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Abstract

In this paper, we solve and study the global behavior of all admissible solutions of the two
difference equations

xn+1 =
xnxn−2

xn−1− xn−2
, n = 0,1, ...,

and
xn+1 =

xnxn−2

−xn−1 + xn−2
, n = 0,1, ...,

where the initial values x−2, x−1, x0 are real numbers.
We show that every admissible solution for the first equation converges to zero. For the
other equation, we show that every admissible solution is periodic with prime period six.
Finally we give some illustrative examples.

1. Introduction

In [11], the author determined the forbidden sets and discussed the global behaviors of solutions of the two difference equations

xn+1 =
xnxn−1

xn− xn−2
, n = 0,1, ...,

and

xn+1 =
xnxn−1

−xn + xn−2
, n = 0,1, ...,

where the initial values x−2, x−1, x0 are real numbers.
In [2], the author determined the forbidden sets and discussed the global behaviors of solutions of the two difference equations

xn+1 =
axnxn−1

±bxn−1 + cxn−2
, n = 0,1, ...,

where a,b,c are positive real numbers and the initial conditions x−2,x−1,x0 are real numbers.
Elsayed in [19] studied the behavior of solutions of the nonlinear difference equation

xn+1 = axn−1 +
bxnxn−1

cxn +dxn−2
, n = 0,1, ...,

where a,b,c,d are positive real constants and the initial conditions x−2,x−1,x0 are arbitrary positive real numbers. For more on difference
equations (See [1, 3–10, 12–18, 20–28]) and the references therein.
In this paper, we study the two difference equations

xn+1 =
xnxn−2

xn−1− xn−2
, n = 0,1, ..., (1.1)
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and

xn+1 =
xnxn−2

−xn−1 + xn−2
, n = 0,1, ..., (1.2)

where the initial values x−2, x−1, x0 are real numbers.

2. The difference equation xn+1 =
xnxn−2

xn−1−xn−2

During this section, we suppose that

λ− =
1
2
−
√

5
2

and λ+ =
1
2
+

√
5

2
.

2.1. Solution of Equation (1.1)

The transformation

yn =
xn−1

xn
, with y−1 =

x−2

x−1
, y0 =

x−1

x0
(2.1)

reduces Equation (1.1) into the difference equation

yn+1 =
1

yn−1
−1, n = 0,1, .... (2.2)

By solving Equation (2.2) and after some calculations, the solution of Equation (1.1) can be obtained.

Theorem 2.1. Let {xn}∞
n=−2 be an admissible solution of Equation (1.1). Then

xn =

 − ν

(x0 f n−1
2
−x−1 f n+1

2
)(x−1 f n+1

2
−x−2 f n+3

2
) , n = 1,3, ...,

ν

(x0 f n
2
−x−1 f n

2 +1)(x−1 f n
2
−x−2 f n

2 +1)
, n = 2,4, ...,

(2.3)

where ν = x0x−1x−2 and fn is the solution of the difference equation

fn+2 = fn + fn+1, f0 = 0, f1 = 1, n = 0,1, ....

Proof. We can write the solution formula (2.3) as

x2m+1 =−
ν

(x0 fm− x−1 fm+1)(x−1 fm+1− x−2 fm+2)

and

x2m+2 =
ν

(x0 fm+1− x−1 fm+2)(x−1 fm+1− x−2 fm+2)
.

(2.4)

When m = 0,

x1 =−
ν

(x0 f0− x−1 f1)(x−1 f1− x−2 f2)

=
ν

x−1(x−1− x−2)
=

x0x−2

x−1− x−2
.

Similarly

x2 =
ν

(x0 f1− x−1 f2)(x−1 f1− x−2 f2)

=
ν

(x0− x−1)(x−1− x−2)
=

x1x−1

x0− x−1
.

Suppose that the solution formula (2.4) is true for m > 0. Then

x2m+1x2m−1

x2m− x2m−1
=

( ν

(x0 fm−x−1 fm+1)(x−1 fm+1−x−2 fm+2)
)( ν

(x0 fm−1−x−1 fm)(x−1 fm−x−2 fm+1)
)

ν

(x0 fm−x−1 fm+1)(x−1 fm−x−2 fm+1)
+ ν

(x0 fm−1−x−1 fm)(x−1 fm−x−2 fm+1)

=
ν

(x0 fm−1− x−1 fm)(x−1 fm+1− x−2 fm+2)+(x0 fm− x−1 fm+1)(x−1 fm+1− x−2 fm+2)

=
ν

(x−1 fm+1− x−2 fm+2)(x0( fm−1 + fm)− x−1( fm + fm+1))

=
ν

(x−1 fm+1− x−2 fm+2)(x0 fm+1− x−1 fm+2)

= x2m+2.

