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A BSTR A CT

Sepsis is a severe and multifaceted condition of body in response to an infection, which affects multiple organs systems that makes it difficult to 
treat and enhances the mortality rates. Release of inflammatory cytokines can initiate an inflammatory response during sepsis. However, the 
response can be modified by the control mechanism inside the body that are essential for the keeping the balance and survival. The cholinergic anti­
inflammatory pathway is defined as a comprehensive neurohumoral pathway that diminishes pro-inflammatory cytokine release through the vagus 
nerve and cholinergic receptors, predominantly a7 nicotinic acetylcholine receptors (a7nAChR) that expressed on inflammatory mononuclear cells. 
Thus, cholinergic agonists might be a part of prospective treatment approach in inflammatory diseases such as sepsis. This review covers the role of 
cholinergic system in prostaglandin mediated inflammatory response.
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INTRODUCTION

Sepsis is a rigorous and multifaceted condition of 
body in response to an infective state, which affects 
multiple organs systems that makes it difficult to treat. 
Replacement therapies, antimicrobial agents, vasopressors, 
immunoglobulins, anticoagulant drugs and corticosteroids 
are involved in current treatment of sepsis however it is still 
one of the most common causes of death in hospitalized 
patients. On the subject of the pathophysiology of sepsis, 
many experimental studies have been conducted in last 
few decades. A good part of these researches focused on 
the nicotinic anti-inflammatory pathway that plays a crucial 
role in the control of inflammatory response. This review 
summarizes the role of cholinergic agonists and their impact 
on sepsis pathophysiology.

Sepsis is defined as the systemic inflammatory response 
to infection, and microbial pathogens and inflammatory 
response are involved in its physiopathology. Primary cause 
of sepsis is initiation of inflammation by microbial agent 
and progression of inflammatory state leads a condition 
called severe sepsis, which is a common cause of mortality 
in intensive care units. This condition is commenced 
with the overproduction of inflammatory cytokines that 
leads systemic inflammation, extensive hypotension and 
consequently multiple organ damage (1).

Macrophages, dendritic cells, B lymphocytes are antigen 
presenting cells (APCs) that modifies antigenic structures 
into small peptide molecules that can be recognized by 
T-cell surface receptors like antigen-specific CD8+ in case of 
inflammation and initiate the primary inflammatory response 
(2,3).

Regarding that lipopolysaccharide (LPS) is an endotoxin 
of gram-negative bacteria; exposure of LPS can initiate a 
compelling inflammatory response. Lipid A compartment 
of lipopolysaccharide can interact with toll like receptors 
on phagocytic mononuclear cells. These cells releases 
tumor necrosis factor (TNF), interleukins, platelet activating 
factor (PAF) as a response to the inflammatory state (4). 
IL-1 and IL-6 mediates the activation of T cells and release 
of cytokines such as a-interferon, IL-2, IL-4, granulocyte- 
macrophage colony-stimulating factor (GM-CSF). These 
cytokines are useful in the renewal of the local inflammation 
and tissue regeneration however greater release of them 
into blood circulation results in widespread endothelial 
cell damage. Among the released cytokines, TNF can 
activate adhesion molecules on the surface of leukocytes 
and cause the neutrophil adhesion onto endothelial cells. 
Proteases and reactive oxygen species freed from stimulated 
neutrophils ease the endothelial cell damage. Endothelial 
impairment is the beginning of hemodynamic changes in 
sepsis that eventually leads hypotension, organ failure and 
mortality. Arachidonic acid metabolites; prostaglandins and
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leukotrienes can cause an increase in capillary permeability, 
which can be produced with the direct effect of endotoxins or 
cytokines which also contribute the inflammatory response
(5.6). Since the release of numerous kinds of cytokines 
occur in case of sepsis, treatment strategies may involve the 
diminution of different kinds of cytokines rather than single 
one in order to be successful. With respect to this aspect, 
agents that modulate the cholinergic anti-inflammatory 
pathway come into prominence in the last decade.

