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Abstract: Today, in computer science, a computational challenge exists in finding a globally optimized solution from an enormously large 

search space. Various metaheuristic methods can be used for finding the solution in a large search space. These methods can be explained 

as iterative search processes that efficiently perform the exploration and exploitation in the solution space. In this context, three such nature 

inspired metaheuristic algorithms namely Krill Herd Algorithm (KH), Firefly Algorithm (FA) and Cuckoo search Algorithm (CS) can be 

used to find optimal solutions of various mathematical optimization problems. In this paper, the proposed algorithms were used to find the 

optimal solution of fifteen unimodal and multimodal benchmark test functions commonly used in the field of optimization and then compare 

their performances on the basis of efficiency, convergence, time and conclude that for both unimodal and multimodal optimization Cuckoo 

Search Algorithm via Lévy flight has outperformed others and for multimodal optimization Krill Herd algorithm is superior than Firefly 

algorithm but for unimodal optimization Firefly is superior than Krill Herd algorithm. 

Keywords: Metaheuristic Algorithm, Krill Herd Algorithm, Firefly Algorithm, Cuckoo Search Algorithm, Unimodal Optimization, 

Multimodal Optimization. 

 

1. Introduction 

In recent times, nature inspired metaheuristic algorithms are being 

widely used for solving optimization problems, including NP-hard 

problems which might need exponential computation time to solve 

in worst case scenario. In metaheuristics methods [1, 9] we might 

compromise on finding an optimal solutions just for the sake of 

getting good solutions in a specific period of time. The main aim 

of metaheuristic algorithms are to quickly find solution to a 

problem, this solution may not be the best of all possible solutions 

to the problem but still they stand valid as they do not require 

excessively long time to be solved. Two crucial characteristics of 

metaheuristic algorithms are intensification and diversification. 

The intensification searches around the current best solution and 

selects the best candidate or solution. The diversification ensures 

that the algorithm explores the search space more efficiently. 

Maintaining balance between diversification and intensification  is 

important because firstly we have to quickly find the  regions in 

the large search space with high quality solutions and secondly not 

to waste too much time in regions of the search space which are 

either already explored or which do not provide high quality 

solutions[3]. 

In this paper, we have used three metaheuristic algorithms Krill 

Herd Algorithm (KH) [4], Firefly Algorithm (FA) [1] and Cuckoo 

Search Algorithm (CS) [5].First is the Krill Herd Algorithm which 

was developed by Amir Hossein Gandomi and Amir Hossein Alavi 

in 2011. The KH algorithm is based on the simulation of the 

herding behaviour of Krill individuals. Second is the Firefly 

Algorithm (FA) which was developed by X.-S.Yang in 2007. It 

was inspired by the flashing pattern of fireflies. Third algorithm is 

the Cuckoo search Algorithm which was developed by X.-S.Yang 

and S.Deb in 2009. It is   based on the interesting breeding 

behaviour of certain species of cuckoos such as brood parasitism. 

This paper aims to provide the comparison study of the Krill Herd 

Algorithm (KH) with Firefly Algorithm (FA) and Cuckoo Search 

(CS) Algorithm via L´evy Flights against unimodal and 

multimodal test functions. Rest of the paper is organised as 

follows. First we will briefly explain the Krill Herd Algorithm, 

Firefly Algorithm, Cuckoo Search Algorithms and several 

Mathematical benchmark functions in section (2).Then 

experimental settings and results will be shown in section (3) and 

then finally we will conclude the paper. 

2. Nature Inspired Algorithms and Optimization 

2.1. Krill Herd Algorithm 

2.1.1. Krill Swarm’s Herding Behavior 

Many Research have been done in order to find the mechanism that 

lead to the development non- random formation of groups by 

various marine animals [11,12].The significant mechanisms 

identified are feeding ability, protection from predators, enhanced 

reproduction and environmental condition [6]. 

Krills from Antarctic region are one of the best researched marine 

animals. One of the most significant ability of krills is that they can 

form large swarms [13, 14].Yet there are number of uncertainties 

about the mechanism that lead to distribution of krill herd 

[15].There are proposed conceptual models to explain observed 

formation of krill heard [16] and result obtained from those models 

states that krill swarms form the basic unit of organization for this 

species. 

 Whenever predators (Penguins, Sea Birds) attack krill swarms, 

they take individual krill which leads in reducing the krill density. 

After the attack by predators, formation of krill is a multi- objective 

process mainly including two Goals: (1) Increasing Krill density 

_______________________________________________________________________________________________________________________________________________________________ 

,1 Guru Gobind Singh Indraprastha University– India 
2 Guru Gobind Singh Indraprastha University –India 

* Corresponding Author: Email: gobind75@gmail.com 



 

This journal is © Advanced Technology & Science 2013 IJISAE, 2014, 2(3), 26–37  |  27 

and (2) Reaching food. Attraction of Krill to increase density and 

finding food are used as objective function which finally lead the 

krills to herd around global minima. In this mechanism, all 

individual krill moves towards the best possible solution while 

searching for highest density and food. 

2.1.2. Krill Herd Algorithm 

As Predator remove individual from Krill swarm, the average krill 

density and distance of krill swarm from the food location 

decreases. We assume this process as the initialization phase in the 

Krill Herd Algorithm [4]. Value of objective function for each 

individual is supposed to be combination of distance from food and 

highest density of krill swarm. Three essential actions [6] 

considered by Krills to determine the time dependent position of 

an individual krill are: 

(i) Movement induced by other krill individuals 

(ii) Foraging activity 

(iii) Random Diffusion 

We know that all the optimization algorithm should have searching 

capability in space of arbitrary dimensionality. Hence we 

generalize Lanrangian model of krill herding to n dimensional 

decision space. 

