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Abstract

We utilize the recently presented generalized fractional derivatives, which are not the
same as standard Caputo and Riemann-Liouville fractional derivatives, to reformulate
some boundary value problems of fractional differential equations. For some classes of
generalized fractional differential equations with boundary conditions build up, we find the
corresponding Green’s functions and establish their properties under suitable assumptions
and we also demonstrate the applicability of these properties of the Green’s functions to
establish some existence results via fixed point theorems.
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1. Introduction

Fractional differential equations have attracted extensive interest at recent times. It
is due to the intensive development of the theory of fractional calculus and because of
the utilizations of such developments in the various fields of sciences and engineering
[1-3,5-9,12,15,21,23-25,27].

Amid the previous decades, many considerations have been centered around the inves-
tigation of conditions with p-Laplacian differential operator. The inspiration for those
works comes from the applications of different physical and natural phenomena. The re-
searchers tried to suggest several types of fractional operators to describe more accurately
these phenomena [4]. The Caputo-Katugampola fractional operator generalizes the clas-
sical Caputo fractional operator. Models based on generalized fractional derivatives may
be more accurate than the models based on classical fractional derivatives. There exist
a substantial number of papers committed to the existence of solutions for the equations
with p-Laplacian operators [10,20].

Much attention is paid to the investigation of the existence and multiplicity of positive
solutions for boundary value problems of fractional differential equations by applying
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different techniques from nonlinear analysis (fixed-point theorems [16, 26, 29, 31], upper
and lower solutions method [11,22], fixed-point index theory [32], etc.).

The boundary value problems of fractional differential equations with p-Laplacian have
been studied in [13,28]. However to the best of our knowledge, no work has been found in
the literature on the existence of multiple positive solutions for the generalized fractional
boundary value problems with p-Laplacian. Motivated by some results in [17,18], in this
article, with the fractional differential equations and boundary conditions established,
we find the corresponding Green’s functions and prove their positivity under appropriate
assumptions. We also demonstrate the applications of the properties of Green’s functions
by making the use of fixed point theorems.

The sections of this article are organized as follows. In Section 2, we present some
definitions and lemmas. In Section 3 and 4, we derive the Green’s functions of Caputo
type and Riemann-Liouville type boundary value problems with generalized fractional
derivatives and establish some useful properties. Applications are given in Section 5.

2. Preliminaries

In this section, we give some background materials from the the theory of fractional
calculus to facilitate analysis of the boundary value problems.

Definition 2.1 ([19]). The general left-sided fractional integral
11—« T p—1
p ™ f(7)
pre — d 2.1
a+f(x) F(a) /a (xp _ Tp)l—a T ( )

for x > a, p > 0, if the integral exists.
The generalized fractional derivative [19], corresponding to the generalized fractional in-
tegral (2.1), is defined for 0 < a < z, by

o ot d o, f TP ()
pDaJrf(x)—m(ﬂﬁ p%) /a (:L,p_,rp)a*n+1d7— (2.2)

if the integral exists.

Definition 2.2 ([19]). Let n = [Re(a)]. If f € AC}a,b], then Caputo type generalized
fractional derivative, £D¢, is defined as

e _ [ pna _n—l :ukf(a) tr—af k‘|
5Da+f<x>—<Da+ [f(t) >t () )u),

1-pd

where = x" 7P

Definition 2.3 ([30]). The map 6 is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E provided that 6 : P — [0, 00) is continuous and
O(tr + (1 —t)y) > t0(x) + (1 — t)0(y) for all x,y € P and ¢ € [0, 1].

Lemma 2.4 ([30]). Let P be a cone in a real Banach space E, P.={x € P: ||z|| <c}, 6
a nonnegative continuous functional on P such that 0(x) < |z| for all x € P., and
P(0,b,d) = {z € P:b<0(x), |z| <d}. Suppose F: P, — P, is completely continuous
and there exist constants 0 < a < b < d < ¢ such that

(Cy) {z € P(0,b,d) : 0(x) > b} # ¢ and O(Fx) for x € P(0,b,d);

(C2) ||Fx|| < a for x < a;

(C3) 8(Fz) > b for x € P(0,b,c) with |[Fx| > d.
Then F has at least three fized points x1,xa, xg with ||z1|| < a, b < 0(x2), a < ||z3|| with
9(1’3) =b.
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Lemma 2.5 ([14]). Let E be a Banach space and P C E be a cone. Assume 21 and
Qo are open discs contained in E with 0 € Q1, and y C Q. Furthermore, assume that
T: PN (/) — P be completely continuous operator such that either

(@) [|[Tul] < |lu|| forwe KNoQ and ||Tu|| > ||u|| for u e K NOQs, or
(i7) |[Tull > ||u| for ue KN oQy and |[Tul| < ||u| for u e K N 0Qs.

Then T has at least one fized point in K N (Q2/Q1).

