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Abstract
We utilize the recently presented generalized fractional derivatives, which are not the
same as standard Caputo and Riemann-Liouville fractional derivatives, to reformulate
some boundary value problems of fractional differential equations. For some classes of
generalized fractional differential equations with boundary conditions build up, we find the
corresponding Green’s functions and establish their properties under suitable assumptions
and we also demonstrate the applicability of these properties of the Green’s functions to
establish some existence results via fixed point theorems.
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1. Introduction
Fractional differential equations have attracted extensive interest at recent times. It

is due to the intensive development of the theory of fractional calculus and because of
the utilizations of such developments in the various fields of sciences and engineering
[1–3,5–9,12,15,21,23–25,27].

Amid the previous decades, many considerations have been centered around the inves-
tigation of conditions with p-Laplacian differential operator. The inspiration for those
works comes from the applications of different physical and natural phenomena. The re-
searchers tried to suggest several types of fractional operators to describe more accurately
these phenomena [4]. The Caputo-Katugampola fractional operator generalizes the clas-
sical Caputo fractional operator. Models based on generalized fractional derivatives may
be more accurate than the models based on classical fractional derivatives. There exist
a substantial number of papers committed to the existence of solutions for the equations
with p-Laplacian operators [10,20].

Much attention is paid to the investigation of the existence and multiplicity of positive
solutions for boundary value problems of fractional differential equations by applying
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different techniques from nonlinear analysis (fixed-point theorems [16, 26, 29, 31], upper
and lower solutions method [11,22], fixed-point index theory [32], etc.).

The boundary value problems of fractional differential equations with p-Laplacian have
been studied in [13,28]. However to the best of our knowledge, no work has been found in
the literature on the existence of multiple positive solutions for the generalized fractional
boundary value problems with p-Laplacian. Motivated by some results in [17, 18], in this
article, with the fractional differential equations and boundary conditions established,
we find the corresponding Green’s functions and prove their positivity under appropriate
assumptions. We also demonstrate the applications of the properties of Green’s functions
by making the use of fixed point theorems.

The sections of this article are organized as follows. In Section 2, we present some
definitions and lemmas. In Section 3 and 4, we derive the Green’s functions of Caputo
type and Riemann-Liouville type boundary value problems with generalized fractional
derivatives and establish some useful properties. Applications are given in Section 5.

2. Preliminaries
In this section, we give some background materials from the the theory of fractional

calculus to facilitate analysis of the boundary value problems.

Definition 2.1 ([19]). The general left-sided fractional integral

ρIα
a+f(x) = ρ1−α

Γ(α)

∫ x

a

τρ−1f(τ)
(xρ − τρ)1−α

dτ (2.1)

for x > a, ρ > 0, if the integral exists.
The generalized fractional derivative [19], corresponding to the generalized fractional in-
tegral (2.1), is defined for 0 ≤ a < x, by

ρDα
a+f(x) = ρα−n+1

Γ(n − α)
(x1−ρ d

dx
)n
∫ x

a

τρ−1f(τ)
(xρ − τρ)α−n+1 dτ (2.2)

if the integral exists.

Definition 2.2 ([19]). Let n = ⌈Re(α)⌉. If f ∈ ACn
µ [a, b], then Caputo type generalized

fractional derivative, ρ
cDα

a+ is defined as

ρ
cDα

a+f(x) =
(

ρDα
a+

[
f(t) −

n−1∑
k=0

µkf(a)
k!

(
tρ − aρ

ρ

)k
])

(x),

where µ = x1−ρ d
dx .

Definition 2.3 ([30]). The map θ is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E provided that θ : P → [0, ∞) is continuous and
θ(tx + (1 − t)y) ≥ tθ(x) + (1 − t)θ(y) for all x, y ∈ P and t ∈ [0, 1].

Lemma 2.4 ([30]). Let P be a cone in a real Banach space E, Pc = {x ∈ P : ∥x∥ ≤ c}, θ
a nonnegative continuous functional on P such that θ(x) ≤ ∥x∥ for all x ∈ Pc, and
P (θ, b, d) = {x ∈ P : b ≤ θ(x), ∥x∥ ≤ d}. Suppose F : P c → P c is completely continuous
and there exist constants 0 < a < b < d ≤ c such that

(C1) {x ∈ P (θ, b, d) : θ(x) > b} ̸= ϕ and θ(Fx) for x ∈ P (θ, b, d);
(C2) ||Fx|| < a for x ≤ a;
(C3) θ(Fx) > b for x ∈ P (θ, b, c) with ∥Fx∥ > d.

Then F has at least three fixed points x1, x2, x3 with ∥x1∥ < a, b < θ(x2), a < ∥x3∥ with
θ(x3) = b.
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Lemma 2.5 ([14]). Let E be a Banach space and P ⊆ E be a cone. Assume Ω1 and
Ω2 are open discs contained in E with 0 ∈ Ω1, and Ω1 ⊂ Ω2. Furthermore, assume that
T : P ∩ (Ω2/Ω1) → P be completely continuous operator such that either

(i) ∥Tu∥ ≤ ∥u∥ for u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≥ ∥u∥ for u ∈ K ∩ ∂Ω2, or
(ii) ∥Tu∥ ≥ ∥u∥ for u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≤ ∥u∥ for u ∈ K ∩ ∂Ω2.

Then T has at least one fixed point in K ∩ (Ω2/Ω1).

3. Caputo type generalized fractional differential equations
In this section, we consider the following two Caputo type boundary value problems of

generalized fractional derivatives:
ρ
cDβ

0+(ϕp(ρ
cDα

0+u(t))) + f(t, u(t)) = 0, 1 < ρ ≤ 2, 2 < α < 3, 0 < β ≤ 1, t ∈ (0, 1),
u(0) = u(1) = u′′(0) = 0, ρ

cDα
0+u(0) = 0,

(3.1)

and
ρ
cDβ

0+(ϕp(ρ
cDα

0+u(t))) − f(t, u(t)) = 0, 0 < ρ ≤ 1, 1 < α ≤ 2, 0 < β ≤ 1, t ∈ (0, 1),
u(0) + u′(0) = 0, u(1) + u′(1) = 0, ρ

cDα
0+u(0) = 0,

(3.2)

where ρ
cDα

0+ , ρ
cDβ

0+ denote the generalized fractional derivatives, ϕp(s) = |s|p−2s, p >

1, ϕ−1
p = ϕq, 1

p + 1
q = 1, and f : [0, 1] × [0, +∞) → [0, +∞) is continuous.

