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1. Introduction  

The purpose of this paper is to study the following Steklov problem involving the p(x)-Laplacian, 
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NR )2( N  is a bounded with smooth boundary, p is continuous functions on  such 

that   1inf: 
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xpp , q is continuous functions on  such that   1inf: 
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xqq , and 

   yqxp  for any  yx , , 
  uudivu
xp
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)( :  denotes the  xp Laplace operator, 

RxRf : is a Carathéodory function, 


u
is the outer unit normal derivative on  and  xa is a 

function which satisfies the conditions   210 axaa  where 1a and 2a are positive constants. 

The study of differential equations and variational problems with  xp  growth conditions is 

a new and interesting topic in the last few years. The interest in studying such problems was stimulated 

by their application in mathematical physics, more precisely in elastic mechanics [25], 

electrorheological fluids and stationary thermo-rheological viscous flows of non-Newtonian fluids, 

image processing [8,12,19,20] and the mathematical description of the processes filtration of an idea 

barotropic gas through a porous medium [3,7]. Many results have been obtained on this kind of 

problems, for instance, we here cite [1,4,10,13,14,16,18,21,22]. 

Problems of type (P) has been intensively studied by many authors [2,4,5,6,9,17]. In [24], the 

authors investigated the existence and multiple results by using a variation of the Mountain Pass the  
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following )(xp Laplacian with nonlinear boundary conditions in bounded domain   

 

 

 
 

 

where f and g functions satisfies the Ambrosetti-Rabinowitz type condition. We also mention that the 

authors [11] studied de existence result for following class of  Steklov boundary value problems 

involving Laplacian 
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Using the variational method, under suitable conditions fa, and g , they obtained results on the 

existence of solutions. 

This paper is organized as follows. In Section 2, we present some necessary preliminary 

knowledge on variable exponent Lebesgue and Sobolev spaces. In Section 3, using Mountain Pass 

theorem and the variational method we show the existence nontrivial weak solutions of problem (P). 

2.Preliminaries 

In this section, we recall in what follows some definitions and basic properties of variable exponent 

Lebesgue-Sobolev spaces  )(xpL ,  )(,1 xpW  and  )(,1

0

xp
W [22,16,15].  

Set   }. xallfor 1,>p(x) inf ),(Cxp {p;=)(C  
 

For any   )(Cxp  
, we denote   

     



 xppxpp xx sup:inf:1 _
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Define the variable exponent Lebesgue space by  

    
 

  dxRuuL
xp

xp xu such that ,measurable is :)(
 

We define a norm, the so-called Luxemburg norm, on this space by the formula 
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xp uL  becomes a Banach space. 

     Let Ra : be measurable. Define the weighted variable exponent Lebesgue space 
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Where d is the measure on the boundary. Then  
  xp

xaL is a Banach space. In particular, 

  La ,  
        xpxp

xa LL . 

 

  Proposition 2.1[14,21] If   Lxp , the conjugate space is where

. For any and , we have 

                                    . 

The modular of the space, which is the mapping  
   RL xp

xp :  defined by 

   

Proposition 2.2 [15,24] If  (n=1,2,...) and , we have 
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Remark 2.4.  It is noted that since
     1

loc

xp LL  i.e., for any compact subset K there exists 

a constant 0KC  such that fCfX KK 
1

. So every function in has a distributional 

(weak) derivative, and variable exponent Sobolev space is well defined on . 

The variable exponent Sobolev space  is denined by 

           xpxpxp LuLuW :,1
 

and equipped with the norm, 
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In view of assumptions  xa of and  xb  (  xb  is a function which satisfies the conditions 

  210 bxbb  where 1b and 2b are positive constants ), it is easy to see that 
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(i)    
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where 
321 ,,  and 4 are positive constants independent of u . 

Space  )(,1

0

xp
W  is denoted as the closure of  

0C  in  )(,1 xpW  with respect to the norm

)(,1 xp
u . For  

)(,1

0

xp
Wu , we can define an equivalent norm

 xp
uu  . Since Poincaré inequality 

holds [16], i.e. there exists a positive constant 0C such that  
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Proposition 2.6 [16,24] 

(i) If   pp1 then the spaces  ,)( xpL   )(,1 xpW  and  )(,1

0

xp
W are 

separable, reflexive and uniformly convex Banach spaces, 

(ii) If   )(Cxq  
 and    xpxq  for all x  then the embedding 

    )()(,1 xqxp LW  is compact and continuous, 

(iii) If   )(Cxq      xpxq and for all x  then the trace embedding

    )()(,1 xqxp LW  is compact and continuous. 
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Definition 2.7 [23]  Let X be Banach spaces and the function  RXCI ,1 . We say that I satisfies 

Palais-Smale condition (PS) in X  if any sequence  nu in X such that  nuI is bounded and 

  0
nuI in 

X as n has a convergent subsequence. 