3. Caputo type generalized fractional differential equations

In this section, we consider the following two Caputo type boundary value problems of
generalized fractional derivatives:

ng+(¢p(ng+u(t))) + f(t,U(t)) = 07 1< p < 27 2<a< 37 0< 5 < 17 le (07 1)a

3.1
u(0) = u(1) =u"(0) =0, £Dg,u(0) =0, (3.1)
and
g, (6p(Du®)) — f(u(®) =0, 0<p<L 1<a<2 0<F<L el 4
u(0) +4'(0) =0, u(l)+u'(1) =0, £Dgu(0) =0, '
where 2D, , @Dng denote the generalized fractional derivatives, ¢,(s) = |s[P7%s, p >
1, gb;l = ¢y, %4— % =1,and f:]0,1] x [0,+00) — [0, +00) is continuous.
Lemma 3.1. Let y € C[0,1] and 2 < a < 3. Then the boundary value problem
PDSult) +y(t) =0, 1< p<2, te (1),
" (3.3)
u(0) = u(1) = u"(0) =0,
where £.D, denotes the generalized fractional derivative, has a unique solution
1
ult) = [ Gt.9)yls)ds
0
where
Glt. ) — plmasPmh (21— 5Pl — (1P — 5P 0<s<t <1, 34
(75)—W t2P(1 — sP)o~ 1, 0<t<s<l. (3-4)

Lemma 3.2. The boundary value problem for the generalized fractional differential equa-
tions (3.1) has a unique solution

1 1-8 s
:/0 G(t,s)pq <§(5) /0 (s — Tp)ﬁ—lTp—lf(T,u(T)dT)ds> ,
where G(t,s) is defined as (3.4).

Proof. From Lemma 3.1 and the boundary value problem (3.1), we have

P10 0DS, ($(EDGult)) = —PI, f(t,ult))
= ¢p(¢ DG u(t) — dp(t DG u(0))
= ¢p(0DG ult)).
This implies
op(PDGu(t)) = — 17, (¢, u(t)).

So we have

EDGu(t) = =g (P11, [ (1 u(1))).
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Thus (3.1) is equivalent to the following problem:
£DG u(t) + ¢g(PIy f(tu()) = 0, t € (0,1),
u(0) = u(1) = u"(0) = 0, £Dg.u(0)) =

And so, Lemma 3.1 implies that (3.5) has a unique solution

75 s
- ['6t.)a, (ﬁ( 5 - T”)ﬁ‘lf"‘lf(ﬂu(f)dﬂds) ,
where G(t, s) is defined as (3.4). O

Lemma 3.3. The Green’s function defined by (3.4) is continuous on [0,1] x [0,1]. Then
G(t,s) also has the following properties:

(i) G(t,s) >0 fort,s € (0,1).

(ii) (2 — @Dy (1 — syt < Tla

\_/

2G(t,s) < (1—sP)L fort, s €(0,1).
Proof. Since 2 < a < 3, then
(1) 21— sP)@ L — (1P — sP)27L > 2P(1 — sP)o L — (#P — sPtP) o]
= (% — ") (1 — 7))L > 0, t,5 € (0,1).
So, we have G(t,s) > 0 for t € (0,1).

(i) Q-5 <1-5)21 = (1-s) 12 - (tF —s") L < (1 —sP)* !

F(f”(zc:(t, s) < (1—sP) L,

L
From (i) and (i7), we have
(%0 — rle=Dy(1 — sP)2 1 < pl(_ch(t, s) < (1—sP)* L, (3.6)
U
Lemma 3.4. Let y(t) € C[0,1] and 1 < a < 2. Then the boundary value problem
PDgu t)=0, 0<p<1, te(0,1),
oru(t) —y(t) (0,1) (3.7)

u(0) +u/'(0) =0, wu(l)+u/'(1)=0,

where DS, denotes the generalized fractional derivative, has a unique solution

= /1 G(t,s)y(s)ds
0

where
oot [ A= [0 = )72 4 by (1 - )]

Gt,s) =2 = 0 4 (tp—sp)ol, 0<s<t<1, (3.8
[(a—1) (1— t)[(l—s”)a2+( iy (1 —s7)” Doo<t<s<1.

Lemma 3.5. The boundary value problem for the generalized fractional differential equa-
tions (3.2) has a unique solution

- ['ct.)a, (% [ =yt u(T)dT)ds> ,
where G(t,s) is defined as (3.8).

