New Theory

ISSN: 2149-1402

29 (2019) 49-57 Journal of New Theory http://www.newtheory.org Open Access

New Topologies via Weak N-Topological Open Sets and Mappings

Lellis Thivagar¹, Arockia Dasan²

Article History

 Received:
 15.02.2018

 Accepted:
 26.08.2019

 Published:
 30.12.2019

 Original Article

Abstract — One of the objectives of this paper is to introduce some weak N-topological open sets. We characterize N-topological continuous, N^* -quotient, N^* - α quotient and N^* -semi quotient mappings and derive some new topologies with suitable examples.

Keywords - N-topology, $N\tau\alpha$ -open, $N\tau$ semi- open, $N\tau$ pre-open, $N\tau\beta$ -open

1. Introduction

In 1963 Norman Levine [1] initiated the concept of semi open sets and its continuous functions. In 1965 O.Njastad [2] developed the α -open set and its properties in classical topology. Mashhour et al. [3] investigated the properties of pre open sets. Andrijevic [4] discussed the behaviour of β -open sets in classical topology. The general form of classical topology called N-topology and $N\tau$ -open sets were initiated by Lellis Thivagar et al. [5]. In this paper we introduce $N\tau\alpha$ -open set, $N\tau$ semi-open set, $N\tau$ pre-open set and $N\tau\beta$ -open set in N-topological space. We also establish that the set of all $N\tau\alpha$ -open sets forms a topology. Apart from this we investigate the properties of some N-topological continuous and quotient mappings. In this section we discuss some basic properties of N-topological spaces which are useful in sequel. Here by a space $(X, N\tau)$, we mean a N-topological space with N-topology $N\tau$ defined on X in which no separation axioms are assumed unless otherwise explicitly stated.

Definition 1.1. [5] Let X be a non empty set, $\tau_1, \tau_2, \ldots, \tau_N$ be N-arbitrary topologies defined on X and let the collection $N\tau = \{S \subseteq X : S = (\bigcup_{i=1}^N A_i) \cup (\bigcap_{i=1}^N B_i), A_i, B_i \in \tau_i\}$, is said to be N-topology on X if it satisfies the following axioms:

- (i) $X, \emptyset \in N\tau$
- (ii) $\bigcup_{i=1}^{\infty} S_i \in N\tau$ for all $\{S_i\}_{i=1}^{\infty} \in N\tau$
- (iii) $\bigcap_{i=1}^{n} S_i \in N\tau$ for all $\{S_i\}_{i=1}^{n} \in N\tau$

Then the pair $(X, N\tau)$ is called a N-topological space on X. The elements of $N\tau$ are known as $N\tau$ -open set and the complement of $N\tau$ -open set is called $N\tau$ -closed.

¹mlthivagar@yahoo.co.in; ²dassfredy@gmail.com (Corresponding Author)

¹School of Mathematics, Madurai Kamaraj University, Madurai-625 021, India

²Department of Mathematics, St. Jude's College, Thoothoor, Kanyakumari-629176, India. (Manonmaniam Sundaranar University, Tirunelveli)

Definition 1.2. [5] Let A be a subset of N-topological space $(X, N\tau)$. Then

- (i) $N\tau$ -int(A) = \cup {G : G \subseteq A and G is $N\tau$ -open}
- (ii) $N\tau$ - $cl(A) = \cap \{F : A \subseteq F \text{ and } F \text{ is } N\tau$ -closed $\}$

Theorem 1.3. [5] Let $(X, N\tau)$ be a topological space on X and $A \subseteq X$. Then $x \in N\tau$ -cl(A) if and only if $G \cap A \neq \emptyset$ for every open set G containing x.

Definition 1.4. A subset A of a topological space (X, τ) is called

- (i) α -open [2] if $A \subseteq int(cl(int(A)))$
- (ii) semi-open [1] if $A \subseteq cl(int(A))$
- (iii) pre-open [3] if $A \subseteq int(cl(A))$
- (iv) β -open [4] if $A \subseteq cl(int(cl(A)))$

The complement of α -open (resp. semi-open, pre-open and β -open) set is called α -closed (resp. semi-closed, pre-closed and β -closed).

