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ABSTRACT: This paper deals with the system of Kirchhoff-Type equatiaith a bounded domai@2 c R". We
prove exponential growth of solutions with negative iliéaergy. Later, we give some estimates for lower bounds
of the blow up time.
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1. Introduction

We consider the following the system of Kirchhoff-Type etijoias with weak and nonlinear
damping terms

—M([|Ouf|®)Bu+ you + JugPue = Ry (u,v), - (x,t) € Qx (0,T),
Vit — M([|OV][2)Av+ v + v [T = Ry (uv),  (x,t) € Qx (0,T),
u(x,t) =v(xt) =0, (xt)ean(o, ), (1.1)
u(x,0) =up(X), Ut (X,0) =ug(x), XeQ,
V(X,0) =Vo(X), W% (X,0) =v1(X), XeQ,

whereQ i |s a bounded domain with smooth bounda® in R" (n=1,2,3); p,q>0, y» > 0.
LetA= Z W be the Laplace operator, aMi(s) be a nonnegative locally Lipschitz function,
j=1%%

andF : R?2 — Ris aC! function given by

F (u,v) =alu+v] 2+ 2bjud 2, (1.2)
wherer > 2, a> 1 andb > 0, which implies

Fu(u,v) = (r+2) [a|u+v| (U+V)+blu/Z u|v\%]

R(ULY) = (r+2) [a|u+v| (U+V) +bv| 7 v|u|ﬂ .

Also, we have

uR, (u,v) + VR, (u,v) = (r+2)F (u,v) V¥ (u,v) € R%. (1.3)
In the case oM (s) = 1, problem (1.1) becomes

Ut — AU+ Yol + [ [P U = Fu (U, v) (1.4)
Vit — AV+ Youk + (v | Pve = Ry (U, V). '
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The system (1.4) was considered by some authors (see (Ko #2312; Miranda and Medeiros,
1987; Piskin, 2014a,1,1; Wu, 2012; Ye, 2013)). They staidiee existence, blow up and de-
cay of solutions. In addition to, in Agre and Rammaha (20@&id-Houari (2010,1), authors
studied the existence and the blow up of solutions (1.4yfet 0.

In this study, we developed existing methods and appliethtteesystem of Kirchhoff type
equation with weak and nonlinear damping terms. Our resuigsoved the results in the lit-
erature, see Peyravi (2017); Piskin (2017). Our aim in plager firstly is to find exponential
growth and later lower bounds of the blow up tifhé for solutions of (1.1). The remaining
of this paper is organized as follows: In the Section 2, weothiced some lemmas, notations
and local existence theorem. In Section 3, we prove expaigmnbwth of solutions. In the last
section, we find lower bounds for the blow up time when the higvoccurs.

2. Preliminaries

In this section, we give some lemmas and assumptions whitbewused along this work|. ||
and||.|| , denotes the usuaP (Q) norm andLP (Q) norm, respectively.

We make the following assumptions:
(A1) M(s) is a nonnegativ€?! function fors > 0 satisfying

M(s)=a+Bs, y>0, a,B>0.

(A2) Let
(oPgoizornote, e
We define the energy functional as follows
E®) = 3 (w2 + W) + 3 (10ul+ 0v?)
gy (DU 4 OV ) - [ F (v @.2)

Lemma 2.1. Messaoudi and Said-Houari (2010). There exist two posdoestants gand ¢
such that

co (Ul 2+ v2) < F (uv) < (Jul 2+ v *2) (2.3)
is satisfied.

Lemma 2.2. (Sobolev-Poincare inequality) Adams and Fournier (200Bgt g be a number
with2<qgq<oew (n=1,2)or2<q<2n/(n—2) (n> 3),thenthereis aconstantC=C, (Q, q)
such that

lullg < C. [|Oul| for ue H3 (Q).

Lemma 2.3. Messaoudi (2001). Assume that
n—-1
<2——,n>3
P "=
holds. Then there exists a positive constant € depending o1f2 only such that

2
Jullg < € (1Ioul® +1uilp)



Piskin et al. /JJNRS, 2019, 8(2), 1-8 3

forany ue H} (Q), 2<s<p.