Lemma 3.1. Let y ∈ C[0, 1] and 2 < α < 3. Then the boundary value problem
ρ
cDα

0+u(t) + y(t) = 0, 1 < ρ ≤ 2, t ∈ (0, 1),
u(0) = u(1) = u′′(0) = 0,

(3.3)

where ρ
cDα

a+ denotes the generalized fractional derivative, has a unique solution

u(t) =
∫ 1

0
G(t, s)y(s)ds,

where

G(t, s) = ρ1−αsρ−1

Γ(α)

{
t2ρ(1 − sρ)α−1 − (tρ − sρ)α−1, 0 ≤ s ≤ t ≤ 1,
t2ρ(1 − sρ)α−1, 0 ≤ t ≤ s ≤ 1. (3.4)

Lemma 3.2. The boundary value problem for the generalized fractional differential equa-
tions (3.1) has a unique solution

u(t) =
∫ 1

0
G(t, s)ϕq

(
ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f(τ, u(τ)dτ)ds

)
,

where G(t, s) is defined as (3.4).

Proof. From Lemma 3.1 and the boundary value problem (3.1), we have
ρIβ

0+
ρ
cDβ

0+(ϕ(ρ
cDα

0+u(t)) = −ρIβ
0+f(t, u(t))

= ϕp(ρ
cDα

0+u(t) − ϕp(ρ
cDα

0+u(0))
= ϕp(ρ

cDα
0+u(t)).

This implies

ϕp(ρ
cDα

0+u(t)) = −ρIβ
0+f(t, u(t)).

So we have
ρ
cDα

0+u(t) = −ϕq(ρIβ
0+f(t, u(t))).



1358 A. Seemab, M. Rehman

Thus (3.1) is equivalent to the following problem:
ρ
cDα

0+u(t) + ϕq(ρIβ
0+f(t, u(t))) = 0, t ∈ (0, 1),

u(0) = u(1) = u′′(0) = 0, ρ
cDα

0+u(0)) = 0.
(3.5)

And so, Lemma 3.1 implies that (3.5) has a unique solution

u(t) =
∫ 1

0
G(t, s)ϕq

(
ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f(τ, u(τ)dτ)ds

)
,

where G(t, s) is defined as (3.4). �
Lemma 3.3. The Green’s function defined by (3.4) is continuous on [0, 1] × [0, 1]. Then
G(t, s) also has the following properties:

(i) G(t, s) > 0 for t, s ∈ (0, 1).
(ii) (t2ρ − tρ(α−1))(1 − sρ)α−1 ≤ Γ(α)

ρ1−α G(t, s) ≤ (1 − sρ)α−1 for t, s ∈ (0, 1).

Proof. Since 2 < α < 3, then
(i) t2ρ(1 − sρ)α−1 − (tρ − sρ)α−1 ≥ t2ρ(1 − sρ)α−1 − (tρ − sρtρ)α−1

= (t2ρ − tρ(α−1))(1 − sρ)α−1 > 0, t, s ∈ (0, 1).
So, we have G(t, s) > 0 for t ∈ (0, 1).

(ii) (1 − sρ)α−1t2ρ ≤ (1 − sρ)α−1 =⇒ (1 − sρ)α−1t2ρ − (tρ − sρ)α−1 ≤ (1 − sρ)α−1

=⇒ Γ(α)
ρ1−α

G(t, s) ≤ (1 − sρ)α−1.

From (i) and (ii), we have

(t2ρ − tρ(α−1))(1 − sρ)α−1 ≤ Γ(α)
ρ1−α

G(t, s) ≤ (1 − sρ)α−1. (3.6)

�
Lemma 3.4. Let y(t) ∈ C[0, 1] and 1 < α ≤ 2. Then the boundary value problem

ρ
cDα

0+u(t) − y(t) = 0, 0 < ρ ≤ 1, t ∈ (0, 1),
u(0) + u′(0) = 0, u(1) + u′(1) = 0,

(3.7)

where ρ
cDα

a+ denotes the generalized fractional derivative, has a unique solution

u(t) =
∫ 1

0
G(t, s)y(s)ds,

where

G(t, s) = ρ1−αsρ−1

Γ(α − 1)


(1 − tρ)[(1 − sρ)α−2 + 1

ρ(α−1)(1 − sρ)α−1]
+ 1

α−1(tρ − sρ)α−1, 0 ≤ s ≤ t ≤ 1,

(1 − tρ)[(1 − sρ)α−2 + 1
ρ(α−1)(1 − sρ)α−1], 0 ≤ t ≤ s ≤ 1.

(3.8)

Lemma 3.5. The boundary value problem for the generalized fractional differential equa-
tions (3.2) has a unique solution

u(t) =
∫ 1

0
G(t, s)ϕq

(
ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f(τ, u(τ)dτ)ds

)
,

where G(t, s) is defined as (3.8).

Lemma 3.6. Let y(t) ∈ C[0, 1] be a given function, then function G(t, s) defined by (3.8)
has the following properties:

A1. G(t, s) ∈ C([0, 1] × [0, 1]), and G(t, s) > 0 for t, s ∈ (0, 1);
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A2. There exists a positive function γ ∈ C(0, 1) such that

min
1/4≤t≤3/4

G(t, s) ≥ γ(s)M(s), s ∈ (0, 1),

max
0≤t≤1

G(t, s) ≤ M(s),

where

M(s) := ρ1−αsρ−1

Γ(α − 1)

[
(1 − sρ)α−2 + 2

ρ(α − 1)
(1 − sρ)α−1

]
, s ∈ (0, 1).

Proof. (A1) is obvious. We will prove (A2) only.
Let

G1(t, s) = ρ1−αsρ−1

Γ(α − 1)

[
(1 − tρ)

(
(1 − sρ)α−2 + 1

ρ(α − 1)
(1 − sρ)α−1

)
+ 1

α − 1
(tρ − sρ)α−1

]
, s ≤ t,

G2(t, s) = ρ1−αsρ−1

Γ(α − 1)

(
1 − tρ)[(1 − sρ)α−2 + 1

ρ(α − 1)
(1 − sρ)α−1

]
, t ≤ s.

