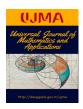
UJMA

Universal Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/ujma ISSN 2619-9653 DOI: https://doi.org/10.32323/ujma.626465



Global Behavior of Two Rational Third Order Difference Equations

R. Abo-Zeid^{1*} and H. Kamal¹

¹Department of Basic Science, The Higher Institute for Engineering & Technology, Al-Obour, Cairo, Egypt *Corresponding author

Article Info	Abstract
Keywords: Difference equation, Forbid- den set, Periodic solution. 2010 AMS: 39A20 Received: 29 September 2019 Accepted: 5 November 2019 Available online: 26 December 2019	In this paper, we solve and study the global behavior of all admissible solutions of the two difference equations $x_{n+1} = \frac{x_n x_{n-2}}{x_{n-1} - x_{n-2}}, n = 0, 1,,$ and $x_{n+1} = \frac{x_n x_{n-2}}{-x_{n-1} + x_{n-2}}, n = 0, 1,,$
	where the initial values x_{-2} , x_{-1} , x_0 are real numbers. We show that every admissible solution for the first equation converges to zero. For the other equation, we show that every admissible solution is periodic with prime period six.

1. Introduction

In [11], the author determined the forbidden sets and discussed the global behaviors of solutions of the two difference equations

Finally we give some illustrative examples.

$$x_{n+1} = \frac{x_n x_{n-1}}{x_n - x_{n-2}}, \quad n = 0, 1, ...,$$

and

$$x_{n+1} = \frac{x_n x_{n-1}}{-x_n + x_{n-2}}, \quad n = 0, 1, \dots,$$

where the initial values x_{-2} , x_{-1} , x_0 are real numbers. In [2], the author determined the forbidden sets and discussed the global behaviors of solutions of the two difference equations

$$x_{n+1} = \frac{ax_n x_{n-1}}{\pm bx_{n-1} + cx_{n-2}}, \quad n = 0, 1, \dots,$$

where a, b, c are positive real numbers and the initial conditions x_{-2}, x_{-1}, x_0 are real numbers. Elsayed in [19] studied the behavior of solutions of the nonlinear difference equation

$$x_{n+1} = ax_{n-1} + \frac{bx_n x_{n-1}}{cx_n + dx_{n-2}}, \quad n = 0, 1, \dots,$$

where a, b, c, d are positive real constants and the initial conditions x_{-2}, x_{-1}, x_0 are arbitrary positive real numbers. For more on difference equations (See [1, 3–10, 12–18, 20–28]) and the references therein. In this paper, we study the two difference equations

$$x_{n+1} = \frac{x_n x_{n-2}}{x_{n-1} - x_{n-2}}, \quad n = 0, 1, ...,$$
(1.1)

Email addresses and ORCID numbers: abuzead73@yahoo.com, https://orcid.org/0000-0002-1858-5583 (R. Abo-Zeid), hossamkamal@gmail.com, https://orcid.org/0000-0002-6540-6664 (H. Kamal)

and

$$x_{n+1} = \frac{x_n x_{n-2}}{-x_{n-1} + x_{n-2}}, \quad n = 0, 1, \dots,$$
(1.2)

where the initial values x_{-2}, x_{-1}, x_0 are real numbers.

2. The difference equation $x_{n+1} = \frac{x_n x_{n-2}}{x_{n-1} - x_{n-2}}$

During this section, we suppose that

$$\lambda_{-} = \frac{1}{2} - \frac{\sqrt{5}}{2}$$
 and $\lambda_{+} = \frac{1}{2} + \frac{\sqrt{5}}{2}$.

2.1. Solution of Equation (1.1)

The transformation

$$y_n = \frac{x_{n-1}}{x_n}$$
, with $y_{-1} = \frac{x_{-2}}{x_{-1}}$, $y_0 = \frac{x_{-1}}{x_0}$ (2.1)

reduces Equation (1.1) into the difference equation

$$y_{n+1} = \frac{1}{y_{n-1}} - 1, \ n = 0, 1, \dots$$
(2.2)

By solving Equation (2.2) and after some calculations, the solution of Equation (1.1) can be obtained.