Cholinergic System and Inflammatory Response

Release ofinflammatory cytokines can trigger an inflammatory 
response. However, the response can be controlled by the 
control mechanism inside the body that are essential for the 
keeping the balance and survival. This control mechanism 
on inflammation can be achieved by two mechanisms; 
activation of neuronal and non-neuronal cholinergic system
(4.7). Neuronal cholinergic system involves triggering the 
vagus nerve whereas non-neuronal cholinergic system 
activation comprises nicotinic receptor activation expressed 
on cells that contribute inflammation such as lymphocytes, 
macrophages, mast cells, dendritic cells, basophils, microglia 
(8-10).

The cholinergic anti-inflammatory pathway is defined 
as a comprehensive neural mechanism that attenuates 
pro-inflammatory cytokine release through the vagus 
nerve and cholinergic receptors, predominantly a7 
nicotinic acetylcholine receptors (a7nAChR). These 
are homopentameric receptors of cholinergic nicotinic 
acetylcholine receptor family that composes of five 
a7 subunits and acetylcholine binding sites. Nicotinic 
acetylcholine receptors are ligand gated ion channels that 
characterized as their permeability to sodium ion upon the 
receptor activation, however a7nAChR are highly permeable 
for calcium influx. Increments of intracellular calcium ion 
may trigger many signaling cascades that are required for 
communication between cholinergic nerves and the immune 
system. It has been shown that a7 nicotinic acetylcholine 
receptors are expressed on mononuclear cells of immune 
system and especially macrophages takes a part in the anti­
inflammatory action of cholinergic system. For that reason, 
this pathway is also called a nicotinic anti-inflammatory 
pathway. (4,11,12).

Liberation of inflammatory cytokines during an inflammatory 
response can stimulate brain in order to activate cholinergic 
anti-inflammatory pathway. The activation of pathway occurs 
in two ways. One of them is afferent vagus nerve stimulation 
by the inflammatory cytokines released by activated 
inflammatory cells via inflammatory stimulus (13). Another 
way is the passage of cytokines to brain via the transporters 
on blood brain barrier or through circumventricular organs
(14). Cytokines can interact with the capillary endothelium 
of brain and induce the production of prostaglandins, 
which in turn may cause fever, pain and the production of 
glucocorticoids via hypothalamus-pituitary-adrenal (HPA)

axis activation (15,16). In response of stimulation via the 
inflammatory cytokines, brain activates the hypothalamus- 
pituitary-adrenal (HPA) axis to generate glucocorticoids, 
sympathetic nervous system to generate catecholamine 
and efferent vagus nerve for the release of acetylcholine. 
Acetylcholine that released from the vagal nerve terminals 
is induced the splenic nerve that results in the discharge 
of norepinephrine (NE). T lymphocytes are abundant in 
spleen and beta-adrenergic receptors expressed on the cell 
surface can be triggered via the NE released from splenic 
nerve in order to release acetylcholine. Consecutively 
a7nAChR receptors on macrophage surface is activated by 
acetylcholine. As a result an effective immunomodulatory 
action is produced (7,17).

Pertaining to the role of cholinergic system in inflammation, 
many experimental studies have been conducted in last 
decades. The role of cholinergic agonists such as nicotine, 
choline, phosphatidylcholine, CDP-choline in inflammatory 
conditions like inflammatory bowel diseases, pancreatitis, 
sepsis, arthritis have been investigated with animal models 
and clinical researches (18-23). Supporting data has been 
observed that stimulation of the vagus nerve moderates 
the inflammatory response by triggering of cholinergic anti­
inflammatory pathway in endotoxemic animals (10,24,25). In 
another study, electrical stimulation of the vagus nerve has 
been shown to increase acetylcholine release and decrease 
TNF-a levels through a7nAChRs in experimental sepsis 
model in mice (24,26). However, electrical stimulation of 
vagus nerve has been unsuccessful to reduce inflammatory 
mediators in case of splenic nerve injury or splenectomized 
mice supports the role of spleen in anti-inflammatory effect 
of cholinergic system (27).

These findings bear the idea out that vagus nerve has a 
control over inflammation via the a7nAChR. As well as the 
physiological approaches, pharmacologic interventions 
especially drugs act on a7nAChRs have been investigated in 
quite a lot of studies to activate the cholinergic system.

