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Abstract

In the present paper, new analytical solutions for the space-time fractional (2+1)-dimensional
asymmetric Nizhnik-Novikov-Veselov (ANNV) equations are obtained by using the simpli-
fied tan( φ(ξ )

2 )-expansion method (SITEM).

1. Introduction

Nonlinear model arising from the field of mathematical physics is a popular topic since it is widely applied in many natural science such as
chemistry, biology, mathematics, communication and particularly in almost all branches of physics like the fluid dynamics, plasma physics,
field theory, nonlinear optics and condensed matter physics. Exact solutions of nonlinear models have extensively been investigated by
different methods. For example, solutions of the (1 + 1)-dimensional KdV-type model by means of the modified tanh-function method with
three different ansatz has been obtained [1]. Non-linear differential-difference sine-Gordon equation has been solved by using Jacobian
elliptic function method [2]. Hierarchies of Peregrine solution and breather solution have been derived in a (2+1)-dimensional variable-
coefficient nonlinear Schrodinger equation with partial nonlocality [3]. Extended tanh-function method based on the mapping method has
been applied to the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov system [4].
Nizhnik-Novikov-Veselov (NNV) equations have an important place in many fields of physics including condense matter physics, optics, fluid
mechanics and plasma physics [5]-[7]. Solutions of the NNV equations have been investigated by many researchers. Extended tanh-function
method, exp-function method, generalized auxiliary equation method have been applied to (2+1)-dimensional ANNV equations [8]-[10].
Generalized Nizhnik-Novikov-Veselov (GNNV) equations have been solved by using exp-function method, the extended hyperbolic function
method, the tanh method, generalized F-expansion method and auxiliary ordinary differential equation method [11]-[15]. Combining the
generalized direct method with the classical Lie method, solutions of the GNNV equations have been investigated [16]. The generalized,
asymmetric and the modified NNV equations have been studied by using Hirota’s bilinear method [17].
Fractional NNV equations have been studied in [18]-[22]. In these works, fractional derivatives are described in modified Riemann-Liouville
sense (see, for example, [18]-[20]) and conformable sense (see, for example, [21, 22]). Generalized exp-function method has been applied to
the space-time fractional ANNV equations [18]. Solitary-wave ansatz method, the (G′/G) expansion method and sub equation method have
been used to obtain exact solutions of the space-time fractional GNNV equations [19, 20]. Exp-function method, (G′/G) expansion method
and homotopy analysis method have been applied to the time fractional GNNV [21, 22].
Recently, the improved tan( φ(ξ )

2 )-expansion method (ITEM) has been applied by many authors [23]-[25]. In [26], ITEM has been simplified
and called simplified ITEM (SITEM). SITEM has been applied to the Kundu-Eckhaus equation and Konopelchenko- Dubrovsky equations
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in [26, 27], respectively. In this paper, we obtain new analytical solutions of the space-time fractional (2+1)-dimensional ANNV equations
by using SITEM.

2. Description of the conformable fractional derivative and its properties

For a function f : (0,∞)→ R, the conformable fractional derivative of f of order 0 < α < 1 is defined as (see, for example, [28])

T α
t f (t) = lim

ε→0

f (t + εt1−α )− f (t)
ε

.

Some important properties of the the conformable fractional derivative are as given follows:

T α
t (a f +bg)(t) = aT α

t f (t)+bT α
t g(t), ∀a,b ∈ R,

T α
t (tµ ) = µtµ−α ,

T α
t ( f (g(t)) = t1−α g

′
(t) f

′
(g(t)).

3. Analytic solutions to the conformable space-time fractional ANNV equations

Conformable space-time fractional ANNV equations are given in the following form [8, 9]

T α
t u−T β

x T β
x T β

x u−3T β
x (uv) = 0, (3.1)

T β
x u = T θ

y v, 0 < α ≤ 1, 0 < β ≤ 1, 0 < θ ≤ 1. (3.2)

Eqs.(3.1)-(3.2) were first derived by Boiti et al. [29] which may be considered as a model for an incompressible fluid.
Let us consider the following transformation

u(x,y, t) =U(ξ ), v(x,y, t) =V (ξ ), ξ = k
tα

α
+m

xβ

β
+n

yθ

θ
, (3.3)

where k, m, n are constants. Substituting (3.3) into Eqs.(3.1)-(3.2) we obtain the following differential equations

kU ′−m3U ′′′−3m(UV )′ = 0, (3.4)

mU ′ = nV ′ (3.5)