2. Weak Forms of Open Sets in N-Topological Space

In this section we investigate some classes of open sets in N-topological space and discuss the relationship between them.

Definition 2.1. A subset A of a N-topological space $(X, N\tau)$ is called

- (i) $N\tau\alpha$ -open set if $A \subseteq N\tau$ -int $(N\tau$ -cl $(N\tau$ -int(A)))
- (ii) $N\tau$ semi-open set if $A \subseteq N\tau cl(N\tau int(A))$
- (iii) $N\tau$ pre-open set if $A \subseteq N\tau$ -int $(N\tau$ -cl(A))
- (iv) $N\tau\beta$ -open set if $A \subseteq N\tau$ - $cl(N\tau$ - $int(N\tau$ -cl(A)))

The complement of $N\tau\alpha$ -open (resp. $N\tau$ semi-open, $N\tau$ pre-open and $N\tau\beta$ -open) set is called $N\tau\alpha$ -closed (resp. $N\tau$ semi-closed, $N\tau$ pre-closed and $N\tau\beta$ -closed). The set of all $N\tau\alpha$ open (resp. $N\tau$ semi-open, $N\tau$ pre-open and $N\tau\beta$ -open) sets of $(X, N\tau)$ is denoted by $N\tau\alpha O(X)$ (resp. $N\tau SO(X)$, $N\tau PO(X)$ and $N\tau\beta O(X)$ and the set of all $N\tau\alpha$ -closed (resp. $N\tau$ semi-closed, $N\tau$ pre-closed and $N\tau\beta$ -closed) sets of $(X, N\tau)$ is denoted by $N\tau\alpha C(X)$ (resp. $N\tau SC(X)$, $N\tau PC(X)$ and $N\tau\beta C(X)$.

Particularly if N = 1, then the $1\tau\alpha$ -open, 1τ semi-open, 1τ pre-open and $1\tau\beta$ -open set of $(X, 1\tau)$ respectively become α -open, semi-open, pre-open and β -open set of (X, τ) which are defined in definition 2.4.

Theorem 2.2. Let A be a subset of N-topological space $(X, N\tau)$. Then

- (i) every $N\tau$ -open set is $N\tau\alpha$ -open.
- (ii) every $N\tau\alpha$ -open set is $N\tau$ semi-open.
- (iii) every $N\tau\alpha$ -open set is $N\tau$ pre-open.
- (iv) every $N\tau$ semi-open set is $N\tau\beta$ -open.
- (v) every $N\tau$ pre-open set is $N\tau\beta$ -open.

The converse of the above theorem need not be true as shown in the following examples.

Example 2.3. If we take N = 3, $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$, $\tau_2 = \{\emptyset, X\}$ and $\tau_3 = \{\emptyset, X, \{a, b\}\}$. Then $3\tau O(X) = \{\emptyset, X, \{a\}, \{a, b\}\}$ and $3\tau \alpha O(X) = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$. Here the set $A = \{a, c\}$ is $3\tau \alpha$ -open but not 3τ -open. **Example 2.4.** If N = 5, $X = \{a, b, c, d\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$, $\tau_2 = \{\emptyset, X, \{b, c\}\}$, $\tau_3 = \{\emptyset, X, \{a, b, c\}\}$, $\tau_4 = \{\emptyset, X, \{a\}, \{a, b, c\}\}$ and $\tau_5 = \{\emptyset, X, \{b, c\}, \{a, b, c\}\}$. Then, $5\tau O(X) = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}$ = $5\tau\alpha O(X)$, $5\tau SO(X) = \{\emptyset, X, \{a\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$, $5\tau PO(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{c\}, \{a, b\}, \{c\}, \{a, c\}, \{a, c, d\}, \{a, c, d\}, \{a, b, d\}\}$ and $5\tau\beta O(X) = \{\emptyset, X, \{a\}, \{b\}, \{a, c\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}, \{a, c, d\}, \{a, b, d\}, \{b, c, d\}\}$. Here the set $\{a, d\}$ is 5τ semi-open and $5\tau\beta$ -open but not $5\tau\alpha$ -open as well as not 5τ pre-open. Also the set $\{a, c\}$ is 5τ pre-open and $5\tau\beta$ -open but not $5\tau\alpha$ -open as well as 5τ semi-open.

