 

"can’t answer or equivalent-  , f(x,y,z,=0”, f(. denotes the 

qualitative DM answer). This determines a learning point 

((x,y,z,), f(x,y,z,)). The following recurrent stochastic 

algorithm constructs the polynomial utility approximation: 
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In the formula are used the following notations (based on Au): 

t=(x,y,z,), i(t)=i(x,y,z,) =i(x)+(1-i(y)-i(z), where 

(i(x)) is a family of polynomials. The line above the scalar 
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)()( . The learning points are set 

with a pseudo random sequence. Practically the assessment 

process is the following. The expert (DM) relates intuitively the 

“learning point” (x,y,z,)) to the set Au* with probability 

D1(x,y,z,) or to the set Bu* with probability D2(x,y,z,). The 

probabilities D1(x,y,z,) and D2(x,y,z,) are mathematical 

expectation of f(.) over Au* and Bu* respectively, 

(D1(x,y,z,)=M(f/x,y,z,) if (M(f/x,y,z,>0), 

(D2(x,y,z,)=-M(f/ x,y,z,) if (M(f/x,y,z,<0).  

Let D'(x,y,z,) is the random value:  

D'(x,y,z,)=D1(x,y,z,) if (M(f/x,y,z,>0);  

D'(x,y,z,)=(-D2(x,y,z,)) if (M(f/x,y,z,<0);  

D'(x,y,z,)=0 if (M(f/x,y,z,=0).  

We approximate D'(x,y,z,) by a function of the type 

G(x,y,z,)=(g(x)+(-g(y)-g(z)), where 
i

ii xcxg )()(  . 

The coefficients ci
n take part in the polynomial approximation of 

G(x,y,z,): 
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The function Gn(x,y,z,) is positive over Au* and negative over 

Bu* depending on the degree of approximation of D'(x,y,z,). The 

function gn(x) is the approximation of the utility function u(.). In 

another notation the stochastic procedure has the following form: 
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We follow the evaluation approach described in the well known 

books [11], [20]. DM compares the "lottery" 

<x,y,>=(x+(y) with the separate elements (alternative) z, 

zX. This lottery is of the simplest possible type and is sufficient 

for the utility evaluation. The expressed preferences, the answers 

of DM and comparisons are of cardinal (qualitative) nature and 

contain the inherent DM’s uncertainty and errors. The stochastic 

convergence of the Potential function method (Kernel method) is 

analyzed in [1], [15], [18].  

The same approach is used for of value evaluation. The difference 

is only within the form of the sets Au* and Bu*. Let Au* and Bu* 

be the sets:  

Au*={(x,y)R2m/ (u*(x))>u*(y)}, 

Bu*={(x, y)R2m/ (u*(x))<u*(y)}.    

If there is a function F(x,y) of the form F(x,y)=f(x)-f(y), positive 

over Au* and negative over Bu*, then the function f(x) is a value 

function, equivalent to the empirical value function u*(.). Such 

approach permits the use of stochastic “pattern recognition” for 

solving the problem. In the deterministic case it is true that 

Au*Bu*=. In the probabilistic case it is true that Au*Bu*≠ 

and here have to be used the probabilistic pattern recognition [1, 

12, 18]. 

4. Value Driven Decision Making and Equilibrium 
Analysis in Edgeworth Economic:  
Edgeworth Box and Competitive Trade 

Competitive trade is a setting in which there are prices for two 

goods in question and many people who take these prices as 

given. Hence, the situation is as in the competitive market, except 

for the fact that we now consider two markets simultaneously. A 

useful tool for description the competitive trade is the Edgeworth 

Box. Essentially, it merges the indifference map between the 

parties in the trade by inverting one of the agents (individuals, 

consumers, markets and so on) diagram. Given two consumers O1 

and O2, two goods, and no production, all non-wasteful 

allocations can be drawn in the box shown in figure 3.  

 

Fig.3. Edgeworth Box, initial endowment and allocations 

Every point in the box represents a complete allocation of the two 

goods to the two consumers. Each of the two individuals 

maximizes his utility according to his preferences [11], [6]. The 

demand functions or the utility functions which represent 

consumers’ preferences are convex and continuous, because in 

accordance with the equilibrium theory the preferences in are 

continuous, monotone and convex as is shown in figure 4 [6]. 