Integrating of Eqs.(3.4)-(3.5) with zero constant of integration and eliminating V , we have

kU−m3U ′′− 3m2

n
U2 = 0. (3.6)

Let us suppose that the solution of Eq.(3.6) can be expressed in the form

U(ξ ) =
N

∑
k=0

Ak

[
p+ tan

(
φ(ξ )

2

)]k
+

N

∑
k=1

Bk

[
p+ tan

(
φ(ξ )

2

)]−k
. (3.7)

Here φ(ξ ) satisfies the following ordinary differential equation

φ
′(ξ ) = asin(φ(ξ ))+bcos(φ(ξ ))+ c, (3.8)

a, b, c, Ak(0≤ k ≤ N) and Bk(1≤ k ≤ N) are constants to be determined. The solution of Eq. (3.8) has been given in[27].
Substituting Eq.(3.7) into Eq.(3.6) for p = 0 and then by balancing the highest order derivative term and nonlinear term in result equation,
the value of N can be determined as 2. Therefore, Eq.(3.7) reduces to

U(ξ ) = A0 +A1

[
tan
(

φ(ξ )

2

)]
+A2

[
tan
(

φ(ξ )

2

)]2
+B1

[
tan
(

φ(ξ )

2

)]−1

+ B2

[
tan
(

φ(ξ )

2

)]−2
. (3.9)

Substituting Eq.(3.9) into Eq.(3.6) and collecting all the terms with the same power of tan( φ

2 ), we can obtain a set of algebraic equations for
the unknowns A0, A1, A2, B1, B2, k, m, n:

−6A2
2m2−3nA2b2m3 +6nA2bcm3−3nA2c2m3 = 0,

−A1nb2m3 +2A1nbcm3 +10aA2nbm3−A1nc2m3−10aA2ncm3−12A1A2m2 = 0,

−8A2na2m3 +3naA1bm3−3naA1cm3−6A2
1m2 +4A2nb2m3−4A2nc2m3−12A0A2m2 +2A2kn = 0,

2A1kn−12A0A1m2−12A2B1m2−2a2A1m3n+A1b2m3n−A1c2m3n−6aA2bm3n−6aA2cm3n = 0,

2A0kn−6A2
0m2−12A1B1m2−12A2B2m2−A2b2m3n−A2c2m3n−b2B2m3n−B2c2m3n−aA1bm3n−aA1cm3n+abB1m3n−aB1cm3n

−2A2bcm3n+2bB2cm3n = 0,

2B1kn−12A0B1m2−12A1B2m2−2a2B1m3n+b2B1m3n−B1c2m3n+6abB2m3n−6aB2cm3n = 0,

−8B2na2m3−3nabB1m3−3naB1cm3 +4B2nb2m3−6B2
1m2−4B2nc2m3−12A0B2m2 +2B2kn = 0,

−B1nb2m3−2B1nbcm3−10aB2nbm3−B1nc2m3−10aB2ncm3−12B1B2m2 = 0,

−3nb2B2m3−6nbB2cm3−6B2
2m2−3nB2c2m3 = 0.
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Solving the algebraic equations in the Mathematica, we obtain the following set of solutions:
Case 1: A0 =

1
2 (b

2− c2)mn,A1 = 0,A2 = 0,B1 =−amn(b+ c),B2 =− 1
2 (b+ c)2mn,k = ∆m3 :

For b = c and a = 0, we have

U1(ξ ) =−2b2mn
[
bξ + c1

]−2
.

For b = c and a 6= 0, we have

U2(ξ ) =−amn2b
[
c1 exp(aξ )− b

a

]−1
−2b2mn

[
c1 exp(aξ )− b

a

]−2
.

For ∆ > 0 and b 6= c, we obtain

U3(ξ ) =
1
2
(b2− c2)mn

− amn(b+ c)
[ 2

b− c
c1r1 exp(r1ξ )+ c2r2 exp(r2ξ )

c1 exp(r1ξ )+ c2 exp(r2ξ )

]−1

− 1
2
(b+ c)2mn

[ 2
b− c

c1r1 exp(r1ξ )+ c2r2 exp(r2ξ )

c1 exp(r1ξ )+ c2 exp(r2ξ )

]−2
. (3.10)

For ∆ < 0 and b 6= c, we have

U4(ξ ) =
1
2
(b2− c2)mn

− amn(b+ c)
[ a

b− c
+

√
−∆

b− c
−c1 sin(

√
−∆

2 ξ )+ c2 cos(
√
−∆

2 ξ )

c1 cos(
√
−∆

2 ξ )+ c2 sin(
√
−∆

2 ξ )

]−1

−1
2
(b+ c)2mn

[ a
b− c

+

√
−∆

b− c
−c1 sin(

√
−∆

2 ξ )+ c2 cos(
√
−∆

2 ξ )

c1 cos(
√
−∆

2 ξ )+ c2 sin(
√
−∆

2 ξ )

]−2
.

