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Abstract 

This paper addresses the influence of own weight on the static analysis of the bending of a pre-stretched 

plate-strip containing twin round shaped inclusions made from the same materials and whose centers 

are on a line parallel to the free surface. The effects of body forces (own weight) and surface forces 

(pre-stretching load) on the plate-strip with inclusions are considered together as the initial stresses. 

The effects of these initial stresses on the analyses of stress concentration around the inclusions within 

a plate-strip under additional bending load are investigated by the Three-Dimensional Linearized Theory 

of Elasticity (TDLTE) under the plane strain state. Also, the solutions of the considered boundary value 

problems are worked out by using the Finite Elements Method. With respect to the results, it was 

revealed that the own weight of the plate-strip has a substantial influence on the static analysis around 

the circular twin inclusions within a plate-strip under bending. 

 

 

Kendi Ağırlığının İkiz Dairesel Dolgular İçeren Eğilme Altındaki 
Öngerilmeli Şerit-Plağın Statik Analizine Etkisi 

Anahtar kelimeler 

Kendi ağırlığı; 

Dairesel dolgu; 

 Öngerilme; 

 Statik analiz; 

Sonlu elemanlar 

metodu 

Öz 

Bu çalışma, eğilme etkisi altında içerisinde aynı malzemeden yapılmış ve merkezleri serbest yüzeye 

paralel bir doğrultuda olan ikiz dairesel şekilli dolgular içeren öngerilmeli bir kompozit şerit-plağın statik 

analizine kendi ağırlığının etkisini ele almaktadır. Dolgular içeren şerit-plak üzerindeki hacimsel 

kuvvetlerin (kendi ağırlığı) ve yüzeysel kuvvetlerin (öngerilme yüklemesi) etkisi birlikte öngerilmeler 

olarak düşünülmüştür. Bu öngerilmelerinin, ek bir eğilme yükü altında bir şerit-plak içindeki dolgular 

etrafındaki gerilme dağılımlarının analizleri üzerindeki etkileri, düzlem şekil değiştirme durumu altında 

Lineerize Edilmiş Üç Boyutlu Elastisite Teorisi (LEÜBET) ile araştırılmaktadır. Ayrıca, ele alınan sınır değer 

problemlerinin çözümleri Sonlu Elemanlar Yöntemi kullanılarak gerçekleştirilmiştir. Sonuçlara göre, 

eğilme etkisi altındaki ikiz dairesel dolgular içeren şerit-plağın kendi ağırlığının plağın statik analizi 

üzerinde önemli bir etkisi olduğu ortaya çıkmıştır. 

© Afyon Kocatepe Üniversitesi 

 

1. Introduction 

Strength of structural elements are significantly 

affected by the existence of discontinuity, such as 

inclusions. The existence of inclusions in structural 

elements cause strain and stress concentration 

around these inclusions so mechanical 

characteristics of materials are affected 

significantly. Eshelby studied the presence of 

ellipsoidal region in an infinite space by taking the 

elastic constants different from the rest of the 

material with the equivalent inclusion method (EIM) 

(Eshelby 1957). The influence of inclusions in 

structures were investigated widely by Christensen 

(1979), Mura (1988) and Mura et al. (1996) and Zhou 
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et al. (2013) and others. Dynamic analysis of pre-

stretched plate containing circular shaped 

inclusions was studied by Babuscu Yesil (2015). 

However, own weight of the structures are 

neglected in these investigations, so heavyweight 

and lightweight structures were assumed as if equal. 

The own weight of the structures must not be 

ignored for ensuring the safe structural designs. The 

weight of structures is named as ‘dead load’. Dead 

loads are modelled as static and permanent loads 

and play an important role in the collapse of 

structures (Takabatake 1990, 1991, 2012). If the 

contribution of own weights on the mechanics of 

structures is well appeared, getting more accurate 

results will be possible. Takabatake examined the 

influence of dead loads on closed-form estimation 

solution of the structures (Takabatake 1990, 1991, 

2012). The stiffening consequence of the dead loads 

on mechanics of structures was studied for plates 

with the finite element method by Zhou (2002). In 

the above mentioned works the structures do not 

contain any discontinuity. Besides, there is a study 

which includes a hole in a plate-strip and investigate 

the influence of own weight on the stress 

distributions around this hole (Babuscu Yesil 2017).  

This paper aims to take into consideration the 

influence of own weight on the static analyses 

around twin circular inclusions with added bending 

forces on the upper surface of a pre-stretched plate-

strip. During analysis process, Three-Dimensional 

Linearized Theory of Elasticity (TDLTE) is used for 

modelling the problem. In addition, Finite element 

method (FEM) is chosen for solving the problem. 