Lemma 3.6. Let y(t) € C[0,1] be a given function, then function G(t,s) defined by (3.8)
has the following properties:

Ai. G(t,s) € C([0,1] x [0,1]), and G(t,s) > 0 fort,s € (0,1);
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As. There exists a positive function v € C(0,1) such that
min  G(t,s) > y(s)M(s), se€(0,1),

1/4<t<3/4
<
o%‘f‘gle(t’ s) < M(s),
where
l—ap—1 2
P 5 Qa2 2 (] gpyal
M(s) : eT (1) +p(a_1)(1 )1, s € (0,1),
Proof. (A;) is obvious. We will prove (As2) only.
Let
l1—ap—1 1 1
_p s 4P Py —2 _ wpya—1 p _ pya—1
Gi(ts) = oy (=) (a-s) e )+a_1(t s, s <,
l—ap—1 1
_ 14 S Y P2 _ gpya—l1
Ga(t:8) = T =gy (1 =) s (1) ] t< s

For given s € (0,1), Ga(t, s) is decreasing with respect to ¢t and Gi(¢,s) is a continuous
function for 1/4 <t < 3/4. Thus, we have

plfaspfl 3 o 1 o
Gl(t,S)Zm(l—(Z)p)[(l—Sl)) 2+/)(T—1)(1_8p) 1:|, fOI' 1/4§t§3/4,
l—ap—1 2
Orgtagxl Gi(t,s) < 7?‘(04 i 0 [(1 — SP)a—2 + — (1- Sp)a—l}’
: _ _ pl—asp—l 3 a—2 1 a—1
i Ga(t,s) = G2(3/4,s) = m(l = (PNIA =577+ m(l —s)*],
Galt,s) = Gal0,5) = 2 (1 — g0y L (1)t
quax, Gt 5) = Ga ’S)_m[( =) +m( — ")
pliaspil a—2 2 a—1
<m[(1—8’0) +m(1—8p) ]
Thus, we have
. pliaspil 3 P pyx—2 1 pya—1
1/421;23/463(@8) > m(s) = m(l— (1) (A=) + o= 1)(1—5 )*] s €(0,1),
lfaspfl
max G(t,s) < M(s) = %7_”[(1 —sP)* 72 4 p(a2— 0 (1—s7)*71), s€(0,1).

Let

— _ 3oy Pla=1)(1 =) 2 4 (1 —sP) !
V(s) = m(s)/M(s) = (1 - (1)p)p(a —1)(1 — sP)o2 4 2(1 — sp)o—1’

s € (0,1).

O

Remark 3.7. For the problems (3.1) and (3.2), when p = 1, Green’s functions and their
properties are same as in [12], [31].

4. Riemann-Liouville type generalized fractional differential equations

In this section, we consider the following two Riemann-Liouville type boundary value
problems of generalized fractional derivatives:
DY, (6p(PDG ut)) + f(tu(t) =0, 1<a <2, 0<B <1, te(0,1),

u(0) = u(1) =0, *D§u(0) =0, (4.1)
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and
Dy Gy D) + [ u(®) =0, 1<a <2 0<F<L e, o
u(0) =0, Bu(n) = u(l), *Dju(0) =0, '
where D, , ng . denote the generalized fractional derivatives, ¢,(s) = [s|P72%s, p >
1L, ¢, = ¢q, %—i— % =1, and f:0,1] x [0, +00) — [0, +00) is continuous.
Lemma 4.1. Lety € C[0,1] and 1 < a < 2. Then the boundary value problem
PDgu(t) +y(t) =0, t € (0,1),
o+ u(t) +y(t) (0,1) (4.3)
u(0) = u(1) = 0,
where P D¢, denotes the generalized fractional derivative, has a unique solution
1
ult) = [ Glt,s)y(s)ds.
0
where
l—a p—1 (1 _ P\\a—1 _ (4p _ pya—1
_p s (tP(1 —s”)) (tr—sP)*", 0<s<t<l,
Glt.s) = T («) { (tP(1 — sP))o L, 0<t<s<l1. (4:4)

Lemma 4.2. The boundary value problem (4.1) for the generalized fractional differential
equations has unique solution

1-B s
u(t) = /01 G(t,5)0q <§(5) /0 (s” — TP)B—lTp—lf(T,u(T)dT)ds> ,

where G(t,s) is defined as (4.4).

Lemma 4.3. The Green’s function defined by (4.4) is continuous on [0,1] x [0,1]. Then
G(t,s) has the following properties:

(i) G(t,s) >0 fort,s € (0,1).

(i) HG(t, s) < (1—sP)2Ls~1 fort,s € (0,1).

ii)

pl—a
ees . > 1— pya—1p—1 1).
(iii 1/41;1%13/46’(15, s) > k(s)(1—s”)*1sP~t for s € (0,1)

Proof. (i) Since t” < 1 implies i—Z > s” thus we obtain 1 — i—:: < 1 — s” which gives

[tP(1 — sP)]* 1 — (1P — sP)2"L > 0 for t > s. And clearly, for t < s, we have
[tP(1 — s”)]*"1 > 0. Hence G(t,s) > 0 for t,s € (0,1).

(ii) For t > s, t*@~1) < 1 yields [t°(1 — s?)]*"! < (1 — s?)*~! which implies [t(1 —
57|27t — (P — 57)271 < (1— 7)1, Thus we obtain L G(t,s) < (1—57)* Ls#~!
for t > s.
And for t < s, again we obtain ll;l(f‘lG(t, 5) < (1—sP)*" 15?1 Hence 51(32 G(t,s) <
(1 —s”)2"tsP~L for t,s € (0,1).