Case 2: A0 =
1
2 (b

2− c2)mn,A1 = a(b− c)mn,A2 =− 1
2 (b− c)2mn,B1 = 0,B2 = 0,k = ∆m3 :

For ∆ > 0 and b 6= c, we have

U5(ξ ) =
1
2
(b2− c2)mn+2amn

[c1r1 exp(r1ξ )+ c2r2 exp(r2ξ )

c1 exp(r1ξ )+ c2 exp(r2ξ )

]
−2mn

[c1r1 exp(r1ξ )+ c2r2 exp(r2ξ )

c1 exp(r1ξ )+ c2 exp(r2ξ )

]2
.

For ∆ < 0 and b 6= c, we have

U6(ξ ) =
1
2
(b2− c2)mn

+ amn
[
a+
√
−∆
−c1 sin(

√
−∆

2 ξ )+ c2 cos(
√
−∆

2 ξ )

c1 cos(
√
−∆

2 ξ )+ c2 sin(
√
−∆

2 ξ )

)]

− 1
2

mn
[
a+
√
−∆
−c1 sin(

√
−∆

2 ξ )+ c2 cos(
√
−∆

2 ξ )

c1 cos(
√
−∆

2 ξ )+ c2 sin(
√
−∆

2 ξ )

]2
. (3.11)

Case 3: A0 =
1
6 (−2a2mn+b2mn− c2mn),A1 = 0,A2 = 0,B1 =−amn(b+ c),B2 =− 1

2 (b+ c)2mn,k =−∆m3 :
For b = c and a = 0, we obtain

U7(ξ ) =−2b2mn
[
bξ + c1

]−2
.

For b = c and a 6= 0, we have

U8(ξ ) =−
1
3
(a2mn)−amn(2b)

[
c1 exp(aξ )− b

a

]−1

− 2b2mn
[
c1 exp(aξ )− b

a

]−2
.

For ∆ > 0 and b 6= c, we have

U9(ξ ) =
1
6
(−2a2mn+b2mn− c2mn)

− amn(b+ c)
[ 2

b− c
c1r1 exp(r1ξ )+ c2r2 exp(r2ξ )

c1 exp(r1ξ )+ c2 exp(r2ξ )

]−1

− 1
2
(b+ c)2mn

[ 2
b− c

c1r1 exp(r1ξ )+ c2r2 exp(r2ξ )

c1 exp(r1ξ )+ c2 exp(r2ξ )

]−2
.
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For ∆ < 0 and b 6= c, we have

U10(ξ ) =
1
6
(−2a2mn+b2mn− c2mn)

− amn(b+ c)
[ a

b− c
+

√
−∆

b− c
−c1 sin(

√
−∆

2 ξ )+ c2 cos(
√
−∆

2 ξ )

c1 cos(
√
−∆

2 ξ )+ c2 sin(
√
−∆

2 ξ )

]−1

− 1
2
(b+ c)2mn

[ a
b− c

+

√
−∆

b− c
−c1 sin(

√
−∆

2 ξ )+ c2 cos(
√
−∆

2 ξ )

c1 cos(
√
−∆

2 ξ )+ c2 sin(
√
−∆

2 ξ )

]−2
. (3.12)

Case 4: A0 =
1
6 (−2a2mn+b2mn− c2mn),A1 = a(b− c)mn,A2 =− 1

2 (b− c)2mn,B1 = 0,B2 = 0,k =−∆m3 :
For ∆ > 0 and b 6= c, we have

U11(ξ ) =
1
6
(−2a2mn+b2mn− c2mn)

+ 2amn
[c1r1 exp(r1ξ )+ c2r2 exp(r2ξ )

c1 exp(r1ξ )+ c2 exp(r2ξ )

]
− 2mn

[c1r1 exp(r1ξ )+ c2r2 exp(r2ξ )

c1 exp(r1ξ )+ c2 exp(r2ξ )

]2
.