This is the first attempt to introduce the influence of 

own weight of the pre-stretched plate-strip 

containing twin circular shaped inclusions on static 

analysis. 

 

2. Mathematical formulation  

The influence of the own weight of the plate with 

initial forces comprising twin circular shaped 

inclusions on the stress and displacement 

distributions under bending are examined. 

Considering that the plate-strip’s own weight and 

uniaxial stretching forces act together, there are 

two forces being applied on the plate in the 

reference (initial) state. The distribution of stresses 

and strains of the plate-strip subjected to both initial 

forces are determined separately using the linear 

theory of elasticity, and then the superposition 

principle is applied for determination of their total 

effect.  

The considered plate with twin circular inclusions is 

simply supported at 1x 0=  and 1x =  (Fig. 1). 

Besides, normal stretching forces which distributed 

uniformly and with intensity q acting 1x 0=  and 

1x =  edges and body forces with intensity f acting 

the plate in the reference state. Furthermore, the 

plate is under bending forces with intensity p. For 

the solution methodology, the couple effect 

between body force and stretching force on the 

strain-stress distribution of the plate is not taken 

into account, but both the couple effect between 

each one and the additional force on the strain- 

stress distribution of the plate are taken into 

account.  

The considered problem can be solved with two 

states: 1) the reference state and 2) the additional 

state. For the reference state, the displacement and 

stress distributions of the plate with twin circular 

inclusions are determined under body force and 

uniformly distributed uniaxial stretching force. 

These displacements (stresses) are named initial 

displacements (stresses). For the additional state, 

with considering the initial displacements and 

stresses obtained in the reference state, the 

displacement and stress distributions of the pre-

stressed plate-strip with inclusions are obtained 

under bending forces which have uniform 

distributions.  

In the following mathematical modelling of the 

problem, the quantities of the reference state will 

be indicated by the upper indices (0).  
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Figure 1. Coordinates and load distributions of the plate-

strip with the same circular inclusions. 

Solution domain of the boundary value problem is: 

 L R 1 2 3W W' W W 0 x ,0 x h , x=   =     −     

L RW' W / (W W )=   
(1) 

where  

( ) ( )( ) 2 2 2
L 1 2 1 E 2 AW x , x x R ( x ( h R)) R= − + + − +   

( ) ( )( ) 2 2 2
R 1 2 1 E 2 AW x , x x ( R) (x ( h R)) R= − − + + − +   

(2) 

 

Reference state of the boundary value

problem, which modelled in accordance with the 

linear theory of elasticity, given below. 
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(3) 

Here   

( ) ( )( ) 2 2 2
L 1 2 1 E 2 AI x , x x R (x (h R)) R= − + + − + =  

( ) ( )( )( ) 2 2 2
R 1 2 1 E 2 AI x , x x R (x (h R) ) R= − − + + − + =  

(4) 

In Eq. (3) the superscript “k” denotes the 

corresponding values of the material of inclusions’ 

(matrix’s)  for k=2 (k=1), if  indicates the constituent 

of the density of the body force, g is the gravitational 

acceleration, ρ  refers to the mass per unit volume 

of the analyzed plate material. ( )R LI I  denotes the 

contour of the right (left) inclusion.  

The additional state of the boundary value

problem which modelled by applying TDLTE, given 

below. 
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i, j, t, k=1, 2 (5) 

For the considered boundary value problems in both 

stages, FEM modelling will be done using functionals 

and Ritz Technique (Akbarov 2013, Guz 1999, Guz 

1999) For this purpose, for the FEM modelling of 

reference state (3) the functional 
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and for the FEM modelling of the additional state (5) 
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L

2
R

,1 ,2
j j,1 ,2

1 2 1 2ij ij
i iW ' W

,2
j,2 ,1

1 2 12ij
x hiW 0

u u1 1
T dx dx T dx dx

2 x 2 x

u1
T dx dx pu dx

2 x =

    
    = + +
    
   

 
  −
 
 

 

 

 

(7) 

are used, where 
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In Eq. (8), (0)
it  is the constituent of the initial 

stresses identified from the solution of the 

boundary value problem (3). The solution domain 

L RW ( W' W W )=    is discretized a number of 

finite elements. For this purpose, curvilinear 

triangular shaped finite elements (FE) and 

rectangular shaped Lagrange family quadratic 

elements are used. (Zienkiewicz and Taylor 1989) 

(Figure 2a-2b). 