(iii) Next, we observe that G(t, s) is decreasing with respect to ¢ for t > s and increasing
with respect to t for ¢t < s. Now, we set

l1-a
Gi(t,s) = ﬁ(a)sp_l[tp(l — )Tl s 0<s<t<I1,
plfa
Go(t,s) = Z—sP1tP(1 — ")), 0<t<s<1.

[(a)
First we show that G(t, s) is decreasing with respect to ¢ for ¢t > s.
Taking derivative of G; with respect to t, we have
PR = pla — [T 1 )0 - @ - )0 < (1 - )
(tP — sP)*72].
Since —1 <a—2<0, 0< s” <1, we obtain —s? < 0 = tP — s <t < 1. Also
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we have t¥ — s” > 0. Hence 0 < t” — s” < 1 which implies (t* — s?)*~2 > 1, and
since (1 — s”) < 1, we conclude that [(1 — s”)*~1 — (t/ — sP)*72] < 0.
We have
G1(3/4,5), s € (0,1/4],
1/41%1%13/463(15, s) = min{G1(3/4,s),G2(1/4,s)}, s € [1/4,3/4],
G2(1/4a S)a s € [3/47 1)7
B G1(3/4,s), s € (0,k],
| Ga(1/4,5), s €[k, 1),
where 1/4 < k < 3/4 is the unique solution of the equation G1(3/4, s) = Ga(1/4, s).

(B/9)P(A—sP)]* 1 —((3/4)P—sP)* 1
]{?(S): { ( 9 86(07k]7

)=

1—sp)ot 4.5
e s e [k, 1), (4:5)

0

Before stating the next lemma, let us introduce the following notation:
pl-agnr—1
 D(a)(1 = pyrleD)’
Lemma 4.4. Let y(t) € C[0,1] and 1 < a < 2. Then the boundary value problem
PDgu(t) +y(t) =0, t €(0,1),
u(0) =0, Bu(n) = u(1),

where 0 < Bn®~1 <1, 0<n <1, and PDGy is the generalized fractional derivative, has a
unique solution

(4.6)

utt) = [ Gt syuls)is,

where

[
[

G(t,s)=Aq [tP(1—s”))*!, 0<t<s<1, n<s,
[

0<s<t<1, s<n.
(4.7)

Lemma 4.5. The boundary value problem for the generalized fractional differential equa-
tions (4.2) has a unique solution

1-8 s
u(t) = /01 G(t,s)pq (?(5) /0 (s” — Tp)ﬁlrplf(r,u(T)dT)ds> )

where G(t,s) is defined as (4.7).

Lemma 4.6. The function G(t,s) defined by (4.7) satisfies G(t,s) > 0 fort,s € (0,1).
Proof. For 0 < s <t <1, let

gi(t,s) = [t°(1 = s7)]° 7! = pePO D (g — 50)2 71 — (1= e D)(@” — 57)

= (1 o)t ) (- e (1 (3))]
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Setting g(t) = (1 — s”)* L — B(nP — sP)¥ 1 — (1 — ﬁn”(o‘_l))(l - ( )p>a71, we obtain

|

g() = —pla—1)(1 = " D)1 = (5" 2 <0
Thus g(t) is decreasing on (0,1). And
g(1) = (1 =) =Bl — ") = (L= prre V) (1 - 52!
= B — ) 4 PO - )

_ (a—1) _gPya—1 _ _ (S\pya—1 )
pre D= )7 = (1= ()7 >0

Therefore, g1(t,s) > 0 for 0 < s <t <1, s <n. As also for t = s, ¢1(¢t,s) > 0. So,
g1(t,s) >0 for t,s € (0,1).
Now let

ga(t,8) = [tP(1 = ") * 1 = (1= By )P —sP)* !, 0<n<s <t <1,
g3(t,s) = [tP(1 —sP)o L = ptPle D —sP) 27t 0<t<s<np<1,
ga(t,s) = [tP(1—s”)]*H 0<t<s<1,n<s,

then in the same way as above, it is easy to show that g2 (¢, s) > 0, g3(t,s) > 0, ga(t,s) > 0.
Hence, for ¢,s € (0,1), G(t,s) > 0. O

Remark 4.7. For the problems (4.1) and (4.2), when p = 1, Green’s functions and their
properties are same as in [6], [7].

5. Applications
Let E = C]0,1] be the Banach space equipped with the norm |[ju|| = m[(f)i)lcl\u(t)]. We
telo,
define P C E as

13
where v = min (t —t*~1).
telg.3]
Let 0 be the nonnegative continuous concave functional on the cone P defined by

0(u) = i, M!W)L

then clearly 6(u) < ||ul| for each u € P.
Let T : E — E be an operator defined as

pliﬁ ’ P — PYB1rP= £ () dT)ds
SRS f<,<>d>d), (5.2

then u € E is a solution of (5.2) if and only if u € E is a solution of (3.1).

Tu(t) = /0 LGt )04 (

Lemma 5.1. Let T be defined as in (5.2) and P in (5.1). Then T : P — P is completely
continuous.