Similarly we can show that
x2m+2x2m

ax2m+1 +bx2m
= x2m+3.

This completes the proof.
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It is clear for Equation (1.1) that if we start with the point (x0,x−1,x−2) ∈ R3, we have the following:
If x0 = 0 and x−1x−2 6= 0, then x3 is undefined.
If x−1 = 0 and x0x−2 6= 0, then x5 is undefined.
If x−2 = 0 and x0x−1 6= 0, then x4 is undefined.
Therefore, any point (x0,x−1,x−2) ∈ R3 with x0x−1x−2 = 0 belongs to the forbidden set of Equation (1.1).
The following result provides the forbidden set of Equation (1.1).

Theorem 2.2. The forbidden set of equation (1.1) is

F =
2⋃

i=0
{(u0,u−1,u−2) ∈ R3 : u−i = 0}∪

∞⋃
m=1
{(u0,u−1,u−2) ∈ R3 : u0 = u−1

fm+1

fm
}∪

∞⋃
m=1
{(u0,u−1,u−2) ∈ R3 : u−1 = u−2

fm+1

fm
}.

Proof. The proof is clear using the arguments after Theorem (2.1) and formula (2.3).

2.2. Global behavior of equation (1.1)

In this section, we shall give two invariant sets for Equation (1.1) and a result concerns the global behavior of the solutions of Equation (1.1).
Consider the set

D1 = {(x,y,z) ∈ R3 :
x

1/λ 2
−

=− y
1/λ−

= z}

and

D2 = {(x,y,z) ∈ R3 :
x

1/λ 2
+

=− y
1/λ+

= z}.

Theorem 2.3. The two sets D1 and D2 are invariant sets for Equation (1.1).

Proof. Let (x0,x−1,x−2)∈D1. We show that (xn,xn−1,xn−2)∈D1 for each n∈N. The proof is by induction on n. The point (x0,x−1,x−2)∈
D1 implies

x0

1/λ 2
−

=− x−1

1/λ−
= x−2.

Now for n = 1, we have

x1 =
x0x−2

x−1− x−2
=

(1/λ−)x−1λ−x−1

x−1 +λ−x−1
=

x−1

λ 2
−
.

Then we have
x1

1/λ 2
−

=− x0

1/λ−
= x−1.

This implies that (x1,x0,x−1) ∈ D1.
Suppose now that (xn,xn−1,xn−2) ∈ D1. This means that

xn

1/λ 2
−

=− xn−1

1/λ−
= xn−2.

Then

xn+1 =
xnxn−2

xn−1− xn−2
=

(1/λ−)xn−1λ−xn−1

xn−1 +λ−xn−1
=

xn−1

λ 2
−

.

This implies that (xn+1,xn,xn−1) ∈ D1. Therefore, D1 is an invariant set for Equation (1.1).
By similar way, we can show that D2 is an invariant set for Equation (1.1).
This completes the proof.

Theorem 2.4. Every admissible solution of Equation (1.1) converges to zero.

Proof. Suppose that {xn}∞
n=−2 is an admissible solution of Equation (1.1).

Using Formula (2.4), we can write

x2m+1 =−
ν

(x0 fm− x−1 fm+1)(x−1 fm+1− x−2 fm+2)

=− ν

fm fm+1(x0− x−1
fm+1
fm

)(x−1− x−2
fm+2
fm+1

)
.

(2.5)

But

fm+1

fm
→ λ+ and fm→ ∞ as m→ ∞.
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This implies that

x2m+1→ 0 as m→ ∞.

Similarly, we can show that x2m+2→ 0, as m→ ∞.
Therefore, xn→ 0 as n→ ∞. This completes the proof.

Example (1)
Figure (2.1) shows that a solution {xn}∞

n=−2 of equation (1.1) with x−2 = 2, x−1 =−0.2 and x0 = 1 converges to zero.

Example (2)
Figure (2.2) shows that a solution {xn}∞

n=−2 of equation (1.1) with x−2 =−1, x−1 =−0.2 and x0 =−1.8 converges to zero.
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Figure 2.1: xn+1 =
xnxn−2

xn−1−xn−2
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Figure 2.2: xn+1 =
xnxn−2

xn−1−xn−2

3. The difference equation xn+1 =
xnxn−2

−xn−1+xn−2

In this section, we study the difference equation (1.2).

3.1. Solution of Equation (1.2)

The transformation (2.1) reduces Equation (1.2) into the difference equation

yn+1 =−
1

yn−1
+1, n = 0,1, .... (3.1)

By solving Equation (3.1) and after some calculations, the solution of Equation (1.2) can be obtained.