Theorem 2.1. Let $\{x_n\}_{n=-2}^{\infty}$ be an admissible solution of Equation (1.1). Then

$$x_{n} = \begin{cases} -\frac{v}{(x_{0}f_{\frac{n-1}{2}} - x_{-1}f_{\frac{n+1}{2}})(x_{-1}f_{\frac{n+1}{2}} - x_{-2}f_{\frac{n+3}{2}})}, & n = 1, 3, ..., \\ \frac{v}{(x_{0}f_{\frac{n}{2}} - x_{-1}f_{\frac{n}{2}+1})(x_{-1}f_{\frac{n}{2}} - x_{-2}f_{\frac{n}{2}+1})}, & n = 2, 4, ..., \end{cases}$$
(2.3)

where $v = x_0 x_{-1} x_{-2}$ and f_n is the solution of the difference equation

$$f_{n+2} = f_n + f_{n+1}, f_0 = 0, f_1 = 1, n = 0, 1, \dots$$

Proof. We can write the solution formula (2.3) as

$$x_{2m+1} = -\frac{1}{(x_0 f_m - x_{-1} f_{m+1})(x_{-1} f_{m+1} - x_{-2} f_{m+2})}$$

$$y$$
(2.4)

and

$$x_{2m+2} = \frac{1}{(x_0 f_{m+1} - x_{-1} f_{m+2})(x_{-1} f_{m+1} - x_{-2} f_{m+2})}.$$

When m = 0,

$$\begin{aligned} x_1 &= -\frac{v}{(x_0 f_0 - x_{-1} f_1)(x_{-1} f_1 - x_{-2} f_2)} \\ &= \frac{v}{x_{-1}(x_{-1} - x_{-2})} = \frac{x_0 x_{-2}}{x_{-1} - x_{-2}}. \end{aligned}$$

Similarly

$$x_{2} = \frac{v}{(x_{0}f_{1} - x_{-1}f_{2})(x_{-1}f_{1} - x_{-2}f_{2})}$$
$$= \frac{v}{(x_{0} - x_{-1})(x_{-1} - x_{-2})} = \frac{x_{1}x_{-1}}{x_{0} - x_{-1}}.$$

Suppose that the solution formula (2.4) is true for m > 0. Then

$$\begin{aligned} \frac{x_{2m+1}x_{2m-1}}{x_{2m}-x_{2m-1}} &= \frac{\left(\frac{v}{(x_0f_m - x_{-1}f_{m+1})(x_{-1}f_{m+1} - x_{-2}f_{m+2})}\right)\left(\frac{v}{(x_0f_{m-1} - x_{-1}f_m)(x_{-1}f_m - x_{-2}f_{m+1})}\right)}{\frac{v}{(x_0f_m - x_{-1}f_{m+1})(x_{-1}f_m - x_{-2}f_{m+1})} + \frac{v}{(x_0f_{m-1} - x_{-1}f_m)(x_{-1}f_m - x_{-2}f_{m+1})}}{\frac{v}{(x_0f_{m-1} - x_{-1}f_m)(x_{-1}f_{m+1} - x_{-2}f_{m+2}) + (x_0f_m - x_{-1}f_{m+1})(x_{-1}f_{m+1} - x_{-2}f_{m+2})}} \\ &= \frac{v}{(x_{-1}f_{m+1} - x_{-2}f_{m+2})(x_0(f_{m-1} + f_m) - x_{-1}(f_m + f_{m+1})))}}{\frac{v}{(x_{-1}f_{m+1} - x_{-2}f_{m+2})(x_0f_{m+1} - x_{-1}f_{m+2})}} \\ &= x_{2m+2}. \end{aligned}$$

Similarly we can show that

$$\frac{x_{2m+2}x_{2m}}{ax_{2m+1}+bx_{2m}} = x_{2m+3}.$$

This completes the proof.

It is clear for Equation (1.1) that if we start with the point $(x_0, x_{-1}, x_{-2}) \in \mathbb{R}^3$, we have the following: If $x_0 = 0$ and $x_{-1}x_{-2} \neq 0$, then x_3 is undefined.

If $x_{-1} = 0$ and $x_0 x_{-2} \neq 0$, then x_5 is undefined.

If $x_{-2} = 0$ and $x_0 x_{-1} \neq 0$, then x_4 is undefined.

Therefore, any point $(x_0, x_{-1}, x_{-2}) \in \mathbb{R}^3$ with $x_0 x_{-1} x_{-2} = 0$ belongs to the forbidden set of Equation (1.1). The following result provides the forbidden set of Equation (1.1).