𝑑𝑋𝑖 𝑑𝑡⁄ = 𝑁𝑖 + 𝐹𝑖 + 𝐷𝑖  (1) 

Here 𝑁𝑖 is the motion induced by other krill individuals, 𝐹𝑖 is the 

foraging motion and 𝐷𝑖 stands for physical diffusion for ith krill 

individuals.  

2.1.3. Motion Induced by other krill individual 

According to research krill individuals move due to the mutual 

effects by each other so as to maintain high density [6].Movement 

for the krill individual is defined as: 

𝑁𝑖
𝑛𝑒𝑤 = 𝑁𝑚𝑎𝑥𝛼𝑖 + 𝜔𝑛𝑁𝑖

𝑜𝑙𝑑   (2) 

In Eq. (2) 𝑁𝑚𝑎𝑥 stands for  maximum induced speed which is equal 

to 0.01 (m/s) [6] , 𝛼𝑖 is the direction of motion induced which is 

estimated from target swarm density and local swarm density, 𝜔𝑛 

is the inertia weight of the motion induced, 𝑁𝑖
𝑜𝑙𝑑 is the last motion 

induced. 

𝛼𝑖 = 𝛼𝑖
𝑙𝑜𝑐𝑎𝑙 + 𝛼𝑖

𝑡𝑎𝑟𝑔𝑒𝑡
   (3) 

In Eq. (3) 𝛼𝑖
𝑙𝑜𝑐𝑎𝑙  is the local effect due to the neighbors, and 

𝛼𝑖
𝑡𝑎𝑟𝑔𝑒𝑡

 is the target direction effect due to the best krill individual.  

Attractive or Repulsive effect of the neighbors on an individual 

krill movement can be formulated as: 

𝛼𝑖
𝑙𝑜𝑐𝑎𝑙 = ∑ �̂�𝑖,𝑗�̂�𝑖.𝑗

𝑁𝑁
𝑗=1    (4) 

�̂�𝑖.𝑗 = 𝑋𝑗 − 𝑋𝑖 ‖𝑋𝑗 − 𝑋𝑖‖ + 𝜀⁄    (5) 

𝐾𝑖,𝑗 =̂ 𝐾𝑖 − 𝐾𝑗 𝐾𝑤𝑜𝑟𝑠𝑡 − 𝐾𝑏𝑒𝑠𝑡⁄   (6) 

In Eq. (4) NN is the number of the neighbors. In Eq. (5) and Eq. 

(6) 𝐾𝑤𝑜𝑟𝑠𝑡and 𝐾𝑏𝑒𝑠𝑡  are, the worst and the best fitness values of 

the krill individuals till now, 𝐾𝑖 represents the fitness value of the 

ith krill individual, 𝐾𝑗  is the fitness of jth neighbor and X represents 

the related positions. 

To choose the neighbor, using actual behavior of Krill individual, 

a sensing distance (ds) is calculated using 

𝑑𝑠,𝑖 = 1 5𝑁⁄ ∑ ‖𝑋𝑖 − 𝑋𝑗‖
𝑁
𝑗=1   (7) 

In Eq. (7) 𝑑𝑠,𝑖  is the sensing distance for the ith krill individual and 

N stands for number of krill individuals. Based on Eq. (7), two krill 

individuals are neighbor if the distance between them is less than 

𝑑𝑠. 

The effect of the individual krill having the best fitness on the ith 

individual krill is calculated as follow: 

𝛼𝑖
𝑡𝑎𝑟𝑔𝑒𝑡

= 𝐶𝑏𝑒𝑠𝑡�̂�𝑖,𝑏𝑒𝑠𝑡�̂�𝑖,𝑏𝑒𝑠𝑡  (8) 

In Eq. (8) 𝐶𝑏𝑒𝑠𝑡  is the effective coefficient of the krill with the best 

fitness and is defined as: 

𝐶𝑏𝑒𝑠𝑡 = 2(𝑟𝑎𝑛𝑑 + 𝐼 𝐼𝑚𝑎𝑥⁄ )   (9) 

Where rand is a random value in the range [0, 1], I is the actual 

iteration number, and 𝐼𝑚𝑎𝑥 is the maximum number of iterations. 

2.1.4. Foraging motion 

Foraging motion is developed in terms of two main effective 

parameters. One is the food location and the second one is the 

previous experience about the food location. This motion can be 

explained for the 𝑖𝑡ℎ krill individual as follow:  

𝐹𝑖 = 𝑉𝑓𝛽𝑖 + 𝜔𝑓𝐹𝑖
𝑜𝑙𝑑   (10) 

Where  

𝛽𝑖 = 𝛽𝑖
𝑓𝑜𝑜𝑑

+ 𝛽𝑖
𝑏𝑒𝑠𝑡   (11) 

In Eq. (10)  𝑣𝑓 is the foraging speed, 𝜔𝑓 is the inertia weight of the 

foraging motion in the range [0, 1] and 𝐹𝑖
𝑜𝑙𝑑 is the last foraging 

motion. In Eq. (11) 𝛽𝑖
𝑓𝑜𝑜𝑑

 and 𝛽𝑖
𝑏𝑒𝑠𝑡 are the food attractive effect 

and best fitness of the 𝑖𝑡ℎ krill so far respectively. Measured values 

of the foraging speed [7] is 0.02(𝑚𝑠−1).  