Theorem 3.1. Let {xn}∞
n=−2 be an admissible solution of Equation (1.2). Then

xn =


µ

(α0 cos (n−3)π
6 −β0 sin (n−3)π

6 )(α−1 cos (n−1)π
6 −β−1 sin (n−1)π

6 )
, n = 1,3, ...,

µ

(α0 cos (n−2)π
6 −β0 sin (n−2)π

6 )(α−1 cos (n−2)π
6 −β−1 sin (n−2)π

6 )
, n = 2,4, ..., (3.2)

where µ = x0x−1x−2, α0 =−x0 + x−1, β0 =
1√
3
(x0 + x−1), α−1 =−x−1 + x−2 and β−1 =

1√
3
(x−1 + x−2).

Proof. We can write the given solution (3.2) as

x2m+1 =
µ

γ0(m−1)γ−1(m)

and

x2m+2 =
µ

γ0(m)γ−1(m)
,

(3.3)

where

γ0(m) = α0 cos
mπ

3
−β0 sin

mπ

3
and

γ−1(m) = α−1 cos
mπ

3
−β−1 sin

mπ

3
.

When m = 0,

x1 =
µ

γ0(−1)γ−1(0)
=

µ

(α0 cos −π

3 −β0 sin −π

3 )(α−1)

=
µ

1
2 (α0 +

√
3β0)(α−1)

=
µ

x−1(−x−1 + x−2)

=
x0x−2

−x−1 + x−2
.
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Similarly

x2 =
µ

γ0(0)γ−1(0)
=

µ

α0α−1

=
x0x−1x−2

(−x0 + x−1)(−x−1 + x−2)

=
x1x−1

−x0 + x−1
.

Suppose that the solution (3.3) is true for m > 0.
Then

x2m+1x2m−1

−x2m + x2m−1
=

( µ

γ0(m−1)γ−1(m)
)( µ

γ0(m−2)γ−1(m−1) )

− µ

γ0(m−1)γ−1(m−1) +
µ

γ0(m−2)γ−1(m−1)

=
µ

γ−1(m)(−γ0(m−2)+ γ0(m−1))
.

But we can show that

γ0(m−1)− γ0(m−2) = γ0(m), m = 0,1, ....

This implies that

x2m+1x2m−1

−x2m + x2m−1
=

µ

γ0(m)γ−1(m)

= x2m+2.

Similarly we can show that

x2m+2x2m

ax2m+1 +bx2m
= x2m+3.

This completes the proof.

It is clear for Equation (1.2) that if we start with the point (x0,x−1,x−2) ∈ R3, we have the following:
If x0 = 0 and x−1x−2 6= 0, then x3 is undefined.
If x−1 = 0 and x0x−2 6= 0, then x5 is undefined.
If x−2 = 0 and x0x−1 6= 0, then x4 is undefined.
Therefore, any point (x0,x−1,x−2) ∈ R3 with x0x−1x−2 = 0 belongs to the forbidden set of Equation (1.2).
The following result provides the forbidden set of Equation (1.2).

Theorem 3.2. The forbidden set of equation (1.2) is

F =
2⋃

i=0
{(u0,u−1,u−2) ∈ R3 : u−i = 0}∪{(u0,u−1,u−2) ∈ R3 : u0 = u−1}∪

{(u0,u−1,u−2) ∈ R3 : u−1 = u−2}.

3.2. Global Behavior of Equation (1.2)

Theorem 3.3. Every admissible solution for Equation (1.2) is periodic with prime period six.

Proof. Suppose that {xn}∞
n=−2 is an admissible solution for Equation (1.2).

It is clear that both the functions γ−1(m) and γ0(m) satisfy

γ−1(m+3) =−γ−1(m) and γ0(m+3) =−γ0(m).

Then

x2(m+3)+1 =
µ

γ0(m+2)γ−1(m+3)

=
µ

γ0(m−1)γ−1(m)

= x2m+1, m =−1,0, ....

Similarly

x2(m+3)+2 =
µ

γ0(m+3)γ−1(m+3)

=
µ

γ0(m)γ−1(m)

= x2m+2, m =−2,−1, .....

Therefore, the solution {xn}∞
n=−2 is periodic with prime period six. This completes the proof.
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Example (3)
Figure (3.1) shows that a solution {xn}∞

n=−2 of equation (1.2) with x−2 =−3.2, x−1 = 2.8 and x0 = 0.9 is periodic with prime period six.

Example (4)
Figure (3.2) shows that a solution {xn}∞

n=−2 of equation (1.2) with x−2 = 1.2, x−1 = 1.7 and x0 =−0.2 is periodic with prime period six.
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Figure 3.1: xn+1 =
xnxn−2

−xn−1+xn−2
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Figure 3.2: xn+1 =
xnxn−2

−xn−1+xn−2
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