For ∆ < 0 and b 6= c, we have

U12(ξ ) =
1
6
(−2a2mn+b2mn− c2mn)

+ amn
[
a+
√
−∆
−c1 sin(

√
−∆

2 ξ )+ c2 cos(
√
−∆

2 ξ )

c1 cos(
√
−∆

2 ξ )+ c2 sin(
√
−∆

2 ξ )

]

− 1
2

mn
[
a+
√
−∆
−c1 sin(

√
−∆

2 ξ )+ c2 cos(
√
−∆

2 ξ )

c1 cos(
√
−∆

2 ξ )+ c2 sin(
√
−∆

2 ξ )

]2
,

where ξ =−∆m3 tα

α
+m xβ

β
+n yθ

θ
, ∆ = a2 +b2− c2. From the formula V (ξ ) = m

n U(ξ ), v(x,y, t) can be computed.

The solutions u2(x,y, t), u5(x,y, t), u6(x,y, t) and u10(x,y, t) of the Eqs.(3.1)-(3.2) are simulated as traveling wave solutions for various values
of the physical parameters in Fig.3.1-Fig.3.8. Figs.3.1, 3.2 show kink waves solutions, Figs.3.3 and 3.4 show solitary waves solutions,
Figs.3.5, 3.6, 3.7 and 3.8 show periodic waves solutions of Eqs.(3.1)-(3.2). Figs.3.1 and 3.2 are 3D and 2D plots of the traveling wave
solution u2(x,1, t) and u2(x,1,1) in Eq.(3.10). 3D plot of the obtained solution u2(x,1, t) is given for parameters α = 0.5, β = 1, θ = 0.75,
m = 0.25, n = −0.5, a = 0.5, b = 0.25, c = 0.25, c1 = 1, c2 = 1 in Fig.3.1. Fig.3.2 demonstrate the same solution with 2D plot for
−40 ≤ x ≤ 40 at t = 1. Figs.3.3 and 3.4 are 3D and 2D plots of the traveling wave solution u5(x,1, t) and u5(x,1,1) in Eq.(3.11) for
α = 0.5, β = 1, θ = 0.75, m = 1, n = −0.5, a = 0.02, b = 0.2, c = 0.01, c1 = 2, c2 = 1, respectively. Figs.3.5 and 3.6 are 3D
and 2D plots of the traveling wave solution u6(x,1, t) and u6(x,1,1) in Eq.(3.11) for α = 0.5, β = 1, θ = 0.75, m = 0.1, n = −0.5,
a = 1, b = 2, c = 5, c1 = 2, c2 = 2, respectively. Figs.3.7 and 3.8 show 3D and 2D plots of the traveling wave solution u10(x,1, t) and
u10(x,1,1) in Eq.(3.12) for α = 0.75, β = 1, θ = 0.5, m = 0.25, n = 0.05, a = 1, b = 2, c = 3, c1 = 1, c2 = 1, respectively. Note that
the 3D graphs describe the behavior of u in space x and time t at fixed y = 1, which represents the change of amplitude and shape for each
obtained solitary wave solutions. 2D graphs describe the behavior of u in space x at fixed time t = 1 and fixed y = 1. All graphics in figures
are drawn by the aid of Mathematica 10.

Figure 3.1: King wave solution u2(x,1, t) of Eq.(3.10).
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Figure 3.2: King wave solution u2(x,1,1) of Eq.(3.10).

Figure 3.3: Solitary wave solution u5(x,1, t) of Eq.(3.11).
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Figure 3.4: Solitary wave solution u5(x,1,1) of Eq.(3.11).
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Figure 3.5: Periodic wave solution u6(x,1, t) of Eq.(3.11).
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Figure 3.6: Periodic wave solution u6(x,1,1) of Eq.(3.11).

Figure 3.7: Periodic wave solution u10(x,1, t) of Eq.(3.12).
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Figure 3.8: Periodic wave solution u10(x,1,1) of Eq.(3.12).

4. Conclusion

In this paper, the conformable space-time fractional ANNV equations have been solved by using the simplified tan( φ(ξ )
2 )-expansion method

(SITEM). Simulations of the kink wave, solitary wave and periodic wave solutions of the conformable space-time fractional ANNV equations
have been obtained. Note that SITEM has been applied to the Kundu-Eckhaus equation for the parameter p = 0 in [26] and Konopelchenko-
Dubrovsky equations for the nonzero parameter p in [27]. To our knowledge, conformable fractional ANNV equations have been solved for
only time fractional case. In our work, SITEM has been applied to both space and time fractional ANNV equations.
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