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Abstract
The spectral problem

−y′′ + q(x)y = λy, 0 < x < 1,
y(0) = 0, y′(0) = λ(ay(1) + by′(1)),

is considered, where λ is a spectral parameter, q(x) ∈ L1(0, 1) is a complex-valued function,
a and b are arbitrary complex numbers which satisfy the condition |a| + |b| ̸= 0. We study
the spectral properties (existence of eigenvalues, asymptotic formulae for eigenvalues and
eigenfunctions, minimality and basicity of the system of eigenfunctions in Lp(0, 1)) of the
above-mentioned Sturm-Liouville problem.
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1. Introduction
In this study, we shall consider the Sturm-Liouville problem

− y′′ + q(x)y = λy, 0 < x < 1, (1.1)

y(0) = 0, (1.2)
y′(0) = λ(ay(1) + by′(1)), (1.3)

where λ is a spectral parameter, q(x) ∈ L1(0, 1) is a complex-valued function, a and b are
arbitrary complex numbers which satisfy the condition |a| + |b| ̸= 0.

Researching various properties (existence of eigenvalues, asymptotic formulae for eigen-
values and eigenfunctions, minimality and basicity) of Sturm-Liouville operators is of great
importance in the spectral theory of differential operators. Especially, the uniform con-
vergence of Fourier series expansions of this operators can be also investigated with the
help of the conclusions obtained by examining these properties in the next studies. So
that, this investigation underlies an important class of the mathematical physics prob-
lems in applications. Therefore, firstly it is intended to investigate properties like the
existence of eigenvalues, the asymptotic formulae of eigenvalues and eigenfunctions, and
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the basis properties of the system of eigenfunctions of the problem (1.1)-(1.3) in Lp(0, 1)
(1 < p < ∞) in this article.

Sturm-Liouville problems with the boundary conditions depending on the spectral pa-
rameter were studied in order to investigate their various properties in many articles (see
[1,2,6–8,10–17,19–23,25]). The problems on the basis property of system of root functions
corresponding to Sturm- Liouville problems for some differential operators which contain
different forms (linearly, rationally, quadratically etc.) of spectral parameter in one of the
boundary conditions were considered in [1, 2, 8, 10,12,15,16,22].

The basis property of the system of eigenfunctions corresponding to the spectral problem
y′′ + λy = 0, 0 < x < 1,

y(0) = 0, y′(0) − aλy(1) = 0 (a > 0) (1.4)

in the space Lp(0, 1) was proved in [22]. Then the basis property for the system of eigen-
functions of the boundary value problem

−y′′ + q(x)y = λy, 0 < x < 1,
y(0) = 0, y′(0) − aλy(1) = 0 (a ̸= 0) (1.5)

in Lp (0, 1) was studied in [12]. It was also verified that the system of root functions of
the problem (1.5) with one function deleted, is a basis in the space Lp(0, 1); this basis is
unconditional for p = 2. Moreover, the conditions of the uniform convergence of spectral
expansions of continuous functions in the system of eigenfunctions of the problems (1.4)
and (1.5) were established, respectively in [12,21].

Note that the problem (1.5) is a special case of the problem (1.1)-(1.3) under the
condition b = 0 while the problem (1.4) is a special case of the problem (1.5) under the
conditions q(x) ≡ 0 and a > 0.

2. Existence of eigenvalues and asymptotic formulae for eigenvalues and
eigenfunctions of the problem (1.1)-(1.3)

In this section, we prove existence of eigenvalues of the problem (1.1)-(1.3) and then we
give asymptotic formulae for eigenvalues and eigenfunctions of the same problem.

Let ψ(x, λ) denote the solution of the equation (1.1) which satisfies the initial conditions

ψ (0, λ) = 0, ψ′ (0, λ) = 1. (2.1)

The eigenvalues of the problem (1.1)-(1.3) are the zeros of the entire function

F (λ) = 1 − λ(aψ(1, λ) + bψ′(1, λ))

or the roots of the equation

1 − λ(aψ(1, λ) + bψ′(1, λ)) = 0. (2.2)

This function does not vanish because F (0) = 1.
Let E be the set of the roots of the equation

a

(
ψ (1, λ) + λ

∂ψ (1, λ)
∂λ

)
+ b

(
ψ′ (1, λ) + λ

∂ψ′ (1, λ)
∂λ

)
= 0,

where a and b are fixed numbers. E is a countable set. Henceforth, we assume that
F (λ) ̸= 0 for all λ ∈ E.