For given s ∈ (0, 1), G2(t, s) is decreasing with respect to t and G1(t, s) is a continuous
function for 1/4 ≤ t ≤ 3/4. Thus, we have

G1(t, s) ≥ ρ1−αsρ−1

Γ(α − 1)
(1 − (3

4
)ρ)
[
(1 − sρ)α−2 + 1

ρ(α − 1)
(1 − sρ)α−1

]
, for 1/4 ≤ t ≤ 3/4,

max
0≤t≤1

G1(t, s) ≤ ρ1−αsρ−1

Γ(α − 1)

[
(1 − sρ)α−2 + 2

α − 1
(1 − sρ)α−1

]
,

min
1/4≤t≤3/4

G2(t, s) = G2(3/4, s) = ρ1−αsρ−1

Γ(α − 1)
(1 − (3

4
)ρ)[(1 − sρ)α−2 + 1

ρ(α − 1)
(1 − sρ)α−1],

max
0≤t≤1

G2(t, s) = G2(0, s) = ρ1−αsρ−1

Γ(α − 1)
[(1 − sρ)α−2 + 1

ρ(α − 1)
(1 − sρ)α−1]

<
ρ1−αsρ−1

Γ(α − 1)
[(1 − sρ)α−2 + 2

ρ(α − 1)
(1 − sρ)α−1].

Thus, we have

min
1/4≤t≤3/4

G(t, s) ≥ m(s) = ρ1−αsρ−1

Γ(α − 1)
(1 − (3

4
)ρ)[(1 − sρ)α−2 + 1

ρ(α − 1)
(1 − sρ)α−1], s ∈ (0, 1),

max
0≤t≤1

G(t, s) ≤ M(s) = ρ1−αsρ−1

Γ(α − 1)
[(1 − sρ)α−2 + 2

ρ(α − 1)
(1 − sρ)α−1], s ∈ (0, 1).

Let

γ(s) = m(s)/M(s) = (1 − (3
4

)ρ) ρ(α − 1)(1 − sρ)α−2 + (1 − sρ)α−1

ρ(α − 1)(1 − sρ)α−2 + 2(1 − sρ)α−1 , s ∈ (0, 1).

�

Remark 3.7. For the problems (3.1) and (3.2), when ρ = 1, Green’s functions and their
properties are same as in [12], [31].

4. Riemann-Liouville type generalized fractional differential equations
In this section, we consider the following two Riemann-Liouville type boundary value

problems of generalized fractional derivatives:
ρDβ

0+(ϕp(ρDα
0+u(t))) + f(t, u(t)) = 0, 1 < α ≤ 2, 0 < β ≤ 1, t ∈ (0, 1),

u(0) = u(1) = 0, ρDα
0+u(0) = 0,

(4.1)
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and
ρDβ

0+(ϕp(ρDα
0+u(t))) + f(t, u(t)) = 0, 1 < α ≤ 2, 0 < β ≤ 1, t ∈ (0, 1),

u(0) = 0, βu(η) = u(1), ρDα
0+u(0) = 0,

(4.2)

where ρDα
0+ , ρDβ

0+ denote the generalized fractional derivatives, ϕp(s) = |s|p−2s, p >

1, ϕ−1
p = ϕq, 1

p + 1
q = 1, and f : [0, 1] × [0, +∞) → [0, +∞) is continuous.

Lemma 4.1. Let y ∈ C[0, 1] and 1 < α ≤ 2. Then the boundary value problem
ρDα

0+u(t) + y(t) = 0, t ∈ (0, 1),
u(0) = u(1) = 0,

(4.3)

where ρDα
a+ denotes the generalized fractional derivative, has a unique solution

u(t) =
∫ 1

0
G(t, s)y(s)ds,

where

G(t, s) = ρ1−αsρ−1

Γ(α)

{
(tρ(1 − sρ))α−1 − (tρ − sρ)α−1, 0 ≤ s ≤ t ≤ 1,
(tρ(1 − sρ))α−1, 0 ≤ t ≤ s ≤ 1.

(4.4)

Lemma 4.2. The boundary value problem (4.1) for the generalized fractional differential
equations has unique solution

u(t) =
∫ 1

0
G(t, s)ϕq

(
ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f(τ, u(τ)dτ)ds

)
,

where G(t, s) is defined as (4.4).

Lemma 4.3. The Green’s function defined by (4.4) is continuous on [0, 1] × [0, 1]. Then
G(t, s) has the following properties:

(i) G(t, s) > 0 for t, s ∈ (0, 1).
(ii) Γ(α)

ρ1−α G(t, s) ≤ (1 − sρ)α−1sρ−1 for t, s ∈ (0, 1).
(iii) min

1/4≤t≤3/4
G(t, s) ≥ k(s)(1 − sρ)α−1sρ−1 for s ∈ (0, 1).

Proof. (i) Since tρ < 1 implies sρ

tρ > sρ thus we obtain 1 − sρ

tρ < 1 − sρ which gives
[tρ(1 − sρ)]α−1 − (tρ − sρ)α−1 > 0 for t ≥ s. And clearly, for t ≤ s, we have
[tρ(1 − sρ)]α−1 > 0. Hence G(t, s) > 0 for t, s ∈ (0, 1).

(ii) For t ≥ s, tρ(α−1) ≤ 1 yields [tρ(1 − sρ)]α−1 ≤ (1 − sρ)α−1 which implies [tρ(1 −
sρ)]α−1 − (tρ −sρ)α−1 ≤ (1−sρ)α−1. Thus we obtain Γ(α)

ρ1−α G(t, s) ≤ (1−sρ)α−1sρ−1

for t ≥ s.

And for t ≤ s, again we obtain Γ(α)
ρ1−α G(t, s) ≤ (1−sρ)α−1sρ−1. Hence Γ(α)

ρ1−α G(t, s) ≤
(1 − sρ)α−1sρ−1 for t, s ∈ (0, 1).

(iii) Next, we observe that G(t, s) is decreasing with respect to t for t ≥ s and increasing
with respect to t for t ≤ s. Now, we set

G1(t, s) = ρ1−α

Γ(α)
sρ−1[tρ(1 − sρ)]α−1 − (tρ − sρ)α−1, 0 ≤ s ≤ t ≤ 1,

G2(t, s) = ρ1−α

Γ(α)
sρ−1[tρ(1 − sρ)]α−1, 0 ≤ t ≤ s ≤ 1.

First we show that G1(t, s) is decreasing with respect to t for t ≥ s.
Taking derivative of G1 with respect to t, we have
∂G1(t,s)

∂t = ρ(α − 1)[tρ(α−1)−1(1 − sρ)α−1 − tρ−1(tρ − sρ)α−2] ≤ tρ−1[(1 − sρ)α−1 −
(tρ − sρ)α−2].
Since −1 < α − 2 ≤ 0, 0 < sρ < 1, we obtain −sρ < 0 =⇒ tρ − sρ < tρ < 1. Also
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we have tρ − sρ ≥ 0. Hence 0 ≤ tρ − sρ < 1 which implies (tρ − sρ)α−2 > 1, and
since (1 − sρ) < 1, we conclude that [(1 − sρ)α−1 − (tρ − sρ)α−2] < 0.