Cholinergic Agonist and Sepsis

As a cholinergic agonist choline was first synthesized in 
1966 and since 1998, it has been considered as an essential 
substance for life. Choline is a precursor in the synthesis 
of neurotransmitter acetylcholine in the body and at high 
doses it can directly interacts with acetylcholine receptors. 
As a result, cholinergic neurotransmission is enhanced 
by administration of choline. Furthermore, choline also 
contributes the synthesis of some basic phospholipids such 
as phosphatidylcholine and sphingomyelin, which are the 
basic building blocks of cell membrane (28).

Citicoline (CDP-choline, Cytidine 5'-diphosphate choline) is 
a complex organic molecule that is produced endogenously 
as an intermediate molecule in the de novo synthesis of cell 
membrane phospholipids. Collected evidence supports the 
cholinergic and neuroprotective effects of administration 
of citicoline. Citicoline is quickly hydrolyzed into choline
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and cytidine by the membrane phosphodiesterases when 
exogenously administered (29). Accordingly, choline levels 
in the brain and blood circulation increases (30-32). Choline 
enhances acetylcholine synthesis (32,33) and its release 
into synaptic cleft (34,35). Citicoline-mediated improved 
sympathetic and cholinergic system activity leads many 
pharmacological and physiological effects (31,32,36). 
Moreover, the beneficial effect of citicoline given as a 
nutritional supplement has been observed to the structural 
integrity and functionality of the neuronal membrane
(37). Therefore, in clinical cases citicoline supplements are 
recommended in cerebral ischemia, hypoxia, head trauma, 
learning and memory development, Alzheimer's disease, 
cognitive disorders and Parkinson's disease (34,38-42).

Since their impact on the increment in cholinergic signaling 
and interaction with the a7nAChR; the role of choline and 
citicoline in inflammation are investigated in several studies 
(43-46). GTS-21, a a7nAChR agonist, has been shown to 
decrease cytokine levels in inflammatory conditions and 
improve survival rates in sepsis induced by cecal ligation and 
puncture (47-49). Many studies have shown that citicoline 
and choline increase survival rates (50-53) and exert positive 
effects on tissue damage and multiple organ failure in 
endotoxemic animals (51,53,54).

Many studies have shown that citicoline and choline increase 
survival rates and exert positive effects on tissue damage and 
multiple organ failure in endotoxemic animals (50-54). Since 
the cardiovascular system dysfunctions during sepsis is one 
of the most affected organ systems in sepsis and the main 
cause of multiple organ failure; there are plenty of studies 
investigates the effect of citicoline on cardiovascular changes 
(32,36,55,56). It has been shown that citicoline and choline 
have a positive effect on disrupted secondary hemostatic and 
fibrinolytic systems, disseminated intravascular coagulation 
and the consumption of increased coagulation factors in the 
LPS-induced septic shock model (45). Citicoline has been 
shown to regulate microvascular permeability, hemodynamic 
and inflammatory parameters while improving the 
hypotension in septic shock (57,58).

In addition to their cardiovascular effects, cholinergic 
agonists, choline and citicoline, display a protective effect 
on vital organs in case of sepsis. Choline reduces endotoxin- 
induced increase of serum proteins, lipids and inflammatory 
mediators via the vagal anti-inflammatory pathway activation 
and endotoxin-induced mononuclear cell activation (46,58). 
In another study, intraperitoneal administration of choline 
have been reduced TNF-a level in macrophage cell culture 
and endotoxemic mice. However, modulating TNF-a level 
was unsuccessful in a7nAChR knock-out mice and the 
requirement of a7nAChR in the anti-inflammatory action of 
choline have been supported (7,50,59).