The center of food is found at first and then food attraction is 

formulated. The virtual center of food concentration is estimated 

according to the fitness distribution of the krill individuals, which 

is inspired from ‘‘center of mass’’. The center of food for each 

iteration is formulated as: 

𝑋𝑓𝑜𝑜𝑑 = ∑ 1 𝐾𝑖⁄ 𝑋𝑖
𝑁
𝑖−1 ∑ 1 𝐾𝑖⁄𝑁

𝑖−1⁄   (12) 

Hence, we can evaluate the food attraction for the 𝑖𝑡ℎ krill 

individual by following equation: 

𝛽𝑖
𝑓𝑜𝑜𝑑

= 𝐶𝑓𝑜𝑜𝑑�̂�𝑖,𝑓𝑜𝑜𝑑�̂�𝑖,𝑓𝑜𝑜𝑑  (13) 

In Eq. (13) 𝐶𝑓𝑜𝑜𝑑  is the food coefficient. As time passes the effect 

of food in the krill herding decrease and food coefficient is 

evaluated as: 

𝐶𝑓𝑜𝑜𝑑 = 2(1 − 𝐼 𝐼𝑚𝑎𝑥⁄ )   (14) 

The attraction towards food is defined to attract the krill swarm 

towards global optima. Based on this definition, the krill 

individuals normally herd around the global optima after some 

iteration. This can be considered as an efficient global optimization 

strategy which helps improving the global optima of the KH 

algorithm. 

The effect of the best fitness of the 𝑖𝑡ℎ krill individual is also 

handled using the following equation: 

𝛽𝑖
𝑏𝑒𝑠𝑡 = �̂�𝑖,𝑖𝑏𝑒𝑠𝑡�̂�𝑖,𝑖𝑏𝑒𝑠𝑡  (15) 

In Eq. (15) 𝐾𝑖𝑏𝑒𝑠𝑡is the best previously visited position of the 𝑖𝑡ℎ 

krill individual. 

2.1.5. Physical diffusion 

The physical diffusion of all the krills is basically a random 

process. We can express this motion in terms of maximum 

diffusion speed and a random directional vector. We can formulate 
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it as follows: 

𝐷𝑖 = 𝐷𝑚𝑎𝑥𝛿  (16) 

In Eq. (16)  𝐷𝑚𝑎𝑥  is the maximum diffusion speed [8] and 𝛿 is the 

random directional vector and it includes random values in range 

[-1, 1]. As krills position gets better, random motion is also 

reduced. Thus, another term is added to the physical diffusion 

formula to consider this effect. The effects of the motion induced 

by other krill individuals and foraging motion gradually decrease 

increase in iterations. The physical diffusion is a random vector 

hence it does not steadily reduces with increase in number of 

iterations due to which another term is added to Eq. (16). This term, 

linearly decreases the random speed with time and works on the 

basis of a geometrical annealing schedule: 

𝐷𝑖 = 𝐷𝑚𝑎𝑥(1 − 𝐼 𝐼𝑚𝑎𝑥⁄ )𝛿       (17) 

2.1.6. Motion Process of the KH Algorithm 

The defined motions frequently change the position of a krill 

individual toward the best fitness. The foraging motion and the 

motion induced by other krill individuals contain two global and 

two local strategies. KH a powerful algorithm as all these work in 

parallel. The formulations of these motions for the 𝑖𝑡ℎ krill 

individual show that, if fitness value of each of the above 

mentioned effective factor like𝐾𝑗 ,𝐾𝑏𝑒𝑠𝑡, 𝐾𝑓𝑜𝑜𝑑, 𝐾𝑖
𝑏𝑒𝑠𝑡 is better i.e. 

less than the fitness of the 𝑖𝑡ℎ krill, it has an attractive effect else 

it is a repulsive effect. We can notice from the above formulations 

that better fitness has more effect on the movement of 𝑖𝑡ℎ krill 

individual. The position vector of a krill individual during the 

interval t to t + ∆t is given by the following equation: 

𝑋𝑖(𝑡 + ∆𝑡) = 𝑋𝑖(𝑡) + ∆𝑡 𝑑𝑋𝑖 𝑑𝑡⁄   (18) 

∆t should be carefully set according to the optimization problem 

because this parameter works as a scale factor of the speed vector. 

∆t completely depends on the search space and it can be obtained 

simply by the following formula: 

∆𝑡 = 𝐶𝑡 ∑ (𝑈𝐵𝑗 − 𝐿𝐵𝑗)
𝑁𝑉
𝑗=1    (19) 

In Eq. (19) NV is the total number of variables and 𝐿𝐵𝑗  and 𝑈𝐵𝑗  

are lower and upper bounds of the 𝑗𝑡ℎ variables respectively. It is 

empirically found that 𝐶𝑡is a constant 

Number between [0, 2]. Lower the values of 𝐶𝑡 more carefully the 

krill individuals will search. 

2.1.7. Crossover 

To improve the performance of the algorithm, genetic reproduction 

mechanisms are incorporated into the algorithm. One such 

algorithm is crossover. Crossover is a genetic operator used to vary 

the programming of chromosomes from one generation to the next. 

In this Algorithm, an adaptive vectored crossover scheme is 

employed.  

We can control crossover by a crossover probability, 𝐶𝑟, and actual 

crossover can be performed in two ways: (1) binomial and (2) 

exponential. The binomial scheme performs crossover on each of 

the d components or variables/parameters. By generating a 

uniformly distributed random number between 0 and 1, the 𝑚𝑡ℎ 

component of𝑋𝑖, 𝑥𝑖,𝑚, is determined as: 

𝑥𝑖,𝑚 = {
𝑥𝑟,𝑚 , 𝑟𝑎𝑛𝑑𝑖,𝑚 < 𝐶𝑟

𝑥𝑖,𝑚 ,  𝑒𝑙𝑠𝑒
    (20) 

𝐶𝑟 = 0.2�̂�𝑖,𝑏𝑒𝑠𝑡  (21) 

In Eq. (20)  r ∈ {1, 2,. . ., i _ 1, i + 1,. . .,N}. With this new crossover 

probability, the crossover probability for the global best is equal to 

zero and it increases with decrease in fitness. 