 

Fig.4. Convex indifference curves 

Each consumer is characterized by an endowment vector, a 

consumption set, and regular and continuous preferences [6]. The 

two consumers are each endowed (born with) a certain quantity 

of goods. They have locally non-satiated preferences and initial 

endowments:  

(w1, w2) = ((w11, w21), (w12, w22)). 

In the box the vector ),( 21 www   is the total quantities of the 

two goods: 

2221212111 + = ,+  = wwwwww . 

An allocation x=(x1, x2) = ((x11, x21), (x12, x22)) represents the 

amounts of each good that are allocated to each consumer. A no 

wasteful allocation x=(x1, x2) is one for which is fulfilled: 

2221212111 + = ,+  = xxwxxw . 

In terms of aggregate amounts of the two agents, the total 

amounts needs to be equal to the total endowment of the two 

goods. The consumers take prices of the two goods p = (p1, p2) as 

given and maximize their utilities. The budget (income) set Bi(p) 

of each consumer is given by: 

,)2,1(},/{)(B 2   iRx iiii pwpxp where (pxi) and (pwi) mean 

scalar products. For every level of prices, consumers will face a 

different budget set. The locus of preferred allocations for every 

level of prices is the consumer’s offer curve. 

An allocation is said to be Pareto efficient, or Pareto optimal, if 

there is no other feasible allocation in the Edgworth economy for 

which both are at least as well off and one is strictly better off. 

The locus of points that are Pareto optimal given preferences and 

endowments is the Pareto set, noted as P in figure 5. The part of 

the Pareto set in which both consumers do at least as well as their 

initial endowments is the Contract curve shown in figure 5 and 

noted as N (kernel of market game). 

 We are interested in the equilibrium point(s) of the process of 

exchange where is fulfilled the Walrasian equilibrium [6]. 

Walrasian equilibrium is a price vector p and an allocation x such 

that, for every consumer the  prices (i.e. the terms of trade) are 

such that what one consumer (group of consumers) wants to buy 

is exactly equal to what the other consumer (group of consumers) 

wants to sell. In other words, consumers’ demands are compatible 

with each other. We note the locus of points that are in Walrasian 

equilibrium as W (two points in figure 5). 

 

Fig.5. Pareto set and contract curve 



 

In still other words, the quantity each consumer wants to buy at 

the given market prices is equal to what is available on the 

market. The following inclusion is true in the Edgworth economy 

[6]: 𝑃 ⊃ 𝑁 ⊃ 𝑊. In that sense a contract curve in the Edgeworth 

Box shows an exchange market in equilibrium and this is a 

particular representation of the Walrasian equilibrium theorem.  

We had evaluated the consumer’s preferences as value functions. 

In figure 6 are shown the indifference curves, calculations of the 

Pareto set P and the determination of the contract curve N.  

 

Fig.6. Real experiment-Pareto set and contract curve 

The indifference curves in figure 6 are determined based on 

values functions evaluated by direct comparisons of couples of 

allocations x=(x1, x2) = ((x11, x21), (x12, x22)). This is made through 

the discussed in the paper approach and algorithms for exact 

value function evaluation (Au*Bu*=) [18]. After that we made 

quadratic approximation of the constructed value function. The 

little divergence from the theoretical convex requirements is due 

to the finite number of learning points and to the uncertainty in 

the expressed consumer’s preferences. In the experiment for 

determination of the set Au* and Bu*we used a finite number of 

preferences expressed for couples of allocations (x=(x1, x2), 

y=(y1, y2)): 

Au*={(x,y)R2m/ (u*(x))>u*(y)}, 

Bu*={(x, y)R2m/ (u*(x))<u*(y)}.  

The indifference curves could be determined by utility function 

evaluation also. The discussed previously in the paper stochastic 

procedures could be used for this purpose. In this case the 

learning points have to be defined as lotteries with Edgworth box 

allocations and consumers preferences in reference to learning 

triples of allocations. The described methodology and procedures 

allow for the design of individually oriented information systems 

[9]. Our experience is that the human estimation contains 

uncertainty at the rate of [10, 30] %. Such systems allow for exact 

evaluation of the Pareto set P, a reasonable determination of the 

contract curve N and calculation of the Walrasian set W and may 

be autonomous or parts of larger decision support system [5, 6, 

9]. The demands functions could be evaluated by direct 

comparisons or by the gambling approach. In that manner the 

incomplete information is compensated with the participation of 

qualitative human estimations. 