W  is divided by the finite elements as: 

M

k
k 1

W W

=

=  

 

(9)  

here kW  represents the k-th finite element.  

  

(a) (b) 

Figure 2. (a) Finite Element Mesh, (b) Finite elements 

with nodes. 

For the rectangular finite elements, Standard 

Lagrange family shape functions are used. (Babuscu 

Yesil 2015, Zienkiewicz and Taylor 1989). However, 

for a triangular FE, the shape functions have the 

following form;  

2 2
iN a bx cy dx exy fy= + + + + +  (10) 

and six coefficients are determined (Guz 2004), 
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j 1k 2k jkN (x ,x ) δ , j,k 1,2,...,6= =  
 

(11) 

In Eq. (11) 1k 2k(x ,x )  denotes of the k-th node’s 

abscissa and ordinate. For FEM modelling only 

displacements are considered as unknowns at the 

nodes, i.e. a displacement-based finite element 

formulation is used. So the displacement functions 

in the n-th FE have the form:  

for the reference state (3)  

(0), ,n ,n (0), ,n ,k k k
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(12) 

and for the additional state (5) 
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In Eqs. (12) and (13), 
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(16)   

In Eqs. (14) - (16), s is taken 6 (8) for a triangular 

(rectangular) finite element.  

Finally substituting Eqs. (12) and (13) in the related 

functionals (6) and (7) respectively, corresponding 

algebraic equations systems are obtained as: 

for the reference state,  

(0) (0) (0)
K a r=  

(17)       

and for the additional state,  

Ka r=  
(18)       

Displacements at the nodes are obtained by 

solution to the algebraic equations given in Eq. (17) 

and Eq. (18). The additional state needs the values 

of the stresses obtained from the reference state, 

because Eq. (18) contains the stress values achieved 

from the solution to the reference state. By solving 

the Eq. (17) and using the Hooke’s Law they are 

achieved.  

Design of the mesh and the selection of 

the elements are the same for both boundary value 

problems. Note that the numerical calculation of 

integrals is made with Gaussian Quadratures by 

using 10 points. Polar coordinate system 3O'rθx  

(Fig. 1) around the circular inclusions are used  

(Babuscu Yesil 2015).  

3. Numerical results 

During all analysis, it is assumed that the inclusions 

and matrix are consisted of different materials and 

isotropic ones and ideal contact conditions in the 

interface surface are satisfied. The values of the 

matrix’s materials are labelled by the subscript 1 

and inclusions’ materials are labelled by the 

subscript 2. The present study is investigated by 

assumption of plane strain state. The solution 

domain and loadings have symmetry with respect to 

1x 2= , thus; only half of the solution domain is 

considered for the solution procedure. The solution 

domain is divided into 956 rectangular and 16 

curvilinear triangular finite elements (Fig. 2). Hence, 

for the finite element modelling 4041 nodes and 

8032 number degrees of freedoms are employed in 

total. For the validation of the present results, the 

numerical solutions of stresses are compared for 

four different test problems in the case where 

2 1E E 1= . 

Problem 1: Rectangular plate subjected to only 

plate’s own weight (no external load), 

 

Problem 2: Rectangular plate subjected to a uniform 

bending load (i.e., intensity of which compensate to 

the plate’s own weight) acting on the top of the 

plate, 

 

Problem 3: The modified case of Problem 2  

The modified state is obtained by taking p ρgh=  in 

Problem 1 and also by putting on the stresses   

11 22 12σ 0, σ ρgy, τ 0= = =  (Timoshenko and 

Goodier 1970). 
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Problem 4: Exact solution for the plate-strip under 

bending without any defects (Timoshenko and 

Goodier 1970). 

For the first three problems, the finite element 

analysis is used for solving the considered boundary 

value problems. Exact solution is given for the plate-

strip under bending in Problem 4. The graphs in Figs. 

3 and 4 exhibit the comparison on the stresses of 

11σ p  and 22σ p  at x2=h for four problems. It 

follows from these graphs that the FEM solutions of 

the first three problems converge in appropriate 

cases to the exact solution of the 4th problem which 

is given in the Timoshenko and Goodier 1970, so the 

present work confirms the good agreement of the 

exact solution and finite element analysis.  

 
Figure 3. Comparison of the stresses of 11σ p . 

 
Figure 4. Comparison of the stresses of 22σ p . 