Theorem 2.2. The forbidden set of equation (1.1) is

$$F = \bigcup_{i=0}^{2} \{ (u_0, u_{-1}, u_{-2}) \in \mathbb{R}^3 : u_{-i} = 0 \} \cup \bigcup_{m=1}^{\infty} \{ (u_0, u_{-1}, u_{-2}) \in \mathbb{R}^3 : u_0 = u_{-1} \frac{f_{m+1}}{f_m} \} \cup \bigcup_{m=1}^{\infty} \{ (u_0, u_{-1}, u_{-2}) \in \mathbb{R}^3 : u_{-1} = u_{-2} \frac{f_{m+1}}{f_m} \}.$$

Proof. The proof is clear using the arguments after Theorem (2.1) and formula (2.3).

2.2. Global behavior of equation (1.1)

In this section, we shall give two invariant sets for Equation (1.1) and a result concerns the global behavior of the solutions of Equation (1.1). Consider the set

$$D_1 = \{(x, y, z) \in \mathbb{R}^3 : \frac{x}{1/\lambda_-^2} = -\frac{y}{1/\lambda_-} = z\}$$

and

$$D_2 = \{(x, y, z) \in \mathbb{R}^3 : \frac{x}{1/\lambda_+^2} = -\frac{y}{1/\lambda_+} = z\}$$

Theorem 2.3. The two sets D_1 and D_2 are invariant sets for Equation (1.1).

Proof. Let $(x_0, x_{-1}, x_{-2}) \in D_1$. We show that $(x_n, x_{n-1}, x_{n-2}) \in D_1$ for each $n \in \mathbb{N}$. The proof is by induction on n. The point $(x_0, x_{-1}, x_{-2}) \in D_1$ implies

$$\frac{x_0}{1/\lambda_-^2} = -\frac{x_{-1}}{1/\lambda_-} = x_{-2}.$$

Now for n = 1, we have

$$x_1 = \frac{x_0 x_{-2}}{x_{-1} - x_{-2}} = \frac{(1/\lambda_-) x_{-1} \lambda_- x_{-1}}{x_{-1} + \lambda_- x_{-1}} = \frac{x_{-1}}{\lambda_-^2}$$

Then we have

$$\frac{x_1}{1/\lambda^2} = -\frac{x_0}{1/\lambda_-} = x_{-1}.$$

This implies that $(x_1, x_0, x_{-1}) \in D_1$. Suppose now that $(x_n, x_{n-1}, x_{n-2}) \in D_1$. This means that

$$\frac{x_n}{1/\lambda_-^2} = -\frac{x_{n-1}}{1/\lambda_-} = x_{n-2}.$$

Then

$$x_{n+1} = \frac{x_n x_{n-2}}{x_{n-1} - x_{n-2}} = \frac{(1/\lambda_-) x_{n-1} \lambda_- x_{n-1}}{x_{n-1} + \lambda_- x_{n-1}} = \frac{x_{n-1}}{\lambda_-^2}.$$

This implies that $(x_{n+1}, x_n, x_{n-1}) \in D_1$. Therefore, D_1 is an invariant set for Equation (1.1). By similar way, we can show that D_2 is an invariant set for Equation (1.1). This completes the proof.

Theorem 2.4. Every admissible solution of Equation (1.1) converges to zero.

Proof. Suppose that $\{x_n\}_{n=-2}^{\infty}$ is an admissible solution of Equation (1.1). Using Formula (2.4), we can write

$$x_{2m+1} = -\frac{v}{(x_0 f_m - x_{-1} f_{m+1})(x_{-1} f_{m+1} - x_{-2} f_{m+2})}$$

= $-\frac{v}{f_m f_{m+1}(x_0 - x_{-1} \frac{f_{m+1}}{f_m})(x_{-1} - x_{-2} \frac{f_{m+2}}{f_{m+1}})}.$ (2.5)

But

$$\frac{f_{m+1}}{f_m} \to \lambda_+ \text{ and } f_m \to \infty \text{ as } m \to \infty.$$

This implies that

 $x_{2m+1} \to 0$ as $m \to \infty$.

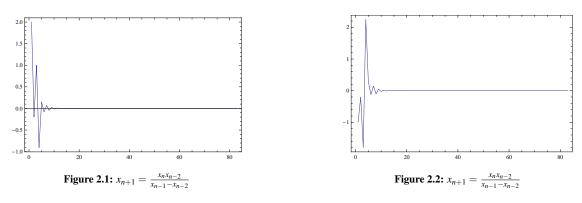
Similarly, we can show that $x_{2m+2} \to 0$, as $m \to \infty$. Therefore, $x_n \to 0$ as $n \to \infty$. This completes the proof.