Theorem 2.1. All eigenvalues of the boundary value problem (1.1)-(1.3) are simple and
they form an infinite sequence λn (n = 0, 1, 2, ...) which has no finite limit point. Moreover,
the asymptotic formulae

λn =
[(
n− 1

2

)
π

]2
+O (1) , (2.3)
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ψn (x) = ψ (x, λn) =
sin
(
n− 1

2

)
πx

nπ
+O

(
n−2

)
(2.4)

are valid, where ψn (x) is the eigenfunction corresponding to λn for sufficiently large num-
bers of n.

Proof. Let λ = s2 and s = σ + it. Then,

ψ (x, λ) = sin sx
s

+ 1
s

x∫
0

q (τ)ψ (τ, λ) sin s (x− τ) dτ (2.5)

and there exists s0 > 0 such that for |s| > s0 the estimate

ψ (x, λ) = sin sx
s

+O
(
e|t|x|s|−2

)
(2.6)

is valid [18, Chapter I, Lemma 1.2.1 and Lemma 1.2.2], where the function O
(
e|t|x|s|−2

)
is an entire function of s for any fixed x in [0,1]. Moreover, (2.6) holds uniformly in x for
0 ≤ x ≤ 1. Therefore, by differentiating (2.5) with respect to x, we have

ψ′ (x, λ) = cos sx+
x∫

0

q (τ)ψ (τ, λ) cos s (x− τ) dτ. (2.7)

From here and (2.6), we obtain

ψ′ (x, λ) = cos sx+O
(
e|t|x|s|−1

)
. (2.8)

Thus, according to (2.6) and (2.8), the equation (2.2) takes the form

s2 cos s+O
(
e|t| |s|

)
= 0. (2.9)

The inequality ∣∣∣s2 cos s
∣∣∣ ≥ 1

4
e|t||t|2

is valid for sufficiently large |t|. From here, we obtain that the limit of modulus of the
first summand of the equation (2.9) is +∞ as |t| → ∞. So, there exists M > 0 such that
|t| ≤ M for any solution s of equation (2.9). Then, the equation (2.9) is equivalent to the
equation

s2 cos s+O (|s|) = 0. (2.10)
It is taken into account that s = 0 is not a root of equation (2.10) since λ = 0 is not an

eigenvalue of the boundary value problem (1.1)-(1.3). It is obvious that the roots of the
equation (2.10) are simple. Otherwise, λ is a multiple root of the equation (2.2) and this
is contrary to F (λ) ̸= 0 (λ ∈ E).

We choose a positive number H such that all the roots of the equation (2.10) lie in
the domain {z ∈ C : |Im z| ≤ H} and the condition sinhH ≥ 1 holds. We now find the
number of the roots of equation (2.10) inside

Dn,1 = {z ∈ C : |Im z| ≤ H, |Re z| ≤ nπ} ,
for sufficiently large n.

It is well known that the inequalities
|cos z| ≥ |cosx| , |cos z| ≥ |sinh y| (2.11)

are valid, where z = x + iy ∈ C. From (2.11), if z = x ∓ iH, −nπ ≤ x ≤ nπ, then
|cos z| ≥ sinhH ≥ 1 and if z = ∓nπ + iy, −H ≤ y ≤ H, then |cos z| ≥ |cosnπ| = 1. By
virtue of Rouche’s theorem [4, Chapter IV, Theorem 6.2], for sufficiently large n, there are
as many zeros of equation (2.10) inside the domain Dn,1 as of the equation s2 cos s = 0,
i.e., 2n+ 2.
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Since λ = s2, we only need to consider the roots of the equation (2.10) which satisfy the
condition s ∈ D =

{
z ∈ C : −π

2 < arg z ≤ π
2
}

for the eigenvalues of the boundary value
problem (1.1)-(1.3). It is obvious that the number of the roots of the equation (2.10) are
n+ 1 inside the domain

Dn,2 =
{
z ∈ C : −π

2
< arg z ≤ π

2
,Re z ≤ nπ

}
.