We have

min
1/4≤t≤3/4

G(t, s) =


G1(3/4, s), s ∈ (0, 1/4],
min{G1(3/4, s), G2(1/4, s)}, s ∈ [1/4, 3/4],
G2(1/4, s), s ∈ [3/4, 1),

=
{

G1(3/4, s), s ∈ (0, k],
G2(1/4, s), s ∈ [k, 1),

where 1/4 < k < 3/4 is the unique solution of the equation G1(3/4, s) = G2(1/4, s).

k(s) =


[(3/4)ρ(1−sρ)]α−1−((3/4)ρ−sρ)α−1

(1−sρ)α−1 , s ∈ (0, k],
(1

4)ρ(α−1), s ∈ [k, 1).
(4.5)

�

Before stating the next lemma, let us introduce the following notation:

Λ := ρ1−αsρ−1

Γ(α)(1 − βηρ(α−1))
.

Lemma 4.4. Let y(t) ∈ C[0, 1] and 1 < α ≤ 2. Then the boundary value problem
ρDα

0+u(t) + y(t) = 0, t ∈ (0, 1),
u(0) = 0, βu(η) = u(1),

(4.6)

where 0 < βηα−1 < 1, 0 < η < 1, and ρDα
0+ is the generalized fractional derivative, has a

unique solution

u(t) =
∫ 1

0
G(t, s)y(s)ds,

where

G(t, s) = Λ



[tρ(1 − sρ)]α−1 − (1 − βηρ(α−1))(tρ − sρ)α−1, 0 < η ≤ s ≤ t ≤ 1,

[tρ(1 − sρ)]α−1 − βtρ(α−1)(ηρ − sρ)α−1, 0 ≤ t ≤ s ≤ η < 1,

[tρ(1 − sρ)]α−1, 0 ≤ t ≤ s ≤ 1, η ≤ s,

[tρ(1 − sρ)]α−1 − βtρ(α−1)(ηρ − sρ)α−1 − (1 − βηρ(α−1))(tρ − sρ)α−1,

0 ≤ s ≤ t ≤ 1, s ≤ η.

(4.7)

Lemma 4.5. The boundary value problem for the generalized fractional differential equa-
tions (4.2) has a unique solution

u(t) =
∫ 1

0
G(t, s)ϕq

(
ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f(τ, u(τ)dτ)ds

)
,

where G(t, s) is defined as (4.7).

Lemma 4.6. The function G(t, s) defined by (4.7) satisfies G(t, s) > 0 for t, s ∈ (0, 1).

Proof. For 0 < s ≤ t ≤ 1, let

g1(t, s) = [tρ(1 − sρ)]α−1 − βtρ(α−1)(ηρ − sρ)α−1 − (1 − βηρ(α−1))(tρ − sρ)α−1

= tρ(α−1)
[
(1 − sρ)α−1 − β(ηρ − sρ)α−1 − (1 − βηρ(α−1))

(
1 −

(s

t

)ρ)α−1]
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Setting g(t) = (1 − sρ)α−1 − β(ηρ − sρ)α−1 − (1 − βηρ(α−1))
(
1 −

(
s
t

)ρ)α−1
, we obtain

g′(t) = −ρ(α − 1)(1 − βηρ(α−1))(1 − (s

t
)ρ)α−2 sρ

tρ+1 ≤ 0.

Thus g(t) is decreasing on (0, 1). And

g(1) = (1 − sρ)α−1 − β(ηρ − sρ)α−1 − (1 − βηρ(α−1))(1 − sρ)α−1

= −β(ηρ − sρ)α−1 + βηρ(α−1)(1 − sρ)α−1

= βηρ(α−1)
[
(1 − sρ)α−1 − (1 − ( s

η
)ρ)α−1

]
> 0.

Therefore, g1(t, s) > 0 for 0 < s < t ≤ 1, s ≤ η. As also for t = s, g1(t, s) > 0. So,
g1(t, s) > 0 for t, s ∈ (0, 1).
Now let

g2(t, s) = [tρ(1 − sρ)]α−1 − (1 − βηρ(α−1))(tρ − sρ)α−1, 0 < η ≤ s ≤ t ≤ 1,

g3(t, s) = [tρ(1 − sρ)]α−1 − βtρ(α−1)(ηρ − sρ)α−1, 0 ≤ t ≤ s ≤ η < 1,

g4(t, s) = [tρ(1 − sρ)]α−1, 0 ≤ t ≤ s ≤ 1, η ≤ s,

then in the same way as above, it is easy to show that g2(t, s) > 0, g3(t, s) > 0, g4(t, s) > 0.
Hence, for t, s ∈ (0, 1), G(t, s) > 0. �

Remark 4.7. For the problems (4.1) and (4.2), when ρ = 1, Green’s functions and their
properties are same as in [6], [7].

5. Applications
Let E = C[0, 1] be the Banach space equipped with the norm ∥u∥ = max

t∈[0,1]
|u(t)|. We

define P ⊂ E as

P =
{

u ∈ E : u(t) ≥ γ∥u∥, t ∈
[1
4

,
3
4

]}
, (5.1)

where γ = min
t∈[ 1

4 , 3
4 ]

(t − tα−1).

Let θ be the nonnegative continuous concave functional on the cone P defined by

θ(u) = min
1/4≤t≤3/4

|u(t)|,

then clearly θ(u) ≤ ∥u∥ for each u ∈ P.
Let T : E → E be an operator defined as

Tu(t) =
∫ 1

0
G(t, s)ϕq

(
ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f(τ, u(τ)dτ)ds

)
, (5.2)

then u ∈ E is a solution of (5.2) if and only if u ∈ E is a solution of (3.1).

Lemma 5.1. Let T be defined as in (5.2) and P in (5.1). Then T : P → P is completely
continuous.

Proof. Let u ∈ P. From (3.6), we have

∥Tu∥ ≤ ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1ϕq

(
ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f(τ, u(τ))dτ

)
ds. (5.3)
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From (5.3) and from (3.6), we obtain

Tu(t) ≥ ρ1−α

Γ(α)

∫ 1

0
(t − tα−1)(1 − sρ)α−1ϕq

(ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f(τ, u(τ)dτ

)
ds

= (t − tα−1)ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1ϕq

(ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f(τ, u(τ)dτ

)
ds

≥ (t − tα−1)∥Tu∥ ≥ γ∥Tu∥, t ∈
[1
4

,
3
4

]
.