Example (1)

Figure (2.1) shows that a solution $\{x_n\}_{n=-2}^{\infty}$ of equation (1.1) with $x_{-2} = 2$, $x_{-1} = -0.2$ and $x_0 = 1$ converges to zero.

Example (2)

Figure (2.2) shows that a solution $\{x_n\}_{n=-2}^{\infty}$ of equation (1.1) with $x_{-2} = -1$, $x_{-1} = -0.2$ and $x_0 = -1.8$ converges to zero.



3. The difference equation $x_{n+1} = \frac{x_n x_{n-2}}{-x_{n-1}+x_{n-2}}$

In this section, we study the difference equation (1.2).

3.1. Solution of Equation (1.2)

The transformation (2.1) reduces Equation (1.2) into the difference equation

$$y_{n+1} = -\frac{1}{y_{n-1}} + 1, \ n = 0, 1, \dots$$
(3.1)

By solving Equation (3.1) and after some calculations, the solution of Equation (1.2) can be obtained.

Theorem 3.1. Let $\{x_n\}_{n=-2}^{\infty}$ be an admissible solution of Equation (1.2). Then

$$x_{n} = \begin{cases} \frac{\mu}{(\alpha_{0}\cos\frac{(n-3)\pi}{6} - \beta_{0}\sin\frac{(n-3)\pi}{6})(\alpha_{-1}\cos\frac{(n-1)\pi}{6} - \beta_{-1}\sin\frac{(n-1)\pi}{6})}, & n = 1, 3, ..., \\ \frac{\mu}{(\alpha_{0}\cos\frac{(n-2)\pi}{6} - \beta_{0}\sin\frac{(n-2)\pi}{6})(\alpha_{-1}\cos\frac{(n-2)\pi}{6} - \beta_{-1}\sin\frac{(n-2)\pi}{6})}, & n = 2, 4, ..., \end{cases}$$
(3.2)

where $\mu = x_0 x_{-1} x_{-2}$, $\alpha_0 = -x_0 + x_{-1}$, $\beta_0 = \frac{1}{\sqrt{3}} (x_0 + x_{-1})$, $\alpha_{-1} = -x_{-1} + x_{-2}$ and $\beta_{-1} = \frac{1}{\sqrt{3}} (x_{-1} + x_{-2})$.

Proof. We can write the given solution (3.2) as

$$x_{2m+1} = \frac{\mu}{\gamma_0(m-1)\gamma_{-1}(m)}$$
(3.3)

and

$$x_{2m+2}=\frac{\mu}{\gamma_0(m)\gamma_{-1}(m)},$$

where

 $\gamma_0(m) = \alpha_0 \cos \frac{m\pi}{3} - \beta_0 \sin \frac{m\pi}{3}$

and

$$\gamma_{-1}(m) = \alpha_{-1} \cos \frac{m\pi}{3} - \beta_{-1} \sin \frac{m\pi}{3}.$$

When m = 0,

$$\begin{aligned} x_1 &= \frac{\mu}{\gamma_0(-1)\gamma_{-1}(0)} = \frac{\mu}{(\alpha_0 \cos\frac{-\pi}{3} - \beta_0 \sin\frac{-\pi}{3})(\alpha_{-1})} \\ &= \frac{\mu}{\frac{1}{2}(\alpha_0 + \sqrt{3}\beta_0)(\alpha_{-1})} = \frac{\mu}{x_{-1}(-x_{-1} + x_{-2})} \\ &= \frac{x_0 x_{-2}}{-x_{-1} + x_{-2}}. \end{aligned}$$

Similarly

$$x_{2} = \frac{\mu}{\gamma_{0}(0)\gamma_{-1}(0)} = \frac{\mu}{\alpha_{0}\alpha_{-1}}$$
$$= \frac{x_{0}x_{-1}x_{-2}}{(-x_{0}+x_{-1})(-x_{-1}+x_{-2})}$$
$$= \frac{x_{1}x_{-1}}{-x_{0}+x_{-1}}.$$

Suppose that the solution (3.3) is true for m > 0. Then

$$\begin{aligned} \frac{x_{2m+1}x_{2m-1}}{-x_{2m}+x_{2m-1}} &= \frac{(\frac{\mu}{\gamma_{0}(m-1)\gamma_{-1}(m)})(\frac{\mu}{\gamma_{0}(m-2)\gamma_{-1}(m-1)})}{-\frac{\mu}{\gamma_{0}(m-1)\gamma_{-1}(m-1)} + \frac{\mu}{\gamma_{0}(m-2)\gamma_{-1}(m-1)}} \\ &= \frac{\mu}{\gamma_{-1}(m)(-\gamma_{0}(m-2) + \gamma_{0}(m-1))}.\end{aligned}$$