Proposed Mechanisms of Cholinergic Agonists in Sepsis

The effects of choline and other a7nAChR agonists on 
inflammatory response have been investigated by in-vitro

studies using RAW264.7 macrophage cell line. Choline and 
a7nAChR agonist GTS-21 produced a significant reduction 
in TNF-a and HMGB-1 levels in endotoxin-activated 
RAW264.7 macrophages (47,50,60). However, the effects 
of cholinergic agonists GTS-21 and NS6740, weak agonist 
of a7nAChR, have been vanished when selective antagonist 
methyllycaconitine is applied to LPS-activated microglial 
culture (61). Administration of cholinergic neurotransmitter 
acetylcholine caused a significant reduction in the level of pro- 
inflammatory cytokines such as TNF-a, IL-1P, IL-6, IL-18 and 
HMGB1 in lipopolysaccharide-activated human macrophage 
cells emphasizing that nicotinic receptor activation may be a 
potential pharmacological target in the treatment of sepsis 
(10,11,48,62).

Since the cells that contribute the inflammatory response 
have been found to express cholinergic receptors; their 
contributions to cholinergic inflammatory response have 
been widely examined. It has been established expression 
of a7nAChRs on T lymphocytes, B lymphocytes, dendritic 
cells, monocytes, macrophages and microglial cells (61,63­
67). T lymphocytes and microglial cells also show choline 
acetyltransferase and acetylcholinesterase activity as 
well (64,68). In other words these cells can be affected 
by cholinergic transmission. It has been showed that 
acetylcholine may have an impact on T  cells. Studies have 
been emphasized that stimulation of nicotinic receptors on 
T cells with nicotine or acetylcholine can affect intracellular 
calcium concentration and eventually intracellular signaling 
cascades have been activated (64,69,70).

Since a7nAChRs are ion gated calcium channels that receptor 
activation may cause an inward of calcium into cells and 
rapid desensitization via the change in electrochemical 
gradient. At the molecular level increase in intracellular 
calcium concentration activates inositol-triphosphate and 
phospholipase C that cause calcium release from cellular 
storages and triggers calcium dependent signaling pathways 
such as ERK/MAPK in neurons and astrocytes (71,72). 
However quite a few studies has also been shown that of 
cholinergic anti-inflammatory pathways may be independent 
from calcium ion passing through the a7nAChR (47,50,73,74). 
Studies employing whole patch-clamp technique reveals that 
leukocytes, as one of the mononuclear cells, have failed to 
establish a7nAChR-mediated changes in electrical current 
(75,76). Apart from that recent studies have been found the 
dual action of a7nAChR underlining that G proteins might 
also have a role in inositol-triphosphate induced calcium 
release and metabotropic action of this receptor (Figure 1) 
(77,78).
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Figure 1: The neurohumoral mechanism activated during inflammatory challenge and the role of a7nAChR mediated anti-inflammatory 
response. During LPS induced inflammatory response, ACh released from activated T cells stimulates the a7nAChRs on macrophages which in 
turn diminishes the proinflammatory cytokine release such as prostaglandins via interfering the intracellular signaling pathways (red arrows 
indicates the inhibitory action) (details are given in text).

Regarding the a7nAChR mediated inhibition of pro- 
inflammatory cytokines in macrophages, two proposed 
molecular mechanisms is prominent among the others; 
inhibiting the nuclear translocation of transcription factor 
NF-KB and JAK2 / STAT3 signaling pathway (67,79,80). 
a7nAChR agonist nicotine elevates AKT phosphorylation 
via the activation of JAK2 and PI3K upon the receptor 
activation and calcium influx. JAK2 and PI3K pathways both 
have an impact transcription factor NF-kB (81,82). It has 
been showed that nicotine inhibits the activation of NF-kB 
cascade and inflammatory cytokine release via the a7nAChR 
stimulation in macrophages (83). Choline and nicotine, 
a7nAChR agonists, have been induced the inhibition of NF-KB 
and consecutive decrease in TNF alpha when administered 
to LPS-induced RAW 264.7 macrophage cells. Additionally, 
choline was failed to prevent TNF alpha release in peritoneal 
macrophage cell culture from a7nAChR knockout mice, 
supporting the role of a7nAChR for the anti-inflammatory 
action (50,83). Apart from NF-KB pathway, some studies 
underline the role of JAK2/STAT3 pathway regarding the 
anti-inflammatory effect of choline (84). Activation of JAK2 
cascade results in production of an anti-inflammatory 
transcription factor STAT3 that involves the production of 
anti-inflammatory cytokines IL-6 and IL-10 (85,86). Another 
study points out the inhibitory effect of choline on increment 
of LPS-induced TNFa levels but unsuccessful to demonstrate 
its efficacy in the JAK2-inhibited experimental group (87). 
Additionally, augmentation of COX-2, NOS expression levels 
and consequent increase in NO, PGE2, TNFa, IL-6 levels in 
LPS-induced RAW 264.7 macrophage cells were shown to 
be mediated by JAK / STAT pathway (88). Taken together, a 
growing body of data points out that multiple intracellular