2.2. Firefly Algorithm 

2.2.1. Behavior and nature of Fireflies 

Fireflies are the creatures that can generate light inside of it. Light 

production in fireflies is due to a type of chemical reaction.  The 

primary purpose for firefly’s flash is to act as a signal system to 

attract other fireflies. Although they have many mechanisms, the 

interesting issues are what they do for any communication to find 

food and to protect themselves from enemy hunters including their 

successful reproduction. There are around two thousand firefly 

species, and most of them produce short and rhythmic flashes. The 

pattern observed for these flashes is unique specific species. The 

rhythm of the flashes, rate of flashing and the amount of time for 

which the flashes are observed together forms a pattern that attracts 

both the males and females to each other. Females of a species 

respond to individual pattern of the male of the same species. 

The light intensity at a particular distance from the light source 

follows the inverse square law. That is as the distance increases the 

light intensity decreases. Furthermore, the air absorbs light which 

becomes weaker and weaker as there is an increase of the distance. 

There are two combined factors that make most fireflies visible 

only to a limited distance that is usually good enough for fireflies 

to communicate each other. The flashing light can be formulated 

in such a way that it is associated with the objective function to be 

optimized. This makes it possible to formulate new metaheuristic 

algorithms. 

2.2.2. Firefly algorithm 

The firefly (FA) algorithm [1, 9, 10] is a metaheuristic algorithm, 

inspired by the flashing behavior of fireflies. The primary purpose 

for a firefly's flash is to act as a signal system to attract other 

fireflies. 

Xin-She Yang formulated this firefly algorithm by taking three 

assumptions [1] 

i. All fireflies are unisexual, so that one firefly will be attracted 

to all other fireflies; 

ii. Attractiveness is proportional to their brightness, and for any 

two fireflies, the less bright one will be attracted by (and thus 

move to) the brighter one; however, the brightness can 

decrease as their distance increases; 

iii. If there are no fireflies brighter than a given firefly, it will 

move randomly. 

2.2.3. Light Intensity and Attractiveness  

Two core issues in firefly algorithm are (i) The variation of light 

intensity, (ii) The formulation of the attractiveness. 

For simplicity, it is assumed that the attractiveness of a firefly is 

determined by its brightness which in turn is associated with the 

encoded objective function of the optimization problems. In the 

simplest case for maximum optimization problems, the brightness 

I of a firefly for a particular location x could be chosen as I(x) ∝  

f(x). Even so, the attractiveness β is relative, it should be judged by 

the other fireflies. Thus, it will differ with the distance 𝑟𝑖𝑗 between 

firefly i and firefly j. In addition, light intensity decreases with the 

distance from its source, and light is also absorbed by the media, 

so we should allow the attractiveness to vary with the varying 

degree of absorption. 

Since a firefly’s attractiveness is proportional to the light intensity 

seen by adjacent fireflies, attractiveness β of a firefly can be 

defined as   

𝛽(𝑟) = 𝛽𝑜𝑒
−𝛾𝑟𝑚

, (m≥1  (22) 
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In Eq. (22), r or 𝑟𝑖𝑗 is the distance between the ith and jth fireflies.  

𝛽𝑜 Is the attractiveness at r = 0 and γ is a fixed light absorption 

coefficient. The distance between any two fireflies ith and jth at 𝑥𝑖 

and 𝑥𝑗  is the Cartesian distance and can be calculated as: 

 𝑟𝑖𝑗 =  ‖𝑥𝑖 − 𝑥𝑗‖ = √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)2𝑑
𝑘=1  (23) 

In Eq. (23), 𝑥𝑖𝑘 is the kth component of the ith firefly (𝑥𝑖). The 

movement of ith firefly, to another more attractive (brighter) jth 

firefly, is determined by 

𝑥𝑖 = 𝑥𝑖 + 𝛽𝑜𝑒
−𝛾𝑟𝑖,𝑗

2

(𝑥𝑗 − 𝑥𝑖) + 𝛼(𝑟𝑎𝑛𝑑 −          0.5)  (24) 

In Eq. (3) the second term is due to the attraction while the third 

term is the randomization with α being the randomization 

parameter. Rand is a random number generator uniformly 

distributed in the range of [0, 1]. For most cases in the 

implementation, 𝛽𝑜 = 1 and α ∈ [0, 1]. Furthermore, the 

randomization term can easily be extended to a normal distribution 

N (0, 1) or other distributions. 

2.3. Cuckoo Search Algorithm via Lévy Flight 

2.3.1. Cuckoo’s breeding behaviour 

Cuckoo is an interesting bird species, known not only for the 

beautiful sound they make, but also for their aggressive 

reproductive strategy. Cuckoos are extremely diverse group of 

birds with regards to breeding system.  Many Cuckoo species 

follow the strategy of brood parasitism by using host individuals 

either of the same or different species to raise the young of the own. 

Cuckoo species such as Anis and Guira lay their eggs in communal 

nest though they may remove others eggs to increase the survival 

probability of their own eggs.  Some host birds can engage in direct 

conflict with the intruding cuckoos. On recognition of parasitic 

eggs, the host may kick the parasites eggs out, or build a new nest. 

Female parasitic cuckoos who are specialized in mimicry lay eggs 

that closely which resemble the eggs of their host which reduces 

the probability of their eggs being abandoned. 

Parasitic  cuckoos often choose a nest where host bird have just 

laid their eggs .The cuckoo egg hatches earlier as compared to the  

host's, and the cuckoo chick grows faster than them;. In most cases 

the chick evicts the eggs laid by host species, which increases the 

cuckoo chick’s share of food provided by its host bird. Some 

cuckoo chick can even replicate the call of host chicks to gain 

access to more feeding opportunity.   