But we can show that

$$\gamma_0(m-1) - \gamma_0(m-2) = \gamma_0(m), \ m = 0, 1, \dots$$

This implies that

$$\frac{x_{2m+1}x_{2m-1}}{-x_{2m}+x_{2m-1}} = \frac{\mu}{\gamma_0(m)\gamma_{-1}(m)}$$
$$= x_{2m+2}.$$

Similarly we can show that

$$\frac{x_{2m+2}x_{2m}}{ax_{2m+1}+bx_{2m}} = x_{2m+3}$$

This completes the proof.

It is clear for Equation (1.2) that if we start with the point $(x_0, x_{-1}, x_{-2}) \in \mathbb{R}^3$, we have the following: If $x_0 = 0$ and $x_{-1}x_{-2} \neq 0$, then x_3 is undefined.

If $x_{-1} = 0$ and $x_0 x_{-2} \neq 0$, then x_5 is undefined.

If $x_{-2} = 0$ and $x_0 x_{-1} \neq 0$, then x_4 is undefined.

Therefore, any point $(x_0, x_{-1}, x_{-2}) \in \mathbb{R}^3$ with $x_0 x_{-1} x_{-2} = 0$ belongs to the forbidden set of Equation (1.2). The following result provides the forbidden set of Equation (1.2).

Theorem 3.2. The forbidden set of equation (1.2) is

$$F = \bigcup_{i=0}^{2} \{ (u_0, u_{-1}, u_{-2}) \in \mathbb{R}^3 : u_{-i} = 0 \} \cup \{ (u_0, u_{-1}, u_{-2}) \in \mathbb{R}^3 : u_0 = u_{-1} \} \cup \{ (u_0, u_{-1}, u_{-2}) \in \mathbb{R}^3 : u_{-1} = u_{-2} \}.$$

3.2. Global Behavior of Equation (1.2)

Theorem 3.3. Every admissible solution for Equation (1.2) is periodic with prime period six.

Proof. Suppose that $\{x_n\}_{n=-2}^{\infty}$ is an admissible solution for Equation (1.2). It is clear that both the functions $\gamma_{-1}(m)$ and $\gamma_0(m)$ satisfy

$$\gamma_{-1}(m+3) = -\gamma_{-1}(m)$$
 and $\gamma_{0}(m+3) = -\gamma_{0}(m)$.

Then

$$\begin{aligned} x_{2(m+3)+1} &= \frac{\mu}{\gamma_0(m+2)\gamma_{-1}(m+3)} \\ &= \frac{\mu}{\gamma_0(m-1)\gamma_{-1}(m)} \\ &= x_{2m+1}, \ m = -1, 0, \dots. \end{aligned}$$

Similarly

$$x_{2(m+3)+2} = \frac{\mu}{\gamma_0(m+3)\gamma_{-1}(m+3)}$$
$$= \frac{\mu}{\gamma_0(m)\gamma_{-1}(m)}$$
$$= x_{2m+2}, \ m = -2, -1, .$$

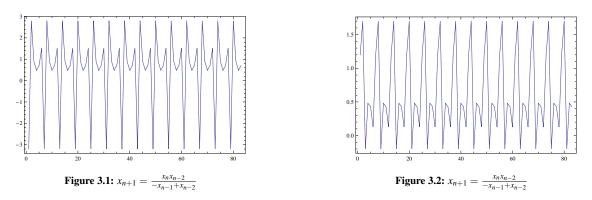
Therefore, the solution $\{x_n\}_{n=-2}^{\infty}$ is periodic with prime period six. This completes the proof.

Example (3)

Figure (3.1) shows that a solution $\{x_n\}_{n=-2}^{\infty}$ of equation (1.2) with $x_{-2} = -3.2$, $x_{-1} = 2.8$ and $x_0 = 0.9$ is periodic with prime period six.

Example (4)

Figure (3.2) shows that a solution $\{x_n\}_{n=-2}^{\infty}$ of equation (1.2) with $x_{-2} = 1.2$, $x_{-1} = 1.7$ and $x_0 = -0.2$ is periodic with prime period six.