For the numerical results, it is assumed that Poisson 

coefficients (1) (2)ν ν 0.3= = , volume fractions 

(1) (2)η η 0.5= = , height of plate-strip h 0.10= , 

and radius of inclusions R 0.00833,=  unless 

specified otherwise. Plotted in Fig. 5 (a, b, c) are the 

polar stress distributions (a) rr p , (b) r p  and (c)

p , respectively under various densities of own 

weight f, around the inclusions (r=R) for 2 1E E 5=

, Uh R 5=  with 1q E 0;0.005= . It is established 

that the stresses p  become greater in amount 

with the density of own weight f, while the stresses 

rr p  and r p  decrease with the density of 

own weight. In these graphics the dotted curves 

represent the state 1q E 0=  and the solid curves 

represent 1q E 0.005.=  

 
 

(a) 

 

(b) 
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(c) 

Figure 5. The stress distributions of (a) rr p , (b)

r p ,  (c) p  around inclusions for 

various weight density (f) under 2 1E E 5=  

for two cases of 1q E .  

 

The influence of the density of own weight f on the 

values of the displacement distributions of (a) ru  

and (b) u , respectively, is given at r=R under 

2 1E E 5=  and Uh R 5=  for 1 0q E =  (dotted line) 

and 1q E 0.005=  (solid line) in Fig. 6. The graphs 

show that the displacements ru  and u  

increase with the own weight at (0, )  , but 

decrease at ( ,2 )   . The results for the 

displacements ru  and u  obtained in the 

initial stretching plate-strip i.e. 1q E 0  are less 

than the corresponding values of these for 1q E 0=

. 

 
(a) 

 

(b) 

Figure 6. The displacement distribution of (a) ru  

and (b) u  around the inclusions for 

various weight density (f) under 2 1E E 5=  

for two cases of 1q E .   

The effect of the initial force of 1q E  on the stress 

distributions of (a) rr p , (b) r p  and (c) p ,  

and displacement distributions of  (d) ru  and (e)

u  around the inclusions at r=R under 2 1E E 5=  

and Uh R 5=  for f 0=  (dotted line) and f 0.04=  

(solid line) are shown in Fig. 7.  Absolute values of 

displacements and stresses decrease with 1q E  for 

both f 0=  and f 0 . 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 7.  Stress distributions of (a) rr p , (b) r p , 

(c) p  and displacement distributions of 

(d) ru  and  (e) u  around the inclusions 

for various 1q E  under 2 1E E 5= , for 

f 0 & f 0.04= = . 

 

The effect of distance from the top of the inclusions 

to the upper face plane of the plate-strip i.e. Uh R  

on the stress distributions of (a) rr p , (b) r p , (c)

p  and displacement distributions of  (d) ru  

and (e) u , around the inclusions at r=R under 

2 1E E 5=  and 1q E 0.005=  for cases f 0=  

(dotted line) and f 0.04=  (solid line) are shown in 

Fig. 8. It is found that, the magnitudes of all stresses 

and displacements increase while Uh R  decrease 

for f 0=  and f 0 . 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 8. The stress distributions of (a) rr p , (b)

r p ,  (c) p  and displacement 

distributions of (d) ru  and  (e) u  around 

the inclusions for various Uh R  under 

2 1E E 5= , and 1q E 0.005=  for f 0=  and 

f 0.04= . 

 

The effect of 2 1E E  on the stress distributions of 

(a) rr p , (b) r p , (c) p  respectively, 

around the inclusions at r=R under 1q E 0.005=  

for f 0=  and f 0.04=  are shown in Fig. 9. All the 

magnitudes of stresses increase with 2 1E E  for 

f 0=  and f 0 . 

 

 
(a) 
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(b) 

 
(c) 

Figure 9. The stress distributions of (a) rr p , (b)

r p ,  (c) p  around inclusions for 

various 2 1E E  under 1q E 0.005=  for 

f 0=  and f 0.04= . 

 

Table 1 illustrates the effect of 2 1E E , and 

distance among the two inclusions i.e. c , on 

the stresses of 
(f 0)

( / p) =
  (numerator of the 

ratio) and 
(f 0.04)

( / p) =
  (denominator of the 

ratio) for 1q E 0.005=  at some points around the 

circular inclusions at r=R. 

According to the given numerical values in Table 

1, the stresses of  p  increase with ratio of 

elasticity modulus (i.e. 2 1E E ) at the point 0 =

, but decrease at the points  

/ 4, / 2 and 3 / 4 =     for both cases f 0=  

and f 0.04= . The values of p  at the point 

 =   do not change with the changes of the 

2 1E E  and c  values, so the values for this 

point have not been given in the table. With 

respect to the numerical results shown in Table 1, 

it is reveal that the stresses of p  for the 

selected points achieved for f 0.04=  are larger 

than the corresponding values achieved under 

f 0= . 
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Table 1. Influence of c  and 2 1E E  on 
(f 0)

( / p) =
  (numerator of the ratio) and 

(f 0.04)
( / p) =
  (denominator 

of the ratio) at some points around the circular inclusions ( 1q E 0.005= ). 