By using Rouche’s theorem again, it is easy to see that there is only one root of equation
(2.10) at the neighborhood O

(
n−1) of the number

(
n− 1

2

)
π (n ∈ N) for sufficiently large

n.
We number the roots (which satisfy the condition s ∈ D) of the equation (2.10) in

ascending order of Re sn(n = 0, 1, ...). By virtue of these discussions, we obtain

sn =
(
n− 1

2

)
π +O

(
n−1

)
. (2.12)

The formulae (2.3) and (2.4) are established by the equalities λn = s2
n, (2.6), and (2.12).

The proof of theorem 2.1 is completed. �

3. The basis property of the system of eigenfunctions of the problem
(1.1)-(1.3) in Lp(0, 1)

In this section, we give the minimality of the system of eigenfunctions of the problem
(1.1)-(1.3) with one function deleted and prove the basicity in Lp (0, 1) of this system.

Let q (x) = q (1 − x) (0 ≤ x ≤ 1) and ψk (1) = 0. The function ξk (x) = ψk (1 − x) +
bλkψk (x) is a solution of the equation (1.1) for λ = λk. By (1.3) and (2.1), we have
ξk (1) = ξ′

k (1) = 0. Consequently, ξk (x) = 0, 0 ≤ x ≤ 1. In other words,

ψk (1 − x) = −bλkψk (x) , 0 ≤ x ≤ 1.

From the last equality, we obtain (bλk)2 = 1. Hence, since b2 ̸= 1
λ2
n

(n = 0, 1, ...), then
ψn (1) ̸= 0.

Firstly, let us give some lemmas to be used in the proof of our theorems.

Lemma 3.1. The equalities
∂ψ (1, λn)

∂λ
= O

(
n−3

)
, (3.1)

∂ψ′ (1, λn)
∂λ

= (−1)n

2nπ
+O

(
n−2

)
(3.2)

hold for sufficiently large n.

Proof. By using (2.5) and (2.7), we obtain the equalities

∂ψ (1, λ)
∂s

= cos s
s

− sin s
s2 − 1

s2

1∫
0

q (τ)ψ (τ, λ) sin s (1 − τ) dτ+

+ 1
s

1∫
0

(1 − τ) q (τ)ψ (τ, λ) cos s (1 − τ) dτ

+ 1
s

1∫
0

q (τ)∂ψ (τ, λ)
∂s

sin s (1 − τ) dτ,
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∂ψ′ (1, λ)
∂s

= − sin s+
1∫

0

q (τ)∂ψ (τ, λ)
∂s

cos s (1 − τ) dτ

−
1∫

0

(1 − τ) q (τ)ψ (τ, λ) sin s (1 − τ) dτ.

Using the equalities (2.4) and (2.12), it is not hard to see the estimates

∂ψ (1, λn)
∂s

= 1
sn

1∫
0

q (τ)∂ψ (τ, λn)
∂s

sin sn (1 − τ) dτ +O
(
n−2

)
, (3.3)

∂ψ′ (1, λn)
∂s

= (−1)n +
1∫

0

q (τ)∂ψ (τ, λn)
∂s

cos sn (1 − τ) dτ +O
(
n−1

)
. (3.4)

Let Mn = max
0≤x≤1

∣∣∣∂ψ(x,λn)
∂s

∣∣∣. By virtue of (3.3), the inequality

Mn ≤ C1

(
Mn

|sn|
+ 1
n2

)
holds, where C1 is a constant which is independent of n. From last inequality and (2.12),
the estimate

Mn ≤ C2
n2 (3.5)

is valid for sufficiently large n, where C2 is a constant which is independent of n. Thus,
estimate (3.1) is obtained by (3.3) and (3.5). By using (3.4) and (3.5), we obtain

∂ψ′ (1, λn)
∂s

= (−1)n +O
(
n−1

)
.

From here, estimate (3.2) is obtained directly. The proof of the lemma 3.1 is completed. �
Henceforth, we will assume that the relation q (x) = q (1 − x) (0 ≤ x ≤ 1) is valid in

lemma and theorems established for the investigation of spectral properties of the problem
(1.1)-(1.3) in this study.