We observe that the following theorem is analogous to the 1985 topological space result of Reilly and Vamanamurthy [6].

Theorem 2.5. Let $(X, N\tau)$ be a N-topological space. Then every $N\tau\alpha$ -open set is both $N\tau$ semi-open and $N\tau$ pre-open and conversely.

Lemma 2.6. The arbitrary union of $N\tau\alpha$ -open (resp. $N\tau$ semi-open, $N\tau$ pre-open, $N\tau\beta$ -open) sets is $N\tau\alpha$ -open (resp. $N\tau$ semi-open, $N\tau$ pre-open, $N\tau\beta$ -open).

Remark 2.7. Intersection of any two $N\tau$ semi-open (resp. $N\tau$ pre-open, $N\tau\beta$ -open) sets need not be a $N\tau$ semi-open (resp. $N\tau$ pre-open, $N\tau\beta$ -open) set. Consider example 3.4, the sets $\{a, d\}$ and $\{b, c, d\}$ are 5τ semi-open, but $\{d\}$ is not 5τ semi-open. The sets $\{a, c, d\}$ and $\{a, b, d\}$ are 5τ pre-open, but $\{a, d\}$ is not 5τ semi-open. Also the sets $\{a, d\}$ and $\{c, d\}$ are $5\tau\beta$ -open, but $\{d\}$ is not $5\tau\beta$ -open.

Theorem 2.8. Let $(X, N\tau)$ be a N-topological space. Then $N\tau\alpha O(X) = \{A \subseteq X : A \cap B \in N\tau SO(X) \forall B \in N\tau SO(X)\}.$

Proof: Proof follows as similar as the Proposition 1 of [2].

Theorem 2.9. Let $(X, N\tau)$ be a N-topological space. Then $N\tau\alpha O(X)$ is a topology finer than $N\tau O(X)$.

Proof: Clearly $\emptyset \in N\tau\alpha O(X)$ and $\bigcup_{i\in\Lambda} A_i \in N\tau\alpha O(X)$ for every $\{A_i\}_{i\in\Lambda} \in N\tau\alpha O(X)$ by lemma 3.6. By theorem 3.8 we have $N\tau\alpha O(X)$ is a topology and clearly $N\tau O(X) \subseteq N\tau\alpha O(X)$.

Definition 2.10. Let $(X, N\tau)$ be a *N*-topological space. A subset *A* of *X* is said to be $N\tau$ -nowhere dense set if $N\tau$ -int $(N\tau$ -cl $(A)) = \emptyset$.

Lemma 2.11. Let $(X, N\tau)$ be a N-topological space. A subset A of X is $N\tau\alpha$ -open set, then it can be written as a difference of $N\tau$ -open set and $N\tau$ -nowhere dense set.

Remark 2.12. $N\tau O(X) = N\tau \alpha O(X)$ if and only if all $N\tau$ -nowhere dense sets are $N\tau$ -closed.

Definition 2.13. An N-topological space $(X, N\tau)$ is said to be extremely disconnected if $N\tau$ -cl(A) is $N\tau$ -open for all $N\tau$ -open sets A.

Lemma 2.14. $N\tau SO(X)$ is a topology if and only if $(X, N\tau)$ is extremely disconnected.

3. Weak Closure and Interior Operators in *N*-Topology

In this section, we introduce some weak closure and interior operators in N-topological space and investigate their properties.

Definition 3.1. Let $(X, N\tau)$ be a N-topological space and A be a subset of X.