Proof. Let u € P. From (3.6), we have

pl—a 1 o pl—ﬁ s B B
| Tul| < F(oz)/o (1—sP) 1¢q (F(ﬁ)/{) (s” _Tﬂ)ﬁ Lrp 1f(77u(7'))d7'> ds. (5.3)
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From (5.3) and from (3.6), we obtain

11—« 1 1-8 s
Tu(t) > Ili(a) /0 (t — tafl)(l _ Sp)a1¢q(§wA (SP _ Tp)ﬁflTpflf(ﬂu(T)dT)ds
- a1y pya— pr e p_ p\B—1_p—
=(t—t I)I‘(a)/g (1—s") I%(I‘(ﬁ)/o (sP — 7)1y lf(T,u(T)dT)dS
> (¢~ ") Tull 2 Tull, te [3,0]

Since f is continuous, it is easy to prove that T is continuous. Now we only need to show
that T is compact.
Let  C P be bounded that there exists a constant M > 0 such that ||u|| < M for u € Q.

Let L = max |f(t,u)| + 1, then for u € Q, we have
te[0,1],u€l0,M]
plfa 1 plfﬁ S
Tul < B [a—set, (F( 5 - Tp)ﬁ_lTp_lf(T,u(T))dT> ds

pm 1 a—1 Lp'=F s B—1_p—1
SF(a /O(l—sp) ¢q<F(5) /O(SP—T'”) TP T | ds
ol

—a rl o LsPr
= Ty Jy -0 (;ﬁmm) ’
11—« L 1 o
= ?(a)¢q (pﬁf(ﬁ n 1)> /0 (1—s") lgi)q (Sﬂp) ds.

Hence T'(Q2) is uniformly bounded. Further for any u € , ¢t € [0,1], and 0 < t; <ty <1,
we have

Tu(t:) — Tults)| = /01 G b1, 5) — Glt2. )[04 (

1-p

P Ssp—Tpﬁ_lTp_l T,u(7))dT | ds
ST f<,<>>d)d,

where

l—«a

G(t1,s) — Glta,s) = 251

IN())
[(t1 = t2) (1= 57)2 L = (¢ = )2 = (5 —s7)* 1) |, 0<s<t<,
[(t1 —t2)(1—sP)27Y, 0<t<s<1.

Let & € (t1,t2), by mean value theorem, we have

(1 — )7 = (1 — )" = W(E) (b1 — t2)
therefore we obtain
_ P (1—s)* "t =H()], 0
Gltn8) = Glta o) = gy (1 =) { [{u e, 0siss
= (tl - tQ)Gsa

<t<l1,

S
1

IN
IAIA

where Gy = %

Thus, we get

L 1
[Tufts) = Tu(t2)| < |t ~ tolon (Ssgzys) | Gadals™)as.

That implies T'(2) is equicontinuous. By Arzela-Ascoli theorem, 7" : P — P is completely
continuous. O
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Theorem 5.2. Assume f : [0, 1] x [0, +00] — [0, +00] is continuous and there exist distinct
p1,p2 > 0 such that

(Hl) f(tvu) 51(—/8[)3 p(plN) fOT’ (t7u) € [07 1] X [07/)1]7
(Hy) f(t,w) > 58 6y(p2M) for (t,u) € [1/4,3/4] x [0, po].

Then boundary value problem (3.1) has at least one positive solution u such that p; <
[ull < po-

AVARRVAN

Proof. Let 0 < p1 < p3. And for v € P, by Lemma 5.1, Tu € P and T is completely
continuous operator. Now let Q; = {u € P : ||u|| < p1}. For u € 9Q;, we have, ||ul = p1.
So, for u € P N0y, we get

') L'(B)
PSS

where N— (fo( —sP)e g, (SBP> s)~ L.
On the other hand, put Qo = {u € P : ||u|| < p2}. For u € 9Qq, |jul| = p2. So, for
u € PN oQy, we obtain, for t € [1/4,3/4],

1

Tu(t)= [ G(t,8)p, (pl_ﬁ

I'(B)
R a—1y(1 _ pya—1 ﬁ fop pB-1_p-1
> /1 (t =t 1)(1 = s°) ¢>q< /0 (s — 7P)~ L7 f(T,u(T))dT> ds

/Os(sp — Tp)’BlTplf(T,u(T))dT> ds

I'(8)

)ds = pa = [|ul,

—a M/3/4 a p)aild) (Sﬂp
p— S —_—
P2 " v q Bp

3/4 o 5 _
where M = 'ypl a(f / (1—sP)"1g, (5—:> ds)~L.

So, we have ||T'u|| > HuH, for u € PN 0Qs. Hence by Lemma 2.5, T has at least one fixed
point in PN (Q2/Q1). O

Theorem 5.3. Suppose that f(t,u) is a nonnegative continuous function on [0, 1] x [0, o)
and there exist constants 0 < a < b < ¢ such that the following assumptions hold:

(A1) f(t,u) < F(ﬁ)%(Na) for (t,u) €[0,1] x [0, a;

(A2) f(t,u) > ,5@ p (M), for (t,u) € [1/4,3/4] x [b,d;
(4s) f(t,u) < 126, (N), for (t,u) € [0,1] x [0,c].