Lemma 3.2. The following equalities are satisfied:(
ψn (x) , ψm (1 − x)

)
= ψn (1) − ψm (1)

λm − λn
, (n ̸= m;n,m = 0, 1, 2, ...) (3.6)(

ψn (x) , ψn (1 − x)
)

= −∂ψ (1, λn)
∂λ

, (n = 0, 1, 2, ...) (3.7)(
ψn (x) , ψm (x)

)
= λmψm (1) − λnψn (1)

bλnλm (λm − λn)
, (n ̸= m;n,m = 0, 1, 2, ...) (3.8)(

ψn (x) , ψn (x)
)

= ψ′
n (1) ∂ψ (1, λn)

∂λ
− ψn (1) ∂ψ

′ (1, λn)
∂λ

, (n = 0, 1, 2, ...) (3.9)

where (f, g) =
1∫
0
f (x)g (x)dx.

Proof. It is easily seen that from equation (1.1), the equality
d

dx

{
ψ′
n (x)ψm (1 − x) + ψn (x)ψ′

m (1 − x)
}

= (λm − λn)ψn (x)ψm (1 − x)

holds for 0 ≤ x ≤ 1. Integrating with respect to x from 0 to 1, we obtain

(λm − λn)
(
ψn (x) , ψm (1 − x)

)
=
(
ψ′
n (x)ψm (1 − x) + ψn (x)ψ′

m (1 − x)
)∣∣1

0 .

The equality (3.6) is obtained by the last equation and the initial conditions (2.1).
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Similarly, we obtain the equality
d

dx

{
ψ′
n (x)ψ (1 − x, λ) + ψn (x)ψ′ (1 − x, λ)

}
= (λ− λn)ψn (x)ψ (1 − x, λ)

for λ ̸= λn. From here and (2.1), the equality(
ψn (x) , ψ (1 − x, λ)

)
= ψn (1) − ψ (1, λ)

λ− λn

is valid. Taking the limit as λ → λn in the last equality, we obtain (3.7). Equalities (3.8)
and (3.9) are verified similarly. �

Firstly, let us verify that the system ψn (x) (n = 0, 1, ...;n ̸= r) is minimal in the space
L2 (0, 1) by the following theorem. It suffices to prove the existence of the system φn (x)
(n = 0, 1, ...;n ̸= r) which is biorthogonally conjugate to the system ψn (x) (n = 0, 1, ...;n ̸= r)
in the space L2 (0, 1) (see [24, Chapter I, §6, Theorem 6.1]).

Theorem 3.3. If b2 ̸= 1
λ2
n

(n = 0, 1, ...), then the system ψn (x) (n = 0, 1, ...;n ̸= r), where
r is an arbitrary fixed non-negative integer, is minimal in L2 (0, 1).

Proof. Since λn is a simple root of the equation (2.2) for every n, we have

a

(
ψn (1) + λn

∂ψ (1, λn)
∂λ

)
+ b

(
ψ′
n (1) + λn

∂ψ′ (1, λn)
∂λ

)
̸= 0

or
1
λn

+ λn

(
a
∂ψ (1, λn)

∂λ
+ b

∂ψ′ (1, λn)
∂λ

)
̸= 0.

The functions φn (x) (n = 0, 1, ...;n ̸= r) are defined by the following:

φn (x) = an

[
ψn (1 − x) + aλnψn (x)

ψn (1)
− ψr (1 − x) + aλrψr (x)

ψr (1)

]
, (3.10)

where an = −
(

1
λn

+ λn
(
a∂ψ(1,λn)

∂λ + b∂ψ
′(1,λn)
∂λ

))−1
. Because of the assumption

(
b2 ̸= 1

λ2
n

)
of the theorem, ψn (1) ̸= 0 for all n.