(i) The $N\tau$ - α closure of A, denoted by $N\tau$ - $\alpha cl(A)$, and defined by

 $N\tau$ - $\alpha cl(A) = \cap \{F : A \subseteq F \text{ and } F \text{ is } N\tau\alpha\text{-closed set}\}$

(ii) The $N\tau$ -semi closure of A, denoted by $N\tau$ -scl(A), and defined by

 $N\tau$ -scl $(A) = \cap \{F : A \subseteq F \text{ and } F \text{ is } N\tau \text{ semi-closed set} \}$

(iii) The $N\tau$ -pre closure of A, denoted by $N\tau$ -pcl(A), and defined by

 $N\tau$ -pcl(A) = \cap {F : A \subseteq F and F is $N\tau$ pre-closed set}

(iv) The $N\tau$ - β closure of A, denoted by $N\tau\beta cl(A)$, and defined by

 $N\tau - \beta cl(A) = \cap \{F : A \subseteq F \text{ and } F \text{ is } N\tau\beta \text{-closed set}\}$

Definition 3.2. Let $(X, N\tau)$ be a N-topological space and A be a subset of X.

(i) The $N\tau$ - α interior of A, denoted by $N\tau\alpha int(A)$, and is defined by

 $N\tau$ - $\alpha int(A) = \bigcup \{G : G \subseteq A \text{ and } G \text{ is } N\tau\alpha$ -open set}

(ii) The $N\tau$ -semi interior of A, denoted by $N\tau$ -sint(A), and is defined by

 $N\tau$ -sint $(A) = \bigcup \{G : G \subseteq A \text{ and } G \text{ is } N\tau \text{ semi-open set} \}$

(iii) The $N\tau$ -pre interior of A, denoted by $N\tau$ -pint(A), and is defined by

 $N\tau$ -pint $(A) = \bigcup \{G : G \subseteq A \text{ and } G \text{ is } N\tau \text{ pre-open set} \}$

(iv) The $N\tau$ - β interior of A, denoted by $N\tau$ - $\beta int(A)$, and is defined by

 $N\tau$ - $\beta int(A) = \bigcup \{G : G \subseteq A \text{ and } G \text{ is } N\tau\beta\text{-open set} \}$

Theorem 3.3. Let $(X, N\tau)$ be a N-topological space on X and let $A, B \subseteq X$. Then

- (i) $N\tau \alpha cl(A)$ is the smallest $N\tau \alpha$ -closed set which containing A.
- (ii) A is $N\tau\alpha$ -closed iff $N\tau$ - $\alpha cl(A) = A$. In particular, $N\tau$ - $\alpha cl(\emptyset) = \emptyset$ and $N\tau$ - $\alpha cl(X) = X$.

(iii)
$$A \subseteq B \Rightarrow N\tau \cdot \alpha cl(A) \subseteq N\tau \cdot \alpha cl(B)$$

- (iv) $N\tau \alpha cl(A \cup B) = N\tau \alpha cl(A) \cup N\tau \alpha cl(B)$
- (v) $N\tau \alpha cl(A \cap B) \subseteq N\tau \alpha cl(A) \cap N\tau \alpha cl(B)$
- (vi) $N\tau \alpha cl(N\tau \alpha cl(A)) = N\tau \alpha cl(A)$

Proof:

- (i) Since the intersection of any collection of $N\tau\alpha$ -closed sets is also $N\tau\alpha$ -closed, then $N\tau$ - $\alpha cl(A)$ is a $N\tau\alpha$ -closed set. By definition 4.1, $A \subseteq N\tau$ - $\alpha cl(A)$. Now let B be any $N\tau\alpha$ -closed set containing A. Then $N\tau$ - $\alpha cl(A) = \cap \{F : A \subseteq F \text{ and } F \text{ is } N\tau\alpha$ -closed $\} \subseteq B$. Therefore, A is the smallest $N\tau\alpha$ -closed set containing A.
- (ii) Assume A is $N\tau\alpha$ -closed, then A is the only smallest $N\tau\alpha$ -closed set containing itself and therefore, $N\tau$ - $\alpha cl(A) = A$. Conversely, assume $N\tau$ - $\alpha cl(A) = A$. Then A is the smallest $N\tau\alpha$ closed set containing itself. Therefore, A is $N\tau\alpha$ -closed. In particular, since \emptyset and X are $N\tau\alpha$ -closed sets, then $N\tau$ - $\alpha cl(\emptyset) = \emptyset$ and $N\tau$ - $\alpha cl(X) = X$.
- (iii) Assume $A \subseteq B$, and since $B \subseteq N\tau \alpha cl(B)$, then $A \subseteq N\tau \alpha cl(B)$. Since $N\tau \alpha cl(A)$ is the smallest $N\tau\alpha$ -closed set containing A. Therefore, $N\tau \alpha cl(A) \subseteq N\tau \alpha cl(B)$.
- (iv) Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$. Then by (iii), we have $N\tau \alpha cl(A) \cup N\tau \alpha cl(B) \subseteq N\tau \alpha cl(A \cup B)$. On the other hand, by(i), $A \cup B \subseteq N\tau \alpha cl(A) \cup N\tau \alpha cl(B)$. Since $N\tau \alpha cl(A \cup B)$ is the smallest $N\tau \alpha closed$ set containing $A \cup B$. Then $N\tau - \alpha cl(A \cup B) \subseteq N\tau - \alpha cl(A) \cup N\tau - \alpha cl(B)$. Therefore, $N\tau - \alpha cl(A \cup B) = N\tau - \alpha cl(A) \cup N\tau - \alpha cl(B)$.
- (v) Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, then $N\tau \alpha cl(A \cap B) \subseteq N\tau \alpha cl(A) \cap N\tau \alpha cl(B)$.
- (vi) Since $N\tau \alpha cl(A)$ is a $N\tau\alpha$ -closed set, then $N\tau \alpha cl(N\tau \alpha cl(A)) = N\tau \alpha cl(A)$.

Remark 3.4. From the above theorem, we can observe that the closure operator $N\tau$ - αcl satisfies the Kuratowski's closure axioms. The following theorem can be proved as the above theorem.

Theorem 3.5. Let $(X, N\tau)$ be a N-topological space on X and let $A, B \subseteq X$. Let $N\tau$ -kcl(A) is the intersection of all k-closed sets containing A (where k-closed set is can be any one of the following $N\tau$ semi-closed set, $N\tau$ pre-closed set and $N\tau\beta$ -closed set). Then

- (i) $N\tau$ -kcl(A) is the smallest k-closed set containing A.
- (ii) A is k-closed iff $N\tau$ -kcl(A) = A. In particular, $N\tau$ -kcl(\emptyset) = \emptyset and $N\tau$ -kcl(X) = X.
- (iii) $A \subseteq B \Rightarrow N\tau kcl(A) \subseteq N\tau kcl(B)$
- (iv) $N\tau$ - $kcl(A \cup B) \supseteq N\tau$ - $kcl(A) \cup N\tau$ -kcl(B)
- (v) $N\tau$ - $kcl(A \cap B) \subseteq N\tau$ - $kcl(A) \cap N\tau$ -kcl(B)
- (vi) $N\tau$ -kcl $(N\tau$ -kcl $(A)) = N\tau$ -kcl(A).