Then the BVP (3.1) has at least three positive solutions ui, ua, and ug with

i <
tren[g>1<]|m( ) <a, b< te[{%gmlu 2(t)] < tm[%\w( ) <e

< i t)] < b.
a< m[a>1<]IU3( ) <e¢ te[?}iﬁ/q'“‘"’( IRS
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Proof. If u € P., then ||u|| < c. Assumption (A3) implies f(t,u) < Fl(ﬁg, ¢p(Ne) for
0 <t < 1. Consequently,

|ITu|| = max ‘/ (t,s) 6/ (s — Tp)’B_lTp_lf<7',u(T))dT)dS‘

0<t<1 L'(B)
p a—1 Sﬁp
SN%@/O“ )05 s

1 11—« 1
< Neo, () T L = ey = e

This implies T : P, — P.. Using the same argument as in the proof of the Lemma 5.1, we
can show that T : P, — P, is completely continuous. In the same way, if u € Py, then

assumption (A;) yields f(t,u) < ﬁ¢p(N a), 0 <t < 1. Therefore, condition (C3) of
Lemma 2.4 is satisfied. To check condltlon (C1) of Lemma 2.4, we select u(t) = b+c 0<
t < 1. So, u(t) = %< € P(0,b,c), O(u) = 0(%5) > b, consequently, {u € P(0,b,c) : H(U) >
b} £ o

From assumption (Asz), we have, f(t,u) > 2 L( 7¢p(MDb), for t € [1/4,3/4]. So

0(Tu) = 1/41£t123/4|Tu(t)|

s 2 M a —eyeg (2 as b
= F(a)/1/4 (1 =) "%, FP s =

for all u € P(0,b,c).
Hence by Lemma 2.4 the BVP (3.1) has at least three positive solutions uj, us and uz. O

Define the cone Q C E by Q = {u € E : u(t) > 0,u(t) > ki||lu||}, where k; is given by
k1 = min{k(s)} < 1.
Here we give results for the existence of positive solutions of problem (4.1) by assuming
that f(t,u) = ki fi(t) f2(u).
We define the operator F': E — E by Fu(t) = fol G(t, s)(ﬁq(pféif(s, u(s)))ds. Further, we
assume that f; and fs are nonnegative and k1 > 0. We denote

f2(u)

_ fa(u)
fO = dm u—lH-oo ¢p(u) '

u—0t (bp(u) ’

Joo =

(5.4)

Lemma 5.4. Let F': Q — E be the operator defined by

Fult) = [ Gt 001, 1 5,u(s))ds.

Then F : Q — Q is completely continuous.

Proof. In the view of continuity and nonnegativeness of the functions Gand f, F : Q — Q
is continuous.
Let Q C @ be bounded, then for all u € €2 there exists a positive constant M; > 0 such
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that [jul| < Mi. Let L= |f(t )
tel0,1], uel[0,M1]

Ful < [ G810y (o, u(s))is

+ 1, then for u € ), we have

pl—oc 1 o B pl—ﬂ s _

< fay b = oG [ =7 e =D p (s
pl—a 1 ol o LsBr

< F(a)/o (1—sP)> s 1¢q(m)ds
l1—a 1

= ?‘(Od) ¢q(pﬁr(§+ 1))/0 (1 - Sp)a_lsp_lgbq(sﬁp)ds.

Hence F'(2) is uniformly bounded.
For any u € Q, t € [0,1] and 0 < ¢; <ty <1, we obtain

1
[Fu(t) = Fu(ta)| = [ G(t1,5) = Glta, 9oy . £ (5,u(s))ds

where
l1—a
B _P p—1(pla=1) _ ,p(a—1)
Gt,5) = Glta, 5) = [ys” (1 )
{ (1= s7)07! = (1] =) = (5 = )", 0<s<t<1

(1—-sP)t 0<t<s<l.

Clearly, as t; — t2, G(t1,s) — G(t2,s) — 0.
This implies that F(£2) is equicontinuous. Hence by Arzela-Ascoli theorem F' : Q — Q
is completely continuous. ]

Theorem 5.5. Let (5.4) hold. Assume that if

(H1) fo =00 and f =0, or
(H2) fo=0 and fo = oo,

then for all k1 > 0 the boundary value problem (4.1) has a positive solution.