Assume that n ̸= m, r; m ̸= r. The equality

(ψn, φm) = an

[
(ψn(x),ψm(1−x))+bλm(ψn(x),ψm(x))

ψm(1) − (ψn(x),ψr(1−x))+bλr(ψn(x),ψr(x))
ψr(1)

]

= an

[
ψn(1)−ψm(1)

λm−λn
+bλm λmψm(1)−λnψn(1)

bλnλm(λm−λn)
ψm(1) −

ψn(1)−ψr(1)
λm−λr

+bλr λrψr(1)−λnψn(1)
bλnλr(λr−λn)

ψr(1)

]

= an
(

1
λn

− 1
λn

)
= 0

holds by (3.6) and (3.8).
Assume that n ̸= r. The equality

(ψn, φn) = an

[
(ψn(x),ψn(1−x))+bλn(ψn(x),ψn(x))

ψn(1) − (ψn(x),ψr(1−x))+bλr(ψn(x),ψr(x))
ψr(1)

]

= an

− ∂ψ(1,λn)
∂λ

+bλn
(
ψ′
n(1) ∂ψ(1,λn)

∂λ
−ψn(1) ∂ψ

′(1,λn)
∂λ

)
ψn(1) − 1

λn


= an

(
−aλn ∂ψ(1,λn)

∂λ + bλn
∂ψ′(1,λn)

∂λ − 1
λn

)
= 1

is valid by (3.6)-(3.9). �
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Theorem 3.4. If b2 ̸= 1
λ2
n

(n = 0, 1, ...), then the system ψn (x) (n = 0, 1, ...;n ̸= r), where
r is an arbitrary fixed non-negative integer, is a basis in the space Lp (0, 1) and this basis
is unconditional in the space L2 (0, 1).

Proof. We need the asymptotic formulae of φn (x) (n = 0, 1, ...;n ̸= r) to prove the basic-
ity of the system ψn (x) (n = 0, 1, ...;n ̸= r) in the space Lp (0, 1).

Using (2.3), (3.1), and (3.2), the estimate

an = 2(−1)n−1

bnπ
+O

(
n−2

)
holds for sufficiently large n. From here and (2.4), it is not hard to see the asymptotic
formulae

φn (x) = 2nπ sin
(
n− 1

2

)
πx+O (1) . (3.11)

The systems yn (x) (n = 0, 1, ...) and un (x) (n = 0, 1, ...) are defined by the following:

yn (x) = sn
√

2ψn (x) , (3.12)

un (x) = 1
sn

√
2
φn (x) . (3.13)

We can easily verify that

(yn, um) = δnm, (n,m = 0, 1, ...;n,m ̸= r) ,

where δnm is the Kronecker symbol. Hence, the system un (x) (n = 0, 1, ...;n ̸= r) is
biorthogonally conjugate to the system yn (x) (n = 0, 1, ...;n ̸= r).

By virtue of (2.4) and (3.11), the estimates

yn (x) =
√

2 sin
(
n− 1

2

)
πx+O

(
n−1

)
, (3.14)

un (x) =
√

2 sin
(
n− 1

2

)
πx+O

(
n−1

)
(3.15)

holds for sufficiently large n.
We denote the system en (x) (n = 1, 2, ...) by the following:

en (x) =
√

2 sin
(
n− 1

2

)
πx

Note that the system en (x) (n = 1, 2, ...) is a basis of the space Lp (0, 1) and this is
orthonormal for p = 2 [3, Chapter VIII, §20, Theorem 2].

Let us compare the system yn (x) (n = 0, 1, ...;n ̸= r) with the system en (x) (n = 1, 2, ...).
By 3.14, the following inequality is valid for sufficiently large n:∥∥∥∥yn (x) −

√
2 sin

(
n− 1

2

)
πx

∥∥∥∥ ≤ C3
n
,

where C3 is independent of n. From this inequality, we obtain that the series
r∑

n=1
∥yn−1 (x) − en (x)∥2 +

∞∑
n=r+1

∥yn (x) − en (x)∥2

is convergent (for r = 0, the first sum is absent). Thus, the system yn (x) (n = 0, 1, ...;n ̸= r)
is quadratically close to the system en (x) (n = 1, 2, ...).

Since the system yn (x) (n = 0, 1, ...;n ̸= r) is minimal in the space L2 (0, 1), it is a Riesz
basis in this space [5, Chapter VI, §2.4, Theorem 2.3].

The first part of Theorem 3.4 is proven.