cascades may be involved in anti-inflammatory action of 
choline and a7nAChR mediators.

Prostaglandins and Sepsis

As a part of the pro-inflammatory cytokine family, 
prostaglandins are also contributed to the inflammatory 
response. Formation of prostaglandins from arachidonic acid 
involves cyclooxygenase (COX) enzyme that has two isoforms. 
The COX-1 isoform mostly take a part in the formation of 
prostaglandins associated with the homeostasis. Oppositely, 
COX-2 isoform play an important role in production of 
cytokines induced by tissue damage, tumor promoters, 
inflammation and cancer. As an inducible enzyme, COX-2 
expression level can be increased with cytokines in 
inflamed tissues that consequently leads the production 
of prostaglandin G2 (PGG2) and prostaglandin H2 (PGH2). 
PGG2/H2 are precursors of other prostanoids that contribute 
inflammation. Prostaglandin I synthase and microsomal 
prostaglandin E synthase produce PGI2 and PGE2 that plays 
a major role in the pyretic response which is one of the main 
symptoms of sepsis (89). PGE2 and PGI2 increase the rate of 
blood flow by causing vasodilation which further facilitates 
signs of inflammation such as leukocyte infiltration, pain, and 
edema (90-94).

Studies have been shown that prostaglandin formation has 
been mainly related to COX-2 in the carrageenan-induced 
acute inflammation model (93,95). Augmented expression of 
cyclooxygenase-2 (COX-2) has been shown in LPS induced in- 
vitro sepsis model in macrophages (96,97).
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Considering the interaction between cholinergic system 
and cyclooxygenase pathway; citicoline, as choline donor, 
inhibited the activation of phospholipase A2, decreased 
the production of arachidonic acid in necrotic tissue when 
administered orally (98). Acetylcholinesterase inhibitor 
tacrine has been inhibited the increase in COX-2 expression 
and PGE2 production in LPS-induced RAW macrophage cell 
culture by decreasing the degradation of acetylcholine (99). 
Conflicting results were obtained in an in-vitro study that COX2 
expression and prostaglandin E2 synthesis have been shown 
to increase when the a7nAChR selective agonist nicotine is 
applied to primary culture of microglial cells (68). Although 
it has been showed that PGE2 may have a part in reduction 
of microglial activation and TNFa production in the cerebral 
endothelium and brain parenchyma (100). Co-administration 
of choline and aspirin in carrageenan and LPS-induced 
acute inflammation models in mice produced a synergistic 
anti-inflammatory effect. In the study, it was observed that 
choline significantly decreased the level of inflammation 
induced PGE2, PGI2, TXA2 and other inflammatory cytokines. 
It has been emphasized that diminishing effect on prostanoid 
and cytokine levels is mediated by a7nAChR activation. 
Taken together that cholinergic agonists might be a part of 
prospective treatment approach in inflammatory diseases 
such as sepsis and arthritis (52).

2. CONCLUSION

The specialized function of cholinergic system in order 
to produce an anti-inflammatory action in the body have 
been described in last few decades and cholinergic agonists 
have been widely investigated to modulate the release of 
inflammatory cytokines. As a part of the cytokine family 
prostaglandins are one of the main contributors of the 
cardinal signs of inflammation. Further investigations on 
the control of cholinergic anti-inflammatory pathway in the 
release of prostaglandins may provide us a novel treatment 
strategy in case of inflammatory response syndrome and 
sepsis.
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