The next lemma shows that our energy functional (2.2) is anooeasing function along the
solution of (1.1).

Lemma 2.4. Assume that (A1) and (A2) hold. ThefitEis a non-increasing function fort 0
and

d 2 2 p-+2 a+2
FE® ==y (el + Iv)?) = (IuelB5+Ivl3) - (2.4)

Proof. We multiply the first equation of (1.1) by, the second equation of (1.1) lwy, and
integrating over the domaf2, we get

t
E(t)—E(0) = _/0 e (IuelP+ v l1?) = (Iluell B335+ 1vel313) | dr for t > o (2.5)
O

Next, we state the local existence theorem that can be esttatilby combining arguments in
Georgiev and Todorova (1994); Piskin (2015b); Tanigu2bilQ).

Theorem 2.5. (Local existence)Assume thamin{p,q} > r such that

O<pg O<r,Nn=12
0<pg<:%, 0<r,n>3,

and let(ug, Vo) € ((H3(Q) NH2(Q)) x (HY(Q)NHZ(Q))), (u1,v1) € H3(Q) x H3(Q) be given.
Then the problem (1.1) has a local solution

u,ve C([0,T);Hg(Q)NHAQ)) and y,v € C([0,T);HF(Q)),
for any fixed time T> O.
3. Exponential growth

In this part, we deal with the exponential growth resultshef $olution for the problem (1.1)

Theorem 3.1. Assume that (A1) and (A2) hold. Letrmax{2y, p,q}, E (0) < 0.Then any the
solution of the problem (1.1) grows exponentially.

Proof. For this purpose, we set
H(t)=—-E(t). (3.1)
By using (2.2) and (3.1), we have

0<H(0)<HI(t). (3.2)
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We then define

Wit)=H(t)+¢ </Q utudx+/Qvtvdx> (3.3)

whereg small to be chosen later.

By taking a derivative of (3.3) and using Eqg. (1.1), we have

2 2
W) = vZ(||ut||2+||vt||2)+(||ut||Biz+||vt||312)+e(/9|ut|2dx+ /Q|vt|2dx)

—ea (|0ul*+ | 0v]?) — eB(IDUPY Y + [ IV2Y) +(r+2) | Fuv)ax

—&p (/ utudx+/ vtvdx) —€ (/ utu|ut\pdx+/ vtv\vt\qu). (3.4)
Q Q Q Q

From the definition oH (t), it follows that

=BTV 4| Dv]2YY)
= 2(y+ DHO+ v+ 1) (fluel®+ w)

+a (y+1) (10U +10v1%) —2(r+1) [ F(uvax (3.5)

Inserting (3.5) into (3.4) and using Young inequality tamsite the last two terms in (3.4), we
get

Wit) > (1-ec(8)) (Iulb3+IvIg3) + e+ ely+2) (IwlP+ v)1)
+eya (10Ul + 1 0v1%) +2¢ (y+ D H (1)~ &8 (lul 15+ IVIG3)

€ EVo
ve(r—2y) [ Fuviax= =58 (JulP + ) - 518 (IwlP+ w)?). @6

By using Sobolev-Poincare’s inequality, we have

(O = (- eo(@) (wlg+ i) + (e stv+2- 22)) (1wl + Iwl?)

C.
ve (v Y2 ) (10 + 100) + 22 v+ D H )
2 2
+e(r—2y) [ Fluviax—es (ulf5+ IMIg3) @.7)
Since
r>max{p,q},
we have
2 2 p+2
UlB3 < CIUIPZ <Cllulls+ IVl2)*,
2 2 g+2
MIEE < B2 <C(lull iz + V)™
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Thus

(O = (1-eo@) (wlg+ i) + (e str+2- 22)) (1wl + l?)

+e <ya - VZ“C*) (IDu?+ 1 Dv]1?) +2¢ (y+ 1)H @)

2
p+2
+e(r—2y) [ F(uv)dx—edC o+ V],-2)
2
~£3C (|lully2+ Mlr2) ™ (3:8)

Further, since
(a+b)’\ gC(aA +b)‘> , a,b>0,

we have X p+2<r+2,2<g+2<r+2andusing Lemma 2.3, we conclude that

+2 2 2
lullfyz < CUIDull*+ lul2),

+2 2 2
VI < CUDvVI®+ V).