1380 E.A. Maris, S. Goktas

Note that the system en (x) (n = 1, 2, ...) is a basis in Lp (0, 1), then there exists a
constant Mp > 0 ensuring the inequality∥∥∥∥∥

N∑
n=1

(f, en) en

∥∥∥∥∥
p

≤ Mp∥f∥p, N = 1, 2, ... (3.16)

for any function f ∈ Lp (0, 1), where ∥.∥p means the norm in Lp (0, 1) [9, Chapter I, §4,
Theorem 6].

Let 1 < p < 2 and p be fixed. Since the system yn (x) (n = 0, 1, ...;n ̸= r) is complete in
L2 (0, 1), then this system is complete in Lp (0, 1) as well. Consequently [9, Chapter VIII,
§4, Theorem 6], in order to prove the basicity of this system in Lp (0, 1), it is enough to
prove the existence of a constant M > 0 ensuring the inequality∥∥∥∥∥∥

N∑
n=0,n̸=r

(f, un) yn

∥∥∥∥∥∥
p

≤ M∥f∥p, N = 1, 2, ... (3.17)

for any function f ∈ Lp (0, 1).
Note that there exists M̃1 > 0 such that the inequality

∥(f, u0) y0∥p ≤ M̃1∥f∥p
holds for every f ∈ Lp (0, 1). So, the inequality (3.17) is equivalent to the inequality

EN (f) =

∥∥∥∥∥∥
N∑

n=1,n ̸=r
(f, un) yn

∥∥∥∥∥∥
p

≤ M̃∥f∥p, N = 1, 2, ... (3.18)

where M̃ is positive constant. According to (3.14), (3.15), and (3.18), the inequality

EN (f) ≤ EN,1 (f) + EN,2 (f) + EN,3 (f) + EN,4 (f) (3.19)

is valid, where N = 1, 2, ... and

EN,1 (f) =
∥∥∥∥∥ N∑
n=1,n̸=r

(f, en) en

∥∥∥∥∥
p

, EN,2 (f) =
∥∥∥∥∥ N∑
n=1,n̸=r

(f, en)O
(
n−1)∥∥∥∥∥

p

EN,3 (f) =
∥∥∥∥∥ N∑
n=1,n ̸=r

(
f,O

(
n−1)) en

∥∥∥∥∥
p

, EN,4 (f) =
∥∥∥∥∥ N∑
n=1,n ̸=r

(
f,O

(
n−1))O (n−1)∥∥∥∥∥

p

.

By virtue of (3.16), the inequality

EN,1 (f) ≤ const.∥f∥p (3.20)

holds. From the Riesz theorem [26, Chapter XII, §2, Theorem 2.8] it follows that

EN,2 (f) ≤ const.
N∑
n=1

|(f, en)|n−1 ≤

≤ const.
(

N∑
n=1

|(f, en)|q
) 1
q
(

N∑
n=1

n−p
) 1
p

≤ const.∥f∥p,
(3.21)

where 1
p + 1

q = 1. Further,

EN,3 (f) ≤
∥∥∥∥∥ N∑
n=1

(
f,O

(
n−1)) en

∥∥∥∥∥
2

=
(

N∑
n=1

∣∣(f,O (n−1))∣∣2) 1
2

≤

≤ const.∥f∥1

(
N∑
n=1

n−2
) 1

2

≤ const.∥f∥p.

(3.22)
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Moreover,

EN,4 (f) ≤ const.∥f∥1

N∑
n=1

n−2 ≤ const.∥f∥p. (3.23)

The inequality (3.18) is a consequence of the inequalities (3.19)-(3.23). Thus, the basicity
of the system yn (x) (n = 0, 1, ...;n ̸= r) in the space Lp (0, 1) for 1 < p < 2 is proven.

Let 2 < p < ∞ and 1
p + 1

q = 1. It is evident that the system un (x) (n = 0, 1, ...;n ̸= r) is
a basis in the space Lp (0, 1). Consequently, this system is complete in the space Lq (0, 1).
Note that 1 < p < 2. By means of absolute analogous discussions used above, the
basicity in Lq (0, 1) of the system un (x) (n = 0, 1, ...;n ̸= r) is proven. Hence, the basicity
in Lp (0, 1) (2 < p < ∞) of the system yn (x) (n = 0, 1, ...;n ̸= r) follows. The proof of
Theorem 3.4 is completed. �
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