Since f is continuous, it is easy to prove that T is continuous. Now we only need to show
that T is compact.
Let Ω ⊂ P be bounded that there exists a constant M > 0 such that ∥u∥ ≤ M for u ∈ Ω.
Let L = max

t∈[0,1],u∈[0,M ]
|f(t, u)| + 1, then for u ∈ Ω, we have

|Tu| ≤ ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1ϕq

(
ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f(τ, u(τ))dτ

)
ds

≤ ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1ϕq

(
Lρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1dτ

)
ds

= ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1ϕq

(
Lsβρ

ρβΓ(β + 1)

)
ds

= ρ1−α

Γ(α)
ϕq

(
L

ρβΓ(β + 1)

)∫ 1

0
(1 − sρ)α−1ϕq

(
sβρ
)

ds.

Hence T (Ω) is uniformly bounded. Further for any u ∈ Ω, t ∈ [0, 1], and 0 ≤ t1 ≤ t2 ≤ 1,
we have

|Tu(t1) − Tu(t2)| =
∫ 1

0

∣∣∣G(t1, s) − G(t2, s)
∣∣∣ϕq

(
ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f(τ, u(τ))dτ

)
ds,

where

G(t1, s) − G(t2, s) = ρ1−α

Γ(α)
sρ−1


[
(t1 − t2)(1 − sρ)α−1 −

(
(tρ

1 − sρ)α−1 − (tρ
2 − sρ)α−1) ], 0 ≤ s ≤ t ≤ 1,

[(t1 − t2)(1 − sρ)α−1], 0 ≤ t ≤ s ≤ 1.

Let ξ ∈ (t1, t2), by mean value theorem, we have

(tρ
1 − sρ)α−1 − (tρ

2 − sρ)α−1 = h′(ξ)(t1 − t2),
therefore we obtain

G(t1, s) − G(t2, s) = ρ1−α

Γ(α)
sρ−1(t1 − t2)


[
(1 − sρ)α−1 − h′(ξ)

]
, 0 ≤ s ≤ t ≤ 1,

[(1 − sρ)α−1], 0 ≤ t ≤ s ≤ 1
= (t1 − t2)Gs,

where Gs = G(t1,s)−G(t2,s)
(t1−t2) .

Thus, we get

|Tu(t1) − Tu(t2)| ≤ |t1 − t2|ϕq

( L

ρβΓ(β + 1)

) ∫ 1

0
Gsϕq(sβρ)ds.

That implies T (Ω) is equicontinuous. By Arzela-Ascoli theorem, T : P → P is completely
continuous. �
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Theorem 5.2. Assume f : [0, 1]×[0, +∞] → [0, +∞] is continuous and there exist distinct
ρ1, ρ2 > 0 such that

(H1) f(t, u) ≤ Γ(β)
ρ1−β ϕp(ρ1N) for (t, u) ∈ [0, 1] × [0, ρ1],

(H2) f(t, u) ≥ Γ(β)
ρ1−β ϕp(ρ2M) for (t, u) ∈ [1/4, 3/4] × [0, ρ2].

Then boundary value problem (3.1) has at least one positive solution u such that ρ1 ≤
∥u∥ ≤ ρ2.

Proof. Let 0 < ρ1 < ρ2. And for u ∈ P, by Lemma 5.1, Tu ∈ P and T is completely
continuous operator. Now let Ω1 = {u ∈ P : ∥u∥ < ρ1}. For u ∈ ∂Ω1, we have, ∥u∥ = ρ1.
So, for u ∈ P ∩ ∂Ω1, we get

∥Tu∥ ≤ ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1ϕq

(
ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f(τ, u(τ))dτ

)
ds

≤ ρ1−α

Γ(α)
ρ1N

∫ 1

0
(1 − sρ)α−1ϕq

(∫ s

0
(sρ − τρ)β−1τρ−1dτ

)
ds

= ρ1−α

Γ(α)
ρ1N

∫ 1

0
(1 − sρ)α−1ϕq

(
sβρ

βρ

)
ds = ρ1 = ∥u∥,

where N = Γ(α)
ρ1−α (

∫ 1
0 (1 − sρ)α−1ϕq

(
sβρ

βρ

)
ds)−1.

On the other hand, put Ω2 = {u ∈ P : ∥u∥ < ρ2}. For u ∈ ∂Ω2, ∥u∥ = ρ2. So, for
u ∈ P ∩ ∂Ω2, we obtain, for t ∈ [1/4, 3/4],

Tu(t) =
∫ 1

0
G(t, s)ϕq

(
ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f(τ, u(τ))dτ

)
ds

≥ ρ1−α

Γ(α)

∫ 3/4

1/4
(t − tα−1)(1 − sρ)α−1ϕq

(
ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f(τ, u(τ))dτ

)
ds

≥ ρ1−α

Γ(α)
ρ2M

∫ 3/4

1/4
γ(1 − sρ)α−1ϕq(sβρ

βρ
)ds = ρ2 = ∥u∥,

where M = Γ(α)
γρ1−α (

∫ 3/4
1/4 (1 − sρ)α−1ϕq

(
sβρ

βρ

)
ds)−1.

So, we have ∥Tu∥ ≥ ∥u∥, for u ∈ P ∩ ∂Ω2. Hence by Lemma 2.5, T has at least one fixed
point in P ∩ (Ω2/Ω1). �

Theorem 5.3. Suppose that f(t, u) is a nonnegative continuous function on [0, 1]× [0, ∞)
and there exist constants 0 < a < b < c such that the following assumptions hold:

(A1) f(t, u) < Γ(β)
ρ1−β ϕp(Na), for (t, u) ∈ [0, 1] × [0, a];

(A2) f(t, u) ≥ Γ(β)
ρ1−β ϕp(Mb), for (t, u) ∈ [1/4, 3/4] × [b, c];

(A3) f(t, u) ≤ Γ(β)
ρ1−β ϕp(Nc), for (t, u) ∈ [0, 1] × [0, c].

Then the BVP (3.1) has at least three positive solutions u1, u2, and u3 with

max
t∈[0,1]

|u1(t)| < a, b < min
t∈[1/4,3/4]

|u2(t)| < max
t∈[0,1]

|u2(t)| ≤ c,

a < max
t∈[0,1]

|u3(t)| ≤ c, min
t∈[1/4,3/4]

|u3(t)| < b.
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Proof. If u ∈ P c, then ∥u∥ ≤ c. Assumption (A3) implies f(t, u) ≤ Γ(β)
ρ1−β ϕp(Nc) for

0 ≤ t ≤ 1. Consequently,

∥Tu∥ = max
0≤t≤1

∣∣∣ ∫ 1

0
G(t, s)ϕq

(ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f(τ, u(τ))dτ

)
ds
∣∣∣

≤ Nc
ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1ϕq(sβρ

βρ
)ds

≤ Nc ϕq

( 1
βρ

)
ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1ϕq(sβρ)ds = c.