Example 3.6. Let $X = \{a, b, c, d\}$. For N = 3, consider $\tau_1 O(X) = \{X, \emptyset, \{a\}\}, \tau_2 O(X) = \{X, \emptyset, \{b, c\}\}$ and $\tau_3 O(X) = \{X, \emptyset, \{a, b, c\}\}$. Then, we have $3\tau O(X) = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\} = N\tau \alpha O(X)$, $3\tau C(X) = \{X, \emptyset, \{d\}, \{a, d\}, \{b, c, d\}\}$. Also $3\tau SO(X) = \{\emptyset, X, \{a\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$, $3\tau PO(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\}\}$ and $3\tau \beta O(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, c\}, \{a, b, d\}\}$. Let $A = \{a\}$ and $B = \{b\}$. Then 3τ -scl $(A) \cup 3\tau$ -scl $(B) = \{a\} \cup \{b\} = \{a, b\} \neq \{a, b, c\} = 3\tau$ -scl $(A \cup B)$. Also let $A = \{a\}$ and $B = \{b, c\}$, then 3τ - $\beta cl(A) \cup 3\tau$ - $\beta cl(B) = \{a\} \cup \{b\} = \{a\} \cup \{b, c\} = \{a, b, c\} \neq X = 3\tau$ - $\beta cl(A \cup B)$.

Theorem 3.7. Let $(X, N\tau)$ be a N-topological space on X and $A \subseteq X$. Let $N\tau$ -kcl(A) is the intersection of all k-closed sets containing A (where k-closed set is can be any one of the following $N\tau\alpha$ -closed set, $N\tau$ semi-closed set, $N\tau$ pre-closed set and $N\tau\beta$ -closed set). Then $x \in N\tau$ -kcl(A) if and only if $G \cap A \neq \emptyset$ for every k-open set G containing x.

Theorem 3.8. Let $(X, N\tau)$ be a N-topological space X and $A, B \subseteq X$. Then

- (i) $N\tau \alpha int(A)$ is the largest $N\tau\alpha$ -open set contained in A.
- (ii) A is $N\tau\alpha$ -open set iff $N\tau-\alpha int(A) = A$. In particular, $N\tau-\alpha int(\emptyset) = \emptyset$ and $N\tau-\alpha int(X) = X$.
- (iii) $A \subseteq B$, then $N\tau$ - $\alpha int(A) \subseteq N\tau$ - $\alpha int(B)$
- (iv) $N\tau \alpha int(A \cup B) \supseteq N\tau \alpha int(A) \cup N\tau \alpha int(B)$
- (v) $N\tau \alpha int(A \cap B) = N\tau \alpha int(A) \cap N\tau \alpha int(B)$
- (vi) $N\tau$ - $\alpha int(N\tau$ - $\alpha int(A)) = N\tau$ - $\alpha int(A)$

Proof: The proof is obvious from the fact that a set is $N\tau\alpha$ -open if and only if its complement is $N\tau\alpha$ -closed.

The proof of the following theorem can be proved as similar as the above theorem.

Theorem 3.9. Let $(X, N\tau)$ be a N-topological space X and $A, B \subseteq X$. Let $N\tau$ -kint(A) is the union of all k-open sets contained in A (where k-open set can be any one of $N\tau$ semi-open set, $N\tau$ pre-open set and $N\tau\beta$ -open set). Then

- (i) $N\tau$ -kint(A) is the largest k-open set contained in A.
- (ii) A is k-open set iff $N\tau$ -kint(A) = A. In particular, $N\tau$ -kint(\emptyset) = \emptyset and $N\tau$ -kint(X) = X.
- (iii) $A \subseteq B$, then $N\tau$ -kint $(A) \subseteq N\tau$ -kint(B)
- (iv) $N\tau$ -kint $(A \cup B) \supseteq N\tau$ -kint $(A) \cup N\tau$ -kint(B)
- (v) $N\tau$ -kint $(A \cap B) \subseteq N\tau$ -kint $(A) \cap N\tau$ -kint(B)

(vi)
$$N\tau$$
-kint $(N\tau$ -kint $(A)) = N\tau$ -kint (A)

Theorem 3.10. Let $(X, N\tau)$ be a N-topological space X and $A \subseteq X$. Let $N\tau$ -kint(A) and $N\tau$ kcl(A) are the weak interior and closure operator in N-topological space. By k-closed set, we mean any one of the following $N\tau\alpha$ -closed set, $N\tau$ semi-closed set, $N\tau$ pre-closed set and $N\tau\beta$ -closed set. Then

(i)
$$N\