2 1E E    c  

0.4709 0.2850 0.1487 0.0743 0.0247 0.0124 

 

 

 

 

1 

0 5.5579

11.0575

−

−
 5.5545

12.3083

−

−
 5.5507

12.6586

−

−
 5.5481

12.6096

−

−
 5.5462

12.4830

−

−
 5.5464

12.4468

−

−
 

π/4 5.3861

8.7902

−

−
 6.5790

11.7730

−

−
 7.3012

13.1753

−

−
 7.6483

13.6387

−

−
 7.8631

13.8387

−

−
 7.9149

13.8749

−

−
 

π/2 11.1123

12.5267

−

−
 12.1833

16.4169

−

−
 12.6350

18.0957

−

−
 12.7675

18.5479

−

−
 12.8118

18.6940

−

−
 12.8174

18.7124

−

−
 

3π/4 9.3101

10.3975

−

−
 8.7776

12.3718

−

−
 8.3287

13.2852

−

−
 8.0584

13.5117

−

−
 7.8670

13.5478

−

−
 7.8175

13.5481

−

−
 

 

 

 

 

2 

0 5.6501

11.7436

−

−
 5.6263

12.5305

−

−
 5.6086

12.6146

−

−
 5.5982

12.4317

−

−
 5.5945

12.1866

−

−
 5.5968

12.1301

−

−
 

π/4 5.1659

8.7180

−

−
 5.7160

10.2890

−

−
 6.0567

10.9482

−

−
 6.2233

11.1102

−

−
 6.3153

11.1451

−

−
 6.3167

11.2084

−

−
 

π/2 9.9609

10.8233

−

−
 10.7947

13.6590

−

−
 11.1410

14.8992

−

−
 11.2398

15.2466

−

−
 11.2813

15.4344

−

−
 11.3064

15.5166

−

−
 

3π/4 6.3963

7.7505

−

−
 6.0783

8.9427

−

−
 5.8552

9.6776

−

−
 5.7343

9.9487

−

−
 5.6537

10.0352

−

−
 5.6330

10.0579

−

−
 

 

 

 

 

5 

0 6.3401

16.7361

−

−
 6.3652

17.5226

−

−
 6.3715

17.6257

−

−
 6.3584

17.2357

−

−
 6.3715

16.7906

−

−
 6.4123

16.9951

−

−
 

π/4 2.4970

8.7452

−

−
 1.8232

8.5766

−

−
 1.5209

8.3237

−

−
 1.4175

7.9981

−

−
 1.4539

7.7569

−

−
 1.5933

8.2056

−

−
 

π/2 8.0439

8.4177

−

−
 8.5425

10.0199

−

−
 8.7473

10.7201

−

−
 8.8056

10.9288

−

−
 8.8108

11.1152

−

−
 8.7485

11.1792

−

−
 

3π/4 0.7525

2.4912−
 1.8339

2.2408−
 2.2721

2.7645−
 2.3949

3.0772−
 2.3568

2.9807−
 2.2039

3.1355−
 

 

3. Conclusions  
 
In this study, the own weight effect of the pre-

stressed composite plate-strip with twin circular 

inclusions under bending on displacements and 

stress concentrations is numerically solved using the 

Finite Element Analysis in the framework of the 

TDLTE. The numerical outcomes point out the 

following conclusions: 

• The influence of the plate-strip’s own 

weight on the values of p  increase for 

(0,2 )  , but rr rp and p 

( )ru and u p  decrease (increase) 

for (0, )  , but increase (decrease) for 

( ,2 )    around the inclusions, 

 

• The pre-stretching forces lead a decrease 

in the values of 

rr r rp , p , p , u and u p ,      

 

• The differences between the displacements 

and stresses obtained at f 0=  and f 0.04=  

decrease with 1q E , 

 

• The magnitudes of the displacements and 

stresses increase with decreasing the 

height between the top of the inclusions 

and the upper surface of the plate-strip i.e. 

Uh R , 

• The absolute values of the stresses increase 

with 2 1E E .  

 

According to all the conclusions given above, the 

own weight of a structure with inclusions cannot be 
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ignored for analyzing the deformation of solid 

mechanics. 
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