Proof. Consider (H;). Since fy = oo, then there exists a constant p; > 0 such that
fa(u) > ¢p(M|ul) for 0 < |u| < p1, where
3/4

M > (/1/4 B(s)(1 — )" g

Take u € @, such that ||u|| = p1, then

I1Pull = ma | [ G516, 15, £ (s, u(s)))ds

te(0,1]

1

kip'? /S(S" — TP)B_ITp_lfl (T)dT)dS)i .
0

ING))

B s
> /li/:l k(s)(1— Sp)a—lsﬂ—1¢q<k;?;) /0 (s” — Tp)ﬁ_lTp_lﬁ(T)¢p(M|u|)d7-)ds
3/4 a—1_p—1 klpliﬁ s B—1_p—1
> /1/4 k‘(S)(l —sp) sP ¢q( I‘(ﬁ) /0 (sﬂ _TP) P f1(7)¢p(Mk1HU||)dT)dS
> o wa - G s N e C
> |ul-

Now since fo = 0, there exists Ny > 0 for
11—«

1 1-3
N< (B = st gy (£
0

He) T(3) /os(sp B Tp)ﬁilTpflh(T)dT)dS)_ly
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such that fa(u) < ¢p(N|ul|) for |u| > Ny. Therefore, fo(u) < ¢p(N|u| + €), where € =

maxXo<u<nN, fo(u)+1. Let Q,, = {u € Q/||u|| < p2}. Take v € Q such that |lu|| = pa where
1

po > {1, 2655 11— 59)7= 57716, (857 Ji (52— 7)P=17071 fy()dr ) s} so, we have

l—a 1 1-B8 s
[Ful < & )/0 (1 - s)2 g, (K12 /0(sp—Tp)ﬂ_lTp_1f1(7)¢p(N|u|+e)d7’)ds

o INE))
< Pl(:: /01<1 — ") LY (N |u| + 6)%(?1(;; /Os(s" — Tp)ﬁ_lTp_lfl(T)dT)ds
R A e T e S AR O
e e
< %2 + % = p2-

This implies ||[Fu| < |lu|. It follows from Lemma 2.5 (i7) that F' has at least one fixed
point u in @ N (2, /2y, ).

Now consider (Hs), that is fo = 0 and foo = 0
Now, since fo = 0, then there exists a positive constant p; such that fo(u) < ¢p(elul),
whenever 0 < |u| < p1, where

l—«a
€< <§*(a) /01(1 _ Sp)a_lsp_1¢q(k¥zﬁ)

Let Q) ={u € Q :|ju| < p1}. For u € Q, such that ||u|| = p1, we have

11—« —1

[ =72 e ) drys)
0

[Ful < ip / 0)2 P9, (PIE, f(s,u(s))ds
1-3 s
<P / Jo g 1@("}’2 5 /0 (7 = Y5 LrP 1 £, ()b (el dr ) ds
kipt =8 s
< I(a / )* s gy ( ;p(ﬁ) /O(SP—T”)B_lfp_lfl(T)¢p(6HUH)dT)d5
1— 1 k 1-8 rs
<l /0 (1= )0y (L [0 =77 s
< lull

which implies ||Fu| < ||ul|. Next, as foo = 00, there exists Ny > 0 such that fo(u) >
¢p(M|ul), whenever Ny < |u|, where

-1

i (f jf k(s) (1 — sp)alspl%(klrp(;)ﬂ | =yt i rynas)

Let Qp, = {u € Q : [|ul| < p2}. Take u € @ such that |[u| = p2, where ps > {p1, 52 }. For

1/4 <t < 3/4, using the same procedure as above, we obtain || Ful| > |u].
Hence from Lemma 2.5, it follows that F has at least one fixed point u in QN (Q,,/Q,,). O

Define the cone K C E by

K={ueFE:u(t)>0,0<t<1}.
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Lemma 5.6. Let ® : K — E be the operator defined by
' 8
du(t) = /0 G(t, s)oq (pIO+f(s,u(s))) ds
_ plfa t

(o) /0 (t — s7)° 151, (Plg+f(8’u(8))) ds
-

1 1
+ (1 — ,317/’(0‘_1)) lﬁ—)‘(a) /0 tﬂ(a—l)(l _ Sp)a—lsp—lqbq (pIngf(S,u(s))) ds

l1—a
Gy 0 = o ()

where G(t,s) is defined as (4.7). Then ® : K — K is completely continuous.

Proof. As a result of the continuity and nonnegativity of G(t, s) and f(t,u), the operator
® : K — K is continuous. Let 2 C K be bounded, then there exists a constant M > 0

such that [|ul| < M, for all u € Q. Let L = |f(t,u(t))| + 1, then for u € Q, we have
tel0,1], uel0,M]

wu(t) = | [ Gt 5160 (713, 765, u(5)) ds|
I 1
<ou(ara ) J, i Gl 2)6u(s™)ds.
Hence, (1) is bounded. For each u € Q, t1,t5 € [0,1], t1 < ta, we have

/Ot(tp — sPyalsgrlg, (PI@f(S,u(S))) ds

-«

pl—oz

|Du(ts) — Dulty)| = \ - T
p

1
(1= Bnele=D) T ()