This implies T : P c → P c. Using the same argument as in the proof of the Lemma 5.1, we
can show that T : P c → P c is completely continuous. In the same way, if u ∈ P a, then
assumption (A1) yields f(t, u) < Γ(β)

ρ1−β ϕp(Na), 0 ≤ t ≤ 1. Therefore, condition (C2) of
Lemma 2.4 is satisfied. To check condition (C1) of Lemma 2.4, we select u(t) = b+c

2 , 0 ≤
t ≤ 1. So, u(t) = b+c

2 ∈ P (θ, b, c), θ(u) = θ( b+c
2 ) > b, consequently, {u ∈ P (θ, b, c) : θ(u) >

b} ̸= ϕ.

From assumption (A2), we have, f(t, u) ≥ Γ(β)
ρ1−β ϕp(Mb), for t ∈ [1/4, 3/4]. So,

θ(Tu) = min
1/4≤t≤3/4

|Tu(t)|

≥ Mb
ρ1−α

Γ(α)

∫ 3/4

1/4
γ(1 − sρ)1−αϕq

(
sβρ

βρ

)
ds = b

for all u ∈ P (θ, b, c).
Hence by Lemma 2.4 the BVP (3.1) has at least three positive solutions u1, u2 and u3. �

Define the cone Q ⊂ E by Q = {u ∈ E : u(t) ≥ 0, u(t) ≥ k1∥u∥}, where k1 is given by
k1 = min{k(s)} < 1.
Here we give results for the existence of positive solutions of problem (4.1) by assuming
that f(t, u) = k1f1(t)f2(u).
We define the operator F : E → E by Fu(t) =

∫ 1
0 G(t, s)ϕq(ρIβ

0+f(s, u(s)))ds. Further, we
assume that f1 and f2 are nonnegative and k1 > 0. We denote

f0 = lim
u→0+

f2(u)
ϕp(u)

, f∞ = lim
u→+∞

f2(u)
ϕp(u)

. (5.4)

Lemma 5.4. Let F : Q → E be the operator defined by

Fu(t) =
∫ 1

0
G(t, s)ϕq(ρIβ

0+f(s, u(s)))ds.

Then F : Q → Q is completely continuous.

Proof. In the view of continuity and nonnegativeness of the functions G and f, F : Q → Q
is continuous.
Let Ω ⊂ Q be bounded, then for all u ∈ Ω there exists a positive constant M1 > 0 such
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that ∥u∥ ≤ M1. Let L = |f(t, u)|
t∈[0,1], u∈[0,M1]

+ 1, then for u ∈ Ω, we have

|Fu| ≤
∫ 1

0
G(t, s)ϕq(ρIβ

0+f(s, u(s)))ds

≤ ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1sρ−1ϕq(ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τ ρ − 1)f(τ, u(τ)dτ)ds

≤ ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1sρ−1ϕq( Lsβρ

ρβΓ(β + 1)
)ds

= ρ1−α

Γ(α)
ϕq( L

ρβΓ(β + 1)
)
∫ 1

0
(1 − sρ)α−1sρ−1ϕq(sβρ)ds.

Hence F (Ω) is uniformly bounded.
For any u ∈ Ω, t ∈ [0, 1] and 0 ≤ t1 ≤ t2 ≤ 1, we obtain

|Fu(t1) − Fu(t2)| =
∫ 1

0
|G(t1, s) − G(t2, s)|ϕq(ρIβ

0+f(s, u(s)))ds

where

G(t1, s) − G(t2, s) = ρ1−α

Γ(α)
sρ−1(tρ(α−1)

1 − t
ρ(α−1)
2 ){

(1 − sρ)α−1 − ((tρ
1 − sρ)α−1) − (tρ

2 − sρ)α−1), 0 ≤ s ≤ t ≤ 1
(1 − sρ)α−1, 0 ≤ t ≤ s ≤ 1.

Clearly, as t1 → t2, G(t1, s) − G(t2, s) → 0.
This implies that F (Ω) is equicontinuous. Hence by Arzela-Ascoli theorem F : Q → Q

is completely continuous. �
Theorem 5.5. Let (5.4) hold. Assume that if

(H1) f0 = ∞ and f∞ = 0, or
(H2) f0 = 0 and f∞ = ∞,

then for all k1 > 0 the boundary value problem (4.1) has a positive solution.

Proof. Consider (H1). Since f0 = ∞, then there exists a constant ρ1 > 0 such that
f2(u) > ϕp(M |u|) for 0 < |u| < ρ1, where

M >
( ∫ 3/4

1/4
k(s)(1 − sρ)α−1sρ−1ϕq

(k1ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f1(τ)dτ

)
ds
)−1

.

Take u ∈ Q, such that ∥u∥ = ρ1, then

∥Fu∥ = max
t∈[0,1]

∣∣∣ ∫ 1

0
G(t, s)ϕq(ρIβ

0+f(s, u(s)))ds
∣∣∣

≥
∫ 3/4

1/4
k(s)(1 − sρ)α−1sρ−1ϕq

(k1ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f1(τ)ϕp(M |u|)dτ

)
ds

≥
∫ 3/4

1/4
k(s)(1 − sρ)α−1sρ−1ϕq

(k1ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f1(τ)ϕp(Mk1∥u∥)dτ

)
ds

≥ M∥u∥
∫ 3/4

1/4
k(s)(1 − sρ)α−1sρ−1ϕq

(k1ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f1(τ)dτ

)
ds

> ∥u∥.

Now since f∞ = 0, there exists N0 > 0 for

N <
(ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1sρ−1|u|ϕq

(ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f1(τ)dτ

)
ds
)−1

,
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such that f2(u) ≤ ϕp(N |u|) for |u| ≥ N0. Therefore, f2(u) ≤ ϕp(N |u| + ϵ), where ϵ =
max0≤u≤N0 f2(u) +1. Let Ωρ2 = {u ∈ Q/∥u∥ < ρ2}. Take u ∈ Q such that ∥u∥ = ρ2 where
ρ2 > {ρ1, 2ϵρ1−α

Γ(α)
∫ 1

0 (1 − sρ)α−1sρ−1ϕq

(
ρ1−β

Γ(β)
∫ s

0 (sρ − τρ)β−1τρ−1f1(τ)dτ
)
ds}, so, we have

|Fu| ≤ ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1sρ−1ϕq

(k1ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f1(τ)ϕp(N |u| + ϵ)dτ

)
ds

≤ ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1sρ−1(N |u| + ϵ)ϕq

(ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f1(τ)dτ

)
ds

≤ ρ1−α

Γ(α)
N

∫ 1

0
(1 − sρ)α−1sρ−1|u|ϕq

(ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f1(τ)dτ

)
ds

+ ρ1−α

Γ(α)
ϵ

∫ 1

0
(1 − sρ)α−1sρ−1ϕq

(ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f1(τ)dτ

)
ds

≤ ρ2
2

+ ρ2
2

= ρ2.