In that manner we can state and solve the market-clearing 

equilibrium in principle and we can determine the contract curve 

and the Walrasian set in the Edgeworth box. The set of the 

Walrasian equilibriums W and the appropriate prices p = (p1, p2) 

are calculated based on the determined demand utility (value) 

functions and this is a meaningful prognosis of the market 

equilibrium. In that way can be forecast the competitive market 

equilibrium allocations x=(x1, x2) = ((x11, x21), (x12, x22)) and the 

appropriate prices p = (p1, p2). The contract curves are specified 

on the individual consumers’ preferences and show that there are 

possibilities to be made mutually advantageous trades. This 

means that one could unilaterally negotiate a better arrangement 

for everyone. 

5. Utility Evaluation of The Best Growth Rate and 
Control Design 

The complexity of the biotechnological systems and their 

singularities make them difficult objects for control. They are 

difficult to control because it is difficult to determine their 

optimal technological parameters [14], [17]. These parameters 

can depend on very complicated technological, ecological or 

economical market factors. Because of this in practice expert 

estimates are used. From outside the estimates are expressed by 

qualitative preferences of the technologist. The preferences 

themselves are in rank scale and bring the internal 

indetermination, the uncertainty of the qualitative expression. Our 

experience is that the human estimation of the process parameters 

of a cultivation process contains uncertainty at the rate of [10, 30] 

%. Because of this reason mathematical methods and models 

from the Utility theory and stochastic programming could be used 

in biotechnology. These stochastic methods, because of their 

essence, eliminate the uncertainty and could neutralize the wrong 

answers if one uses the gambling evaluation approach. Thus we 

achieve analytical math description of the complex system 

“Technologist-biotechnological process“. 

The approach used in the paper permits exact mathematical 

evaluation of the optimal specific growth rate of the fed-batch 

cultivation process according to the DM point of view. Let Z be 

the set of alternatives (Z={specific growth rates of the 

biotechnological process-}, Z≡[0, 0.6]) and P be a convex 

subset of discrete probability distributions over Z. The expert 

“preference” relation over P is expressed through  and this is 

also true for those over Z (Z  P). The utility growth-rate 

function U(.) is stochastically approximated by a polynomial 

[18].  
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This polynomial representation permits analytical determination 

of the derivative of the utility function and easy implementation 

in the optimal control theory [16]-[18]. Following the approach 

we are looking for pattern recognition of the sets of positive 

preferences Au* and negative preferences Bu*: 

 Au* = (x,y,z, u*(x)+(u*(y))u*(z), 

Bu* = (x,y,z, u*(x)+(u*(y))<u*(z). 

The star in the notations means an empirical estimate of the 

utility of the technologist. The utility function U(µ) itself is built 

as a recurrent procedure for the recognition of the set Au*. The 

DM compares “lotteries” (x+(y, x,yZ, [0,1]) with 

simple alternatives zZ and the answer is determined from him 

(“ better”, “worse” or “indifference, equivalency or impossibility 

for explicit delimitation”). The Biotechnologist (DM) determines 

his answer (for every comparison):  f(x,y,z, =1 for (,  

f(x,y,z,=-1 for () and f(x,y,z,=0 for (. The function 

f(x,y,z, is a probability function, subjective characteristic of the 

DM depicturing intuition and empirical knowledge and also 

including subjective and probability uncertainty of the answers. 

In the recurrent  procedure “the training point“ (x,y,z,, f(x,y,z,) 

is treated as point from the set Au with probability D1(x,y,z,) or a 

point from  Bu with probability  D2(x,y,z,)). We suppose that 

(x,y,z, are given by probability distribution F(x,y,z,. In fact 

this is a pseudo-random Lp  sequence of Sobol. Then 

probabilities D1(x,y,z,) and D2(x,y,z,) are the conditional 

mathematical expectations of f(.) over the sets Au and Bu , 
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respectively. With D'(x,y,z,) we denote the conditional random 

value: 

                                     =  D1(x,y,z,), when M(f/x,y,z,>0, 

                   D'(x,y,z,) = -D2(x,y,z,), when M(f/x,y,z,<0, 

                                     =  0,                  when M(f/x,y,z,=0. 