2.3.2. Lévy flight 

A Lévy flight is a random walk in which the step-lengths have a 

probability distribution that is heavy-tailed. Research works have 

shown that flight behavior of many animals and insects 

demonstrated the typical characteristics of Lévy flights [17, 18, 19, 

20]. Fruit flies or Drosophila melanogaster, explore their landscape 

using a series of straight flight paths punctuated by a sudden 90 

degree turn, leading to a Lévy -flight-style intermittent scale free 

search pattern was shown in a study conducted by Reynolds and 

Frye. Many researches shows that Lévy flights interspersed with 

Brownian motion can describe the animals' hunting patterns [24, 

25]. Even light can be related to Lévy flights [23]. Latterly, such 

behavior has been applied to optimization and optimal search, and 

preliminary results show its promising capability [18, 20, 21, 22]. 

2.3.3. Cuckoo Search Algorithm 

Each egg in the nest represents solution, and Cuckoo egg 

represents new solution. The aim is to use the new and potentially 

better solutions (Cuckoos) to replace not-so-good or inferior 

solution in the nests. In the simplest form, each nest has one egg. 

The algorithm [5] can be extended to more complicated cases in 

which each nest has multiple eggs representing a set of solutions. 

Cuckoo search is based on three idealized rules which states that  

i. Each Cuckoo lays one egg, which represents a set of solution 

coordinates, at a time, and dumps it in a random nest. 

ii. A fraction of the nests containing the best eggs, or solutions, 

will be carried over to the next generation. 

iii. The number of nests is fixed and there is a probability that a 

host can discover an alien egg. If this happens, the host can 

either discard the egg or the nest and this result in building a 

new nest in a new location.  

When generating new solutions  𝑥𝑡+1 for the ith Cuckoo, Lévy 

Flight is performed. 

𝑥𝑖
𝑡 = 𝑥𝑖

𝑡+1 + 𝛼⨁𝐿𝑒𝑣𝑦(𝜆)   (25) 

In equation (25), α > 0 is the step size which should be related to 

the scales of the problem       of interest. In most cases, we can use 

α = O(L/10) where L is the characteristic scale of the problem of 

interest. The above equation is essentially the stochastic equation 

for a random walk. The product ⊕ means entry wise 

multiplications.  

The Lévy flight essentially provides a random walk whose random 

step length is drawn from a Lévy distribution 

Lévy ~ u = 𝑡−𝜆 , (1 < 𝜆 < 3) (26) 

This has an infinite variance with an infinite mean. Here the steps 

essentially form a random walk process with a power-law step-

length distribution with a heavy tail. Some of the new solutions 

should be generated by Lévy walk around the best solution 

obtained so far, this will speed up the local search. To ensure that 

that the system will not be trapped in a local optimum, a substantial 

fraction of the new solutions should be generated by far field 

randomization whose locations should be far enough from the 

current best solution. 

2.4. Testing Optimization Functions 

In Literature [26] there are many benchmark test functions which 

are designed to test the performance of optimization algorithms. In 

this paper we will compare and validate above mentioned 

algorithms against these benchmark functions. Seventeen 

functions [27,28,29] including many multimodal functions are 

used in this paper in order to compare and verify efficiency and 

convergence of all three above mentioned Nature Inspired 

Algorithms. Certain test functions used in our simulations are as 

follows: 

Ackley Function is multimodal function widely used for testing 

optimizat1ion algorithms. 

𝒇(𝒙) = −𝟐𝟎 𝒆𝒙𝒑

[
 
 
 

−𝟎. 𝟐√
𝟏

𝒅
∑𝒙𝒊

𝟐

𝒅

𝒊=𝟏
]
 
 
 

− 𝒆𝒙𝒑 [
𝟏

𝒅
∑𝒄𝒐𝒔(𝟐𝝅𝒙𝒊

𝒅

𝒊=𝟏

)]

+ (𝟐𝟎 + 𝒆) 

With a global minimum 𝑓(𝑥∗) = 0 at 𝑥∗ = (0,0,… . ,0) in the range 

of 𝑥𝑖 ∈ [-32.768, 32.768], for all 𝑖 = 1,2, …, d. 
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Beale function is 2- dimensional multimodal function, with sharp 

peaks at the corners of the input domain.  

 

 

Which has minimum  𝑓(𝑥∗) = 0, 𝑎𝑡 𝑥∗ = (3,0.5) in range 𝑥𝑖∈ [-

4.5, 4.5], for all i = 1, 2.  

 

Branin function is multimodal with three global minima. The 

recommended values of a, b, c, r, s and t are: a = 1, b = 5.1 ⁄ (4π2), 

c = 5 ⁄ π, r = 6, s = 10 and t = 1 ⁄ (8π). 

 

With a global minimum 𝑓(𝑥∗) = 0.397887 at 𝑥∗ =
(−𝜋, 12.275), (𝜋, 2.275) 𝑎𝑛𝑑 (9.42478,2.475 in the range 𝑥𝑖∈ [-

5, 10] and x2 ∈ [0, 15].  

 

Colville is a unimodal test function. 

 

Which has minimum  𝑓(𝑥∗) = 0, 𝑎𝑡 𝑥∗ = (1,1,1,1) in range 𝑥𝑖∈ [-

10, 10], for all i = 1, 2, 3, 4.  

DIXON-PRICE’s unimodal test function  

 

With a global minimum 𝑓(𝑥∗) = 0 at 𝑥𝑖 = 2
−

2𝑖−2

2𝑖   bin the range of 

𝑥𝑖 ∈ [-10, 10], for all 𝑖 = 1, 2, …, d. 

 

Easom function has several local minima. It is unimodal, and the 

global minimum has a small area relative to the search space.  