Therefore, usingg (|u|r+2jL |v|r+2) < F(u,v) in (2.3), we have

v = 20+ RO+ (et etr2—2)) (lul+ )

2u
e (colr —2y) — £8C) (|lulli 5+ vl 13)
C.
+e(ya-y2‘2’ —650) (1Dl +110v)?) (3.9)
wherer > 2y is used.
co(r—2y)—£6C>M
and youC ya  yuC
yo — > —550>?— 1
Therefore, we have
/ Y2 2 2
v = 20+ RO+ (et etr2e—2)) (lul+ )
Co(r —2y) 2 2
+e 220 (a3 + i)
ya  yuC, 2 2
re (% -2 ) (10w + 10vi?)
> 1 (el 1P+ H )+ 1 OullP+ [0V ull 3+ VI 23) (3.10)

wherer = min{ (yz +e(y+2— %)) 26 (y+1), scO(rz’ZV) € (% — %) } . Consequently we
obtain

W(t) > W(0) >0, vt >0. (3.11)
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We now estimat& (t) = H (t) + & (fo wudx+ [ wvdx). Applying Young inequality, we obtain

[z B o iwl® [ s 5 i+ g il (3.12)
Then, it yields by using Poincare’s inequalities
() < C (Jluell®+ 1wl +H (©) + |0+ OV + i 55+ IvIE3) (3.13)
By combining of (3.10) and (3.13) we arrive at
W) >rw(t), (3.14)

wherer is a positive constant.

A simple integration of (3.14) oveB,t) yieldsW (t) > W (0) exp(rt). O
4. Lower bounds of blow up time

In this part, we investigated the lower bounds of the blowime{l * for the problem (1.1).

Theorem 4.1.(see Piskin (2015a)) Suppose that max{2y, p,q}, E (0) < 0, and there exists
a constantr such thatr < 22¥ y2 Y where G is the constant of the Sobolev embedding theorem.
Then the solution of this system blows up in finite tinie T

Firstly, we give following lemma that can be established bynbining arguments of Peyravi
(2017); Piskin (2017).

Lemma 4.2. There exist two positivee@nd ¢ such that

[ IRuvPdx < ex(oul+oviA

[ IRduvPax < calljoul+ |ovP) (4.1)
are satisfied.

Theorem 4.3. Suppose that (A1), (2.1) hold afigh, u), (vo,v1) € (H3(Q) NH2(Q)) x H}(Q).
Assume further thad < p,q < r and a = 8 = 1. Then the finite blow-up time*Tsatisfies the
following estimate

® dr
/«p(0> (E(0) + 1) +2%(c1+C2) ((E(0)) 1+ 17+1) =

whereg(0 / F(u ))dx and the positive constants and ¢ are specified in (4.1).

:/QF(u,v)dx

Proof. Define
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By differentiatingg(t) and using Young'’s inequality, we obtain
@) = /QutFu+vtFde
1 2 1 2, 2
< = — .
< 2/Q(ut +V2)dx+ 2/Q(Fu +FR2)dx (4.2)

By the Lemma 4.2, we obtain

Ci1+C
)([Ouf? + | Dv]| )+ (4.3)

1
F0<5 [ (@ R)dx
2J)a
Therefore, from (2.2) and Lemma 2.4, we have
[ (@B (I0uP+ |0vP) < 260 +2 [ _Fuvydx
< 2E(O)+2/ F (u, v)dx (4.4)
Q
Combining (4.3)-(4.4), we get

@t) < @t)+E(0)+2"(ci+cp) [(p(t) E(0)]"

<
< @(t) +E(0)+2% (c1+¢2) [(@(1) T+ (E(0) . (4.5)

Integrating (4.5) from O to, we have

o(t) dr <t
/cp(o) (E(0) + 1) +2%(c1+C2) ((E(0)) 1+ 17H) =

Because of
lim_g(t) =,
we can write
/ dr o
00) (E(0)+ 1) +22(c1+¢2)((E(0)) +147r+1) —
Thus, we obtain the desired result. 0
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