The measurable function D'(x,y,z,) is approximated by function 

of the type G(x,y,z,)=(g(x)+(g(y)-g(z)). The function g(x) 

is an approximation of the utility U(.). The coefficients ci
n take 

part in: 
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The function Gn(x,y,z,) is positive over Au and negative over Bu 

depending on the degree of approximation of D'(x,y,z,). In fact 

total recognition is impossible, because of the wrong preferences 

of the technologist caused by the uncertainty within his 

preferences (Au*Bu*). The process of the recognition of the 

sets Au* и Bu* is shown on the figure (7). The polynomial 

approximation of the DM utility U() is the smooth line in figure 

(7). The maximum of the utility function determines the „best” 

growth rate of the fed-batch process after the technologist. A 

session with 128 questions learning points (x,y,z,, f(x,y,z,) 

takes no more than 45 minutes.  

The Value based control design is determined by the solution of 

the next optimal control problem: max(U()), where the variable 

 is the specific growth rate, ([0, max], D[0, Dmax]). 

 

Fig.7. Growth rate utility 

 

Fig.8. Stabilization of the fed-batch process 

Here U() is an aggregation objective function (the utility 

function) and D is the control input (the dilution rate):  
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The differential equation describes a continuous biotechnological 

process. The Monod-Wang model permits exact linearization to 

Brunovsky normal form following the procedures in papers [16], 

[17]. The optimal solution is determined with the use of the 

equivalent Brunovsky normal form of the differential equation 

above: 

.3

32

21

WY

YY

YY













 
In the formula, W denotes the control input of the Brunovsky 

model. The two differential equations above are equivalent as 

objects for control. The vector (Y1, Y2, Y3) is the new state 

vector: 
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The derivative of the function Y3 determines the interconnection 

between W and D, the inputs of the equivalent models. The 

control design is a design based on the Brunovsky normal form 

and the application of the Pontrjagin’s maximum principle step 

by step for sufficiently small time periods T. The optimal control 

law has the analytical form [16], [17]: 
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The sum is the derivative of the utility function. It is clear that the 

optimal “time-minimization” control is determined from the sign 

of the utility function derivative. The control input is D=Dmax or 

D = 0. The solution is in fact a “time-minimization” control (if 

the time period Tint is sufficiently small). The control brings the 

system back to the set point for minimal time in any case of 

specific growth rate deviations. 

The control law of the fed-batch process has the same form 

because D(t) is replaced with F(t)/V(t) in Monod-Wang model 

[16], [17]: 
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Thus, the feeding rate F(t) takes F(t)=Fmax or F(t)=0, depending 

on D(t) which takes D=Dmax or D=0. We conclude that the 

control law brings the system to the set point (optimal growth 

rate) with time minimization control, starting from any deviation 

of the specific growth rate as is shown in figure 8. We use this 

control law as a main part in a more complex chattering control 

law for stabilization of the system in the “best” growth rate [14], 

[16]-[18]. The deviation of the fed-batch process with this 

chattering control is shown on figure (8). After the stabilization 

of the system in equivalent sliding mode control position the 

system can be maintained around the optimal parameters with 

sliding mode control.  



 

6. Conclusions 

Human values (utilities) are integral part of the decision making 

process of the individual. They are the internal motivation for 

determining the main objective in the goal-oriented systems. 

Unfortunately, in most scientific investigations and 

developments, the subjective values and probabilistic 

expectations are not explicitly related and directly oriented 

towards the considered problem. In this aspect, especially 

important is the task of connecting the two contradicting 

tendencies: the requirement of ordinal information from 

mathematical and computational point of view and the cardinal 

nature of the empirical knowledge. 

One of the possible scientific approaches in regards to these 

problems is that of multiattribute utility. In this manner in 

difficult for formalization and even verbally expressed weakly 

structurized problems and complex events we introduce the strict 

analytical approach, as analysis and analytically based synthesis, 

which allows for logically sound and mathematically precise 

decision formation. We achieve analytic model description of 

complex process with human participation. Such models ensure 

exact mathematical descriptions of problems in various areas for 

which the quantitative modeling is difficult: economics, 

biotechnology, ecology, and so on. These models guarantee that 

the powerful optimal control theory could be applied for exact 

mathematical solutions in such complex areas.  

By the Edgworth box and the growth rate control examples we 

saw that the utility approach permits exact mathematical 

evaluation according to the consumers’ point of view even 

though the human thinking is qualitative and pierced by 

uncertainty. Measurement, Expected utility theory and stochastic 

programming are some of the approaches for attainment of these 

purposes. These examples show that the presented methodology 

and mathematical procedures allow for the design of individually 

oriented decision support systems. Such systems may be 

autonomous or parts of larger intelligent information or decision 

support systems and can permit reasonable optimal solutions and 

prognoses. 
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