 

 

Which has minimum  𝑓(𝑥∗) = −1, 𝑎𝑡 𝑥∗ = (π, π) in range 𝑥𝑖∈ [-

100,100], for all i = 1, 2, 
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Shubert function an multimodal test function has several local 

minima and many global minima. Its equation is  

 

Which has minimum  𝑓(𝑥∗) = −186.7309,  in range 𝑥𝑖∈ [-10, 10], 

for all i = 1, 2, 

 

Levy Test function is multimodal function. Its equation is 

 

With a global minimum 𝑓(𝑥∗) = 0 at 𝑥𝑖 = (1,… ,1)  which is 

evaluated in the range of 𝑥𝑖 ∈ [-10, 10], for all 𝑖 = 1,2, …, d. 

 

Rastrigin function has several local minima. It is highly 

multimodal, but locations of the minima are regularly distributed. 

 

With a global minimum 𝑓(𝑥∗) = 0 at 𝑥∗ = (0,0,… . ,0)  evaluated 

in the range of 𝑥𝑖 ∈ [-5.12, 5.12], for all 𝑖 = 1, 2, …, d. 

 

Rosenbrock function is unimodal, and the global minimum lies in 

a narrow, parabolic valley. 

 

With a global minimum 𝑓(𝑥∗) = 0 at 𝑥𝑖 = (1,… ,1)  which is 

evaluated in the range of 𝑥𝑖 ∈ [-5, 10], for all 𝑖 = 1,2, …, d. 

 

Zakharov function has no local minima except the global one. It’s 

a unimodal function and its equation is  

 

With a global minimum 𝑓(𝑥∗) = 0 at 𝑥𝑖 = (0,… ,0)  which is 

evaluated in the range of 𝑥𝑖 ∈ [-5, 10], for all 𝑖 = 1,2, …, d. 
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Griewank function has many widespread local minima, which are 

regularly distributed. It is a multimodal test function. 

 

With a global minimum 𝑓(𝑥∗) = 0 at 𝑥𝑖 = (0,… ,0)  which is 

evaluated in the range of 𝑥𝑖 ∈ [-600, 600], for all i = 1, …, d.  

 

Trid function has no local minimum except the global one. It is a 

unimodal function. 

 

With a global minimum 𝑓(𝑥∗) = −50 for d=6 and  𝑓(𝑥∗) = −200 

at d=10 which is evaluated in the range of 𝑥𝑖 ∈ [-𝑑2, 𝑑2], for all 𝑖 

= 1,2, …, d. 

 

Powell Function is a unimodal function 

 

This function is usually evaluated on the region xi ∈  

[-4, 5], for all i = 1, …, d. having minima  𝑓(𝑥∗) = 0 at 𝑥𝑖 =

(3, −1,0,1,… .3,−1,0) 

Eggholder function is a difficult function to optimize, because of 

the large number of local minima. It is multimodal test function. 

 

Which has minimum  𝑓(𝑥∗) = −959.6407, 𝑎𝑡 𝑥∗ =

(512,404.2319) in range 𝑥𝑖∈ [-512, 512], for all i = 1, 2.  

 

3. Implementation and Numerical Experiments 

In this section we will compare the performance of Krill Herd 

algorithm Firefly algorithm, Cuckoo search algorithm for various 

benchmark test functions. The benchmarks function include both 

unimodal and multimodal with both low and high dimensional 

problems are described in Section 2.4 and for evaluation all 

computational procedures described above has been implemented 

in MATLAB™ computer program.  In order to compare these 

algorithms we have carried out extensive simulations and each 

algorithm has been run 50 times so as to carry out meaningful 

analysis. The maximum number of function evaluations is set as 

10,000 for high dimensional functions and 1000 for low 

dimensional functions. 

Here for Krill Herd Algorithm 𝐶𝑡 is set to 0.5 and the inertia 

weights (𝜔𝑛 , 𝜔𝑓) are equal to 0.9 at beginning of search and it 

linearly decreases to 0.1 at the end. For Firefly algorithm certain 

constants are fixed as 𝛼 = 0.5, 𝛽 = 0.2 and 𝛾 = 1 for simulation. 

For cuckoo search algorithm probability for host bird is fixed 

as 𝑝𝛼 = 0.25. For simulation we have used various population 

sizes from n = 10 to 150, and found that for most problems, it is 

sufficient to use n = 15 to 50. Therefore, we have used a fixed 

population size of n = 50 in all our simulations for comparison. 

Now we will divide this section in two parts comprising 

comparison of algorithms for unimodal test function in first section 

and comparison of algorithms for multimodal test functions in 

another. For both the section we will be comparing KH algorithm, 

FA Algorithm and CS Algorithm via Lévy Flights on the basis of 

three criteria i.e. Optimization fitness (efficiency), Convergence 

and processing time. 
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3.1. Optimization for Unimodal Test Function 

In this section we have compared KH algorithm, FA Algorithm 

and CS Algorithm via Lévy Flights on Eight Unimodal benchmark 

functions popular for optimization. Unimodal functions are those 

function which have only single local minima and these function 

easier to optimize. 

3.1.1. Optimization fitness 

Here we have calculated the mean fitness value using the above 

mentioned algorithms for all unimodal test functions mentioned 

above. Optimized fitness result where global optima is reached are 

summarized in Table 1. 