-
ey fy P T (Tl
1-a

<[fas [ s 0, (8 ps (o) s

_l’_

/1 tp(afl)(l _ Sp)a—lspfl(bq (pIngf(Sv u(s))) ds
0

11—« t1
- f’(a)/o (th — sp)o‘flspfl(j)q (pI§+f(s,u(s))) ds‘
1 pl—a ltp(a_l) 1 pya—1 _p—1 p]B d
(1 —ﬂﬁp(al))F(a)/o 2 (1—=s")""s ¢q( 0+f(s,u(s))) s
1 11—« 1 o o B
_ (1—5np<a—1>)§(a)/o #eD (1 = s)Le1g, (1F, f(s,u(s)))|

+|

-«

+ ’(1 — 5:p(a—1)) f‘(a) /077 t’é(a_l)(n” - sp)a_lsp_lﬁbq (pfg+f(s,u(8))> ds
-«

_ = 5§p(a_1)) f‘(a) /077 ti)(a—l)(np _ Sp)a—lsp—l(z)q (pfg+f(s,u(s))) ds’

< o) | [ (08 =99 = = )

to
+ (th — s”)a_ls”_l%(sﬁp)ds‘
t1

L G PR

(1= pna=t) %(pﬁf‘(ﬁ +1

s ) [ it 5o
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pla=1) p(a—1) I
+ 6|t2(1 — ﬁnatil) |¢q(pﬁ1—w(6 + 1)) /()n(np - Sp)a—lsp—1¢q(sﬂp)ds
p - L

= I'a " <p5T(B T5) 2= 1) / H(€)5" 1 6q(577)ds

|t§ a-1) t,i)(afl)| I 1 L ;
(v 1))/0 (1= 87)* s gy (s7)ds

pla=1) _ ,pla=1) I
%(1 - ﬁn”‘til) ’¢q(p5F(ﬁ T 1>) /on“?p — 7)1 5P g (s7)ds — 0,

as t; — to. Thus, by means of Arzela-Ascoli theorem, ® : K — K is completely continuous.
O

_l’_

Theorem 5.7. Suppose f(t,u) satisfies f(t,0) #0, t € (0,1) and

0 < lim max f(t,u)
u—00t€[0,1] ¢Pp(u)

< (1= B (). (5:5)

Then, the problem (4.6) has at least one positive solution.

Proof. In view of the continuity and nonnegativity of f from (5.5), there exists A > 0, 0 <
M < (1 — BnPle=I(a) such that for ¢t € [0,1], u € [0, +00), we have

0§f(t,u)<¢p< u—i—)\).

M
PPL(B+1)
Let

1
Kg = {ue K : u—)\/o G(t, ) ¢q(s7P)ds

)

be a convex, bounded, and closed subset of the Banach space E.
For u € Kg, we obtain

Jull < A [ Gt spontsyis]| + R

A

=B e )
and
1 1

Dult) <) [ Gt 90y(s)ds| < [ 6(0,9) [0, F(s.u5) ~ A0y(57) | ds
< max{ MHU” A }
=M e )a)” (1 e D))
< max M [R+ o) A
- (1= pnrle=)(a) 7 (1= Bpelem)D(a)
S R7

A M

whenever 1 2 g @@~ (1—pre (@)
Hence by Schauder fixed point theorem the operator ® has at least one fixed point in

Kp. O
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Example 5.8. Consider the boundary value problem of generalized fractional differential
equation
£Dy, (6p(EDG u(t))) + f(t,u(t)) =0, t e (0,1),

u(0) = u(1) = u"(0) = 0, DS u(0) =0, (5.6)

where p=3/2, B =1/2, p=4/3, a =5/2 and f(t,u(t)) = vi+ 224

By computations, we have

_ F(a) ! pya— LBP -1 _
N—pk44<1—s>1%< )w)l—a

M = P(‘1)(/13/4(1 — 5" 1g, (‘ﬁf) ds)t = 98.

,-Ypl—oc /4
We choose p; = 1.5708, p3 = 8, thus we obtain

El(ﬁg) op(p1N) ~ 2.9, El(ﬁﬁ)cbp(pzM) ~ 13.34.
Now, for (¢,u) € [0,1] x [0, p1], f(t,u(t)) < 1.59899 and for (¢,u) € [1/4,3/4] x [0, p2],
f(t,u(t)) > 0.5.

Conditions (Hp) and (H2) of Theorem 5.2 hold, therefore, the problem (5.6) has at least
one positive solution u such that 1.5708 < |ju|| < 8.

Example 5.9. Consider the boundary value problem of the generalized fractional differ-
ential equation

?Dy. (¢p("Dgu(t))) + f(t,u(t)) =0, te(0,1),

u(0) = u(1) =0, ?Diu(0) =0, (5.7)

where f = 1/2, p = 2, p = 2,a = 3/2, and f(t,u(t)) = kluz—tge%, where fi(t) =
%, fo(u) = uPe satisfy (5.4) and the condition (Hy) of Theorem 5.5. For k = 3/5, we
have k1 = 1/4 > 0. Therefore, the boundary value problem (5.7) has a positive solution.
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