 

Lemma 2.8 8 (Mountain Pass Theorem) [23]    Let be a Banach space and the function 

 RXCI ,1 satisfies Palais-Smale condition. Assume that   00 I and  

(i) There exist two positive real numbers  and  such that    ruI  with  

(ii) There exists  such that and   .0uI      

Put   Set Then 

and  is a critical value of .I  

Throughout this paper, the following hypotheses are assumed. 

 (f1)  RxRf : is  Carathéodory condition such that   

                              1

21,



x

tcctxf


   ,    ,, xRtx   

where 0, 21 cc ,     Cx  
and    xpx  ,  

X

 r ,ru 

Xu 1 ,1 ru 

       .1,00:,1,0 1uXCG       .:1,0maxinf G 

r 



Middle East Journal of Science  (2019) 5(2):146 - 154  

 

150 

 

(f2)      0,,
1










ttotxf
p

 ; for all x , 

(AR): Ambrosetti-Rabinowitz's condition; there exist 0t and 
 p such that

    ,,,0 ttxftxF  
 tt , for all  x  

where    dssxftxF
t

 0
,, and

 
   xpxqq   for all    Cxq . 

Theorem 2.9. Assume that conditions (f1), (f2), (AR), 
  pq ,, and 

  p are satisfied, then 

problem  P has at least one nontrivial weak solution. 

 

3. Main Results  

 

Let X denote the variable exponent Sobolev space  )(,1 xpW . We say that  0/Xu is a weak 

solution of (P) if 
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operator of , denoted by , is 



Middle East Journal of Science  (2019) 5(2):146 - 154  

 

151 

 

  ,,
2)(

 duvuvu
xq

 


   ,, Xvu   

and one has RX : and 
 XX: are sequentially weak- strongly continuous, bounded, 

namely, uun  (weakly continuous ) implies    uun    (strongly continuous) . 

Therefore, from the assumption (f1), Proposition 2.6, Proposition 3.1 and Proposition 3.2, it is easy to 

see that and the critical points are weak solutions of . Moreover, the derivate of 

is the mapping 
 XXI :  
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for any Xvu , [6]. 

Lemma 3.3 Suppose that (f1), (f2), (AR) and q are satisfied, then I  satisfies the (PS) condition. 

Proof. Assume that    Xun   is a sequence which satisfies the properties: 

 

   CuI n  and    0
nuI in 

X  as n ,                                                                  (3.1) 
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X is dual space of  X andC  is a positive constant. We prove that  nu possesses a convergent 

subsequence. First, we show that  nu is bounded in X. We assume by contradiction nu as

n . Using (AR ) q , (3.1), Proposition 2.2, Proposition 2.3 and considering 1nu , for n 

large enough, we can write 

 

   

 
      

 
   

           




























p

n

un

xq

n

xp

n

xp

n

n

xq

n

xp

n

xp

n

nnnn

u
p

dxuuxfdudxuuxa

dxuxFdu
xq

dxuuxa
xp

uuIuIuC












1

,
1

,
11

,
1

1

 

where 03 c is constant. Since we obtain that is bounded in X. Next, we show the strong 

converges to nu X in. Since it is bounded in X, there existsu  in X such that, up to a 

subsequence, nu  converges weakly to u  in X . Taking into account (3.1), we have
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where 04 c is constant.  Because    xpx   (Proposition 2.6 (ii)), there exists u such that nu  

converges weakly to u  in .X  Thanks to the compact embedding
   xLX 
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Finally, from Proposition 3.1, we deduce that nu  converges strongly to u X in. Therefore, it 

satisfies the (PS) condition. 

 

 Lemma 3.4 Assume that conditions (f1), (f2), 
  ,pq  and 

  p are fulfilled. Then, there 

exist two positive real numbers   and r such that   ruI  with u . 

Proof: For ,1u  by Proposition 2.5, we have 
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.  It follows that there exist 0r s and 0  such that with . The 

proof of Lemma 3.4 is completed. 

 

Lemma 3.5 If (f1), (f2) and (AR) hold, there exists X  such that   and   0tI  for .0t  

Proof.  Thanks to (AR), we obtain   
tctxF 8,  for all . Moreover, when 1t  is 

large enough, from Proposition 2.2, we obtain that 
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Since 
 p we conclude that   tI t as. The proof is completed. 

Proof of Theorem 2.9. From Lemma 3.3, Lemma 3.4, Lemma 3.5 and   00 I , I satisfies all 

statements of Lemma 2.8. Therefore, I has at least one nontrivial critical point, i.e., problem (P) has a 

nontrivial weak solution. The proof is completed. 
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