Table 1.  Comparison of Optimization Fitness for Unimodal Test 

Functions 

Function/ 

Algorithms 

KH Algorithm FFA 

Algorithm 

CS Algorithm 

Dixon-Price(d=20) 0.6975 0.6668 0.6667 

Rosenbrock (d=20) 31.89 14.49 2.63e-14 

Zakharov(d=20) 5.973 3.19e-06 2.77e-28 

Powell(d=20) 0.0299 0.002269 5.27e-09 

Trid(d=20) 9.34e+2 1.52e+03 1.52e+03 

Beale 2.92e-11 5.49e-10 1.34e-30 

Easom -0.96 -0.86 -1 

Colville -1.40e+09 -1.56e+07 -7.57e+17 

Here we can see that Cuckoo Search algorithm has outperformed 

both Krill Herd and Firefly algorithm. For all Unimodal test 

function, fitness value of CS algorithm is much closer to global 

optima as compared to other two algorithms. But if we just 

compare the other two algorithms i.e. Firefly and Krill herd 

algorithm, their result are very close to each other, but  on average, 

results obtained using Firefly algorithm are slightly better than 

results obtained using Krill Herd algorithm. As per results from 

Table 1 it is visible that performance of Krill Herd algorithm is 

better for low dimensional functions and as we move from low 

dimensional function to high dimensional functions fitness value 

for krill herd decreases i.e. distance from global minima increases. 

According to results in Table 1 performance of Firefly algorithm 

is better than Krill Herd algorithm for high dimensional functions 

but for low dimensional function result using Krill Herd algorithm 

are better than Firefly algorithm. Also in Krill Herd algorithm we 

have varied dimensions from d= 5 to 20 and observed that as we 

increases the dimensions, fitness value for function decreases. 

3.1.2. Processing time 

Here we will compare above mentioned algorithms on basis on 

processing time. Processing time is basically time consumed by 

algorithm to process single simulation. It includes time consumed 

by fixed number of iteration to solve the problem. 

Table 2. Comparison of processing time in seconds for Unimodal Test 

Functions 

Function/ 

Algorithms 

KH Algorithm FFA Algorithm CS Algorithm 

Dixon-Price(d=20) 141.73 125.56 19.69 

Rosenbrock (d=20) 137.18 123.44 21.58 

Zakharov (d=20) 137.66 125.66 22.92 

Powell(d=20) 172.44 138.95 63.35 

Trid(d=20) 155.12 146.04 30.72 

Beale 13.034 11.18 1.64 

Easom 12.69 12.13 2.46 

Colville 13.33 12.92 2.59 

From Table 2 it is quite easily visible that time taken or consumed 

by Cuckoo search algorithm is much less than the other two 

algorithms We can also compute from the Table 2 that time 

consumed by Firefly algorithm is less than Krill Herd Algorithm 

although difference is not much, In term of processing time 

Cuckoo search algorithm again outperform other two algorithms. 

3.1.3. Convergence 

In this section convergence plots of the benchmark functions for 

three different algorithm i.e. Krill Herd, Firefly, Cuckoo Search are 

compared for fixed number of iteration i.e. 10,000 iterations for 

high dimensional function and 1000 iteration for low dimensional 

function. Here we will estimate which algorithm gives potentially 

better and quicker convergence towards optimality. Below In 

Figure 1-8 Convergence Graph is plotted for all above mentioned 

Unimodal benchmark functions. 

 

Fig. 1. Convergence Plot for Beale Function 

 

Fig. 2. Convergence Plot for Rosenbrock Function 
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Fig. 3. Convergence Plot for Zakharov Function 

 

Fig. 4. Convergence Plot for Dixon-Price Function 

 

Fig. 5. Convergence Plot for Easom Function 

 

Fig. 6. Convergence Plot for  Colville Function 

 

Fig. 7. Convergence Plot for Powel Function 

 

Fig. 8. Convergence Plot for Trid Function 

In Fig.5, Fig.6 and Fig.8 we have plotted the absolute value of the 

fitness function. For Trid, Easom, Colville function, value of 

global minima is negative and so to plot them on convergence 

graph we took their absolute vale. 

From Fig 1-8 we can interpret that the algorithm that quickly 

converges to its optimal solution is Krill Herd Algorithm. When 

we compare them on the number of iteration, Krill Herd Algorithm 

takes least number of iteration to converge whereas solution of 

other two algorithm are better in terms of fitness value. It can also 

be seen from Fig. 1-8 that for most of the test functions, the other 

two algorithms i.e. Firefly Algorithm and Cuckoo search algorithm 

do not converge till 10,000 iterations and for functions for which 

these two algorithm converges before 10,000 iterations, it is the 

cuckoo search algorithm which converges quickly than firefly for 

more of function as compare to number of function for which 

firefly algorithm converges faster than cuckoo search algorithm. 

3.2. Optimization for Multimodal Test Function 

In this section we have compared KH algorithm, FA Algorithm 

and CS Algorithm via Lévy Flights on Seven Multimodal 

benchmark functions popular for optimization. Multimodal 

functions are those function which have many number local 

minima and these function comparatively more difficult to 

optimize. 

3.2.1. Optimization fitness 

Here we have calculated the mean fitness value using the above 

mentioned algorithms for all multimodal test functions mentioned 

in Section 2.4. Optimized fitness result where global optima is 

reached are summarized in Table 3.  
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Table 3. Comparison of Optimization Fitness for Multimodal Test 

Functions 

Function/ 

Algorithms 

KH Algorithm FFA Algorithm CS Algorithm 

Ackley(d=20) 1.19e-05 7.36e-03 4.44e-15 

Levy(d=20) 0.066 2.28e-06 1.14e-06 

Rastrigin 

(d=20) 

8.69 20.36 2.84 

Griewank 
(d=20) 

1.37e-09 5.89e-04 0 

Branin 0.3979 0.3981 0.3981 

Shubert  -186.7309 -186.7309 -186.7309 

Eggholder -893.0205 -930.2513 -959.6407 

From Table 3 we can see that Cuckoo Search algorithm has 

outperformed both Krill Herd and Firefly algorithm in multimodal 

optimization as well. For all Multimodal test function, fitness value 

of CS algorithm is much closer to global optima as compared to 

other two algorithms. But if we together compare the other two 

algorithms i.e. Firefly and Krill herd algorithm for multimodal test 

functions, result for them are in contradiction with results in 

previous section for unimodal test functions. In multimodal 

optimization for most of the low dimensional function ,result for 

both the algorithms are almost  equivalent, for most of the time 

both are able to find the global optima but for high dimensional 

multimodal functions fitness value obtained  using Krill Herd is 

better than fitness value obtained using Firefly Algorithm. Results 

in Table 3 are in contradiction with results in Table 1 as in 

unimodal test function optimization fitness for high dimensional 

function  using firefly was better than krill herd but in multimodal 

function  optimization fitness using krill herd algorithm is better 

than firefly algorithm for high dimensional function. 