References

- R. Abo-Zeid, Behavior of solutions of a second order rational difference equation, Math. Morav., 23 (1) (2019), 11-25.
 R. Abo-Zeid, Global behavior of two third order rational difference equations with quadratic terms, Math. Slovaca, 69 (1) (2019), 147-158.
 R. Abo-Zeid, Global Behavior of a fourth order difference equation with quadratic term, Bol. Soc. Mat. Mexicana, 25 (1) (2019), 187-194.
 R. Abo-Zeid, Behavior of solutions of a higher order difference equation, Alabama J. Math., 42 (2018), 1-10.
 R. Abo-Zeid, On the solutions of a higher order difference equation, Georgian Math. J., doi:10.1515/gmj-2018-0008.
 R. Abo-Zeid, On a third order difference equation, Acta Univ. Apulensis, 55 (2018), 89-103.
 R. Abo-Zeid, On a third order difference equation of a constrained difference equation.

- [7] R. Abo-Zeid Forbidden sets and stability in some rational difference equations, J. Difference Equ. Appl., 24 (2) (2018), 220-239.
- [8] R. Abo-Zeid, On the solutions of a second order difference equation, Math. Morav., 21 (2) (2017), 61-75

- [6] K. Ado-Zeid, On the solutions of a second order difference equation, Math. Morav., 21 (2) (2017), 61-75.
 [9] R. Abo-Zeid, Global behavior of a higher order rational difference equation, Filomat 30 (12) (2016), 3265-3276.
 [10] R. Abo-Zeid, Global behavior of a third order rational difference equation, Math. Bohem., 139 (1) (2014), 25-37.
 [11] R. Abo-Zeid, On the solutions of two third order recursive sequences, Armenian J. Math., 6 (2) (2014), 64-66.
 [12] R. Abo-Zeid, Global behavior of a fourth order difference equation, Acta Commentaiones Univ. Tartuensis Math., 18 (2) (2014), 211-220.
 [13] A.M. Amleh, E. Camouzis and G. Ladas, On the dynamics of a rational difference equation, Part 2, Int. J. Difference Equ., 3 (2) (2008), 195-225.
 [14] A.M. Amleh, E. Camouzis and G. Ladas, On the dynamics of a rational difference equation, Part 1, Int. J. Difference Equ., 3 (1) (2008), 1-52.
- [15] I. Bajo, Forbidden sets of planar rational systems of difference equations with common denominator, Appl. Anal. Discrete Math., 8 (2014), 16-32.
- [16] F. Balibrea and A. Cascales, On forbidden sets, J. Difference Equ. Appl. 21 (10) (2015), 974-996
- [17] E. Camouzis and G. Ladas, Dynamics of Third Order Rational Difference Equations: With Open Problems and Conjectures, Chapman & Hall/CRC, Boca Raton, 2008
- [18] H. El-Metwally and E. M. Elsayed, Qualitative study of solutions of some difference equations, Abstr. Appl. Anal., 2012 (2012), Article ID 248291, 16 [19] F.M. Elsayed, Solution and attractivity for a rational recursive sequence, Discrete Dyn. Nat. Soc., 2011 (2011), Article ID 982309, 18 pages, doi:
- [17] Linit Jakyes, South and an administration of a function of a system of difference equations, J. Difference Equ. Appl., 24 (6) (2018), 976-991.
 [20] M. Gümüş, The global asymptotic stability of a system of difference equations, J. Difference Equ. Appl., 24 (6) (2018), 976-991.
- [21] M. Gümüş and Ö. Öcalan, The qualitative analysis of a rational system of diffrence equations, J. Fract. Calc. Appl., 9 (2) (2018), 113-126.
- [22] Inci Okumus and Yüksel Soykan, A review on dynamical nature of systems of nonlinear difference equations, J. Inform. Math. Sci., 11 (2) (2019),
- [23] R. Khalaf-Allah, Asymptotic behavior and periodic nature of two difference equations, Ukrainian Math. J., 61 (6) (2009), 988-993.
 [24] V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, 1993.
 [25] M. R. S. Kulenović, and M. Mehuljić, Global behavior of some rational second order difference equations, Int. J. Difference Equ., 7 (2) (2012),
- 153–162. M.R.S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures, Chapman and [26] Hall/HRC, Boca Raton, 2002.
- H. Sedaghat, On third order rational equations with quadratic terms, J. Difference Equ. Appl., 14 (8) (2008), 889-897
- [28] I. Szalkai, Avoiding forbidden Sequences by finding suitable initial values, Int. J. Difference Equ., 3 (2) (2008), 305-315.