This implies ∥Fu∥ ≤ ∥u∥. It follows from Lemma 2.5 (ii) that F has at least one fixed
point u in Q ∩ (Ωρ2/Ωρ1).

Now consider (H2), that is f0 = 0 and f∞ = ∞.
Now, since f0 = 0, then there exists a positive constant ρ1 such that f2(u) < ϕp(ϵ|u|),
whenever 0 < |u| < ρ1, where

ϵ <
(ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1sρ−1ϕq(k1ρ1−α

Γ(β)

∫ s

0
(sρ − τρ)β−1)τρ−1f1(τ)dτ)ds

)−1
.

Let Ωρ1 = {u ∈ Q : ∥u∥ < ρ1}. For u ∈ Q, such that ∥u∥ = ρ1, we have

|Fu| ≤
∣∣∣ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1sρ−1ϕq(ρIβ

0+f(s, u(s)))ds
∣∣∣

≤ ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1sρ−1ϕq(k1ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f1(τ)ϕp(ϵ|u|)dτ)ds

≤ ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1sρ−1ϕq(k1ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f1(τ)ϕp(ϵ∥u∥)dτ)ds

≤ ϵ∥u∥ρ1−α

Γ(α)

∫ 1

0
(1 − sρ)α−1sρ−1ϕq(k1ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f1(τ)dτ)ds

< ∥u∥,

which implies ∥Fu∥ ≤ ∥u∥. Next, as f∞ = ∞, there exists N0 > 0 such that f2(u) >
ϕp(M |u|), whenever N0 < |u|, where

M >
( ∫ 3/4

1/4
k(s)(1 − sρ)α−1sρ−1ϕq(k1ρ1−β

Γ(β)

∫ s

0
(sρ − τρ)β−1τρ−1f1(τ)dτ)ds

)−1
.

Let Ωρ2 = {u ∈ Q : ∥u∥ < ρ2}. Take u ∈ Q such that ∥u∥ = ρ2, where ρ2 > {ρ1, N0
k }. For

1/4 ≤ t ≤ 3/4, using the same procedure as above, we obtain ∥Fu∥ > ∥u∥.
Hence from Lemma 2.5, it follows that F has at least one fixed point u in Q∩(Ωρ2/Ωρ1). �

Define the cone K ⊂ E by

K = {u ∈ E : u(t) ≥ 0, 0 ≤ t ≤ 1}.
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Lemma 5.6. Let Φ : K → E be the operator defined by

Φu(t) =
∫ 1

0
G(t, s)ϕq

(
ρIβ

0+f(s, u(s))
)

ds

= −ρ1−α

Γ(α)

∫ t

0
(tρ − sρ)α−1sρ−1ϕq

(
ρIβ

0+f(s, u(s))
)

ds

+ 1
(1 − βηρ(α−1))

ρ1−α

Γ(α)

∫ 1

0
tρ(α−1)(1 − sρ)α−1sρ−1ϕq

(
ρIβ

0+f(s, u(s))
)

ds

− β

(1 − βηρ(α−1))
ρ1−α

Γ(α)

∫ η

0
tρ(α−1)(ηρ − sρ)α−1sρ−1ϕq

(
ρIβ

0+f(s, u(s))
)

ds,

where G(t, s) is defined as (4.7). Then Φ : K → K is completely continuous.

Proof. As a result of the continuity and nonnegativity of G(t, s) and f(t, u), the operator
Φ : K → K is continuous. Let Ω ⊂ K be bounded, then there exists a constant M > 0
such that ∥u∥ ≤ M, for all u ∈ Ω. Let L = |f(t, u(t))| + 1

t∈[0,1], u∈[0,M ]
, then for u ∈ Ω, we have

|Φu(t)| =
∣∣∣ ∫ 1

0
G(t, s)ϕq

(
ρIβ

0+f(s, u(s))
)

ds
∣∣∣

≤ ϕq

( L

ρβΓ(β + 1)

) ∫ 1

0
max
0≤t≤1

G(t, s)ϕq(sβρ)ds.

Hence, Φ(Ω) is bounded. For each u ∈ Ω, t1, t2 ∈ [0, 1], t1 < t2, we have

|Φu(t2) − Φu(t1)| =
∣∣∣− ρ1−α

Γ(α)

∫ t

0
(tρ − sρ)α−1sρ−1ϕq

(
ρIβ

0+f(s, u(s))
)

ds

+ 1
(1 − βηρ(α−1))

ρ1−α

Γ(α)

∫ 1

0
tρ(α−1)(1 − sρ)α−1sρ−1ϕq

(
ρIβ

0+f(s, u(s))
)

ds

− β

(1 − βηρ(α−1))
ρ1−α

Γ(α)

∫ η

0
tρ(α−1)(ηρ − sρ)α−1sρ−1ϕq

(
ρIβ

0+f(s, u(s))
)

ds
∣∣∣

≤
∣∣∣ρ1−α

Γ(α)

∫ t2

0
(tρ

2 − sρ)α−1sρ−1ϕq

(
ρIβ

0+f(s, u(s))
)

ds

− ρ1−α

Γ(α)

∫ t1

0
(tρ

1 − sρ)α−1sρ−1ϕq

(
ρIβ

0+f(s, u(s))
)

ds
∣∣∣

+
∣∣∣ 1
(1 − βηρ(α−1))

ρ1−α

Γ(α)

∫ 1

0
t
ρ(α−1)
2 (1 − sρ)α−1sρ−1ϕq

(
ρIβ

0+f(s, u(s))
)

ds

− 1
(1 − βηρ(α−1))

ρ1−α

Γ(α)

∫ 1

0
t
ρ(α−1)
1 (1 − sρ)α−1sρ−1ϕq

(
ρIβ

0+f(s, u(s)
) ∣∣∣

+
∣∣∣ β

(1 − βηρ(α−1))
ρ1−α

Γ(α)