3.2.2. Processing time 

In this section we will compare Krill Herd, Firefly, Cuckoo Search 

algorithms on basis on processing time for multimodal 

optimization functions. Processing time is basically time 

consumed by algorithm to process single simulation. It includes 

time consumed by fixed number of iteration to solve the problem. 

Table 4. Comparison of processing time in seconds for Multimodal Test 

Functions 

Function/ 
Algorithms 

KH Algorithm FFA 
Algorithm 

CS Algorithm 

Ackley(d=20) 138.06 123.49 24.78 

Levy(d=20) 169.37 129.03 38.86 

Rastrigin(d=20) 139.55 126.31 24.58 

Griewank(d=20) 137.18 123.44 21.58 

Branin 13.36 11.28 1.91 

Shubert 13.83 11.33 2.56 

Eggholder 13.04 11.23 2.83 

Results in Table 4 are quite similar with the results in Table 2. In 

multimodal optimization function as well, time taken or consumed 

by Cuckoo search algorithm is much less than the other two 

algorithms It can also be interpreted from the Table 4 that time 

consumed by Firefly algorithm is less than Krill Herd Algorithm 

although difference is not much, In term of processing time 

Cuckoo search algorithm again outperform other two algorithms. 

3.2.3. Convergence 

Here convergence plots of the benchmark functions for three 

different algorithm i.e. Krill Herd, Firefly, Cuckoo Search are 

compared for fixed number of iteration i.e. 10,000 iterations for 

high dimensional function and 1000 iteration for low dimensional 

functions. Here we will estimate which algorithm gives potentially 

better and quicker convergence towards optimality. Convergence 

Graph for all above mentioned Multimodal benchmark functions 

are plotted in Figure 9-15. 

 

Fig. 9. Convergence Plot  for  Branin Function 

 

Fig. 10.  Convergence Plot  for  Ackley Function 

 

Fig. 11.  Convergence Plot  for  Levy function 
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Fig.12 . Convergence Plot  for  Rastrigin Function 

 

Fig. 13.  Convergence Plot  for  Griewank Function 

 

Fig. 14 . Convergence Plot  for  Eggholder Function 

 

Fig. 15.  Convergence Plot  for  Shubert Function 

In Fig.14, and Fig.15 we have plotted the absolute value of the 

fitness function. In multimodal optimization Shubert and 

Eggholder function value of global minima is negative and so to 

plot them on convergence graph we took their absolute vale. 

From Fig 9-15 we can interpret that although for many function all 

the algorithms are not able to converge before 10,000th iteration 

but for test functions like Rastrigin, Branin, Griewank, Levy and 

Eggholder, Krill herd algorithm is the fastest to converge to its 

optimal solution. When we compare them on the number of 

iteration, Krill Herd Algorithm takes least number of iteration to 

converge. If we see Fig.10 it is visible that for Ackley function 

Cuckoo Search Algorithm is the fastest to converge to its optimal 

solution others are not able to converge before 10,000th iteration. 

Also in Fig. 11 Cuckoo Search Algorithm is second fastest after 

Krill Herd algorithm to converge. From Fig 9-15 we can interpret 

that Firefly algorithm don not converge to its optimal solution for 

any of the high dimensional functions till 10,000th iteration. For 

multidimensional functions it is the Krill herd algorithm which is 

fastest to converge to its optimal solution, then after Krill Herd 

algorithm it is cuckoo search algorithm to converge to its optimal 

solution and at last is Firefly algorithm. 

4. Conclusion 

In this paper we have compared latest metaheuristic algorithms 

such as Krill Herd Algorithm, Firefly Algorithm and Cuckoo 

Search algorithm via Lévy Flights on basis of three criteria i.e. 

optimization fitness (efficiency), time processing and 

convergence. Results obtained by simulation of theses algorithms 

on unimodal and multimodal test functions shows that Cuckoo 

search algorithm is superior for both unimodal and multimodal test 

function in terms of optimization fitness and time processing 

whereas when comparison  comes down to line between Krill Herd 

Algorithm and Firefly Algorithm, KH Algorithm is superior than 

FFA algorithm for multimodal optimization of both high and low 

dimensional functions whereas for unimodal optimization FFA 

algorithm is superior than KH Algorithm for High dimensional 

function but KH algorithm is superior for low dimensional 

functions but in terms of time processing FFA Algorithm is 

surpasses KH Algorithm for both unimodal and multi modal 

optimization. When we compare these algorithms on basis of 

convergence Krill Herd is the fastest of all to converge to its 

optimal solution after which comes the Cuckoo search algorithm 

and at last comes the  Firefly algorithm which do not converge for 

most of the function to it optimal solution. 

During simulation we also noticed that as we increase the 

dimension, fitness value or optimization fitness for KH algorithm 

decreases although it outperformed FFA algorithm for high 

dimensional multimodal function but on average as dimension 

increases optimization fitness for KH algorithm decreases. 

As all these powerful optimization strategy are able to optimize 

both unimodal and multimodal test function effectively hence we 

can easily extend them to study multi objective optimization 

applications with various constraints and even to NP-hard 

problems. 
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