∫ η

0
t
ρ(α−1)
2 (ηρ − sρ)α−1sρ−1ϕq

(
ρIβ

0+f(s, u(s))
)

ds

− β

(1 − βηρ(α−1))
ρ1−α

Γ(α)

∫ η

0
t
ρ(α−1)
1 (ηρ − sρ)α−1sρ−1ϕq

(
ρIβ

0+f(s, u(s))
)

ds
∣∣∣

≤ ρ1−α

Γ(α)
ϕq

( L

ρβΓ(β + 1)

)∣∣∣ ∫ t1

0

(
(tρ

2 − sρ)α−1 − (tρ
1 − sρ)α−1

)
sρ−1ϕq(sβρ)ds

+
∫ t2

t1
(tρ

2 − sρ)α−1sρ−1ϕq(sβρ)ds
∣∣∣

+ |tρ(α−1)
2 − t

ρ(α−1)
1 |

(1 − βηα−1)
ϕq

( L

ρβΓ(β + 1)

) ∫ 1

0
(1 − sρ)α−1sρ−1ϕq(sβρ)ds
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+ β|tρ(α−1)
2 − t

ρ(α−1)
1 |

(1 − βηα−1)
ϕq

( L

ρβΓ(β + 1)

) ∫ η

0
(ηρ − sρ)α−1sρ−1ϕq(sβρ)ds

≤ ρ1−α

Γ(α)
ϕq

( L

ρβΓ(β + 1)

)
(t2 − t1)

∣∣∣ ∫ t1

0
h′(ξ)sρ−1ϕq(sβρ)ds

∣∣∣
+
∣∣∣ ∫ t2

t1
(tρ

2 − sρ)α−1sρ−1ϕq(sβρ)ds
∣∣∣

+ |tρ(α−1)
2 − t

ρ(α−1)
1 |

(1 − βηα−1)
ϕq

( L

ρβΓ(β + 1)

) ∫ 1

0
(1 − sρ)α−1sρ−1ϕq(sβρ)ds

+ β|tρ(α−1)
2 − t

ρ(α−1)
1 |

(1 − βηα−1)
ϕq

( L

ρβΓ(β + 1)

) ∫ η

0
(ηρ − sρ)α−1sρ−1ϕq(sβρ)ds → 0,

as t1 → t2. Thus, by means of Arzela-Ascoli theorem, Φ : K → K is completely continuous.
�

Theorem 5.7. Suppose f(t, u) satisfies f(t, 0) ̸= 0, t ∈ (0, 1) and

0 ≤ lim
u→∞

max
t∈[0,1]

f(t, u)
ϕp(u)

< (1 − βηρ(α−1))Γ(α). (5.5)

Then, the problem (4.6) has at least one positive solution.

Proof. In view of the continuity and nonnegativity of f from (5.5), there exists λ > 0, 0 <

M < (1 − βηρ(α−1))Γ(α) such that for t ∈ [0, 1], u ∈ [0, +∞), we have

0 ≤ f(t, u) < ϕp

( M

ρβΓ(β + 1)
u + λ

)
.

Let

KR =
{

u ∈ K :
∥∥∥∥u − λ

∫ 1

0
G(t, s)ϕq(sβρ)ds

∥∥∥∥ ≤ R

}
be a convex, bounded, and closed subset of the Banach space E.
For u ∈ KR, we obtain

∥u∥ ≤ λ

∥∥∥∥∫ 1

0
G(t, s)ϕq(sβρ)ds

∥∥∥∥+ R

≤ R + λ

(1 − βηρ(α−1))Γ(α)
,

and∣∣∣∣Φu(t) − λ

∫ 1

0
G(t, s)ϕq(sβρ)ds

∣∣∣∣ ≤
∫ 1

0
G(t, s)

∣∣∣ϕq(ρIβ
0+f(s, u(s)) − λϕq(sβρ))

∣∣∣ ds

≤ max
{

M∥u∥
(1 − βηρ(α−1))Γ(α)

,
λ

(1 − βηρ(α−1))Γ(α)

}

≤ max

M
[
R + λ

(1−βηρ(α−1))Γ(α)

]
(1 − βηρ(α−1))Γ(α)

,
λ

(1 − βηρ(α−1))Γ(α)


≤ R,

whenever R ≥ λ
(1−βηρ(α−1))Γ(α)−M

M
(1−βηρ(α−1))Γ(α) .

Hence by Schauder fixed point theorem the operator Φ has at least one fixed point in
KR. �
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Example 5.8. Consider the boundary value problem of generalized fractional differential
equation

ρ
cDβ

0+(ϕp(ρ
cDα

0+u(t))) + f(t, u(t)) = 0, t ∈ (0, 1),
u(0) = u(1) = u′′(0) = 0, ρ

cDα
0+u(0) = 0,

(5.6)

where ρ = 3/2, β = 1/2, p = 4/3, α = 5/2 and f(t, u(t)) =
√

t + | sin u|
1+t3 .

By computations, we have

N = Γ(α)
ρ1−α

(
∫ 1

0
(1 − sρ)α−1ϕq

(
sβρ

βρ

)
ds)−1 = 5,

M = Γ(α)
γρ1−α

(
∫ 3/4

1/4
(1 − sρ)α−1ϕq

(
sβρ

βρ

)
ds)−1 = 98.

We choose ρ1 = 1.5708, ρ2 = 8, thus we obtain
Γ(β)
ρ1−β

ϕp(ρ1N) ≈ 2.9,
Γ(β)
ρ1−β

ϕp(ρ2M) ≈ 13.34.

Now, for (t, u) ∈ [0, 1] × [0, ρ1], f(t, u(t)) ≤ 1.59899 and for (t, u) ∈ [1/4, 3/4] × [0, ρ2],
f(t, u(t)) ≥ 0.5.

Conditions (H1) and (H2) of Theorem 5.2 hold, therefore, the problem (5.6) has at least
one positive solution u such that 1.5708 ≤ ∥u∥ ≤ 8.

Example 5.9. Consider the boundary value problem of the generalized fractional differ-
ential equation

ρDβ
0+(ϕp(ρDα

0+u(t))) + f(t, u(t)) = 0, t ∈ (0, 1),
u(0) = u(1) = 0, ρDα

0+u(0) = 0,
(5.7)

where β = 1/2, ρ = 2, p = 2, α = 3/2, and f(t, u(t)) = k1
u3t2

2 e
uπ
2 , where f1(t) =

t2

2 , f2(u) = u3e
πu
2 satisfy (5.4) and the condition (H2) of Theorem 5.5. For k = 3/5, we

have k1 = 1/4 > 0. Therefore, the boundary value problem (5.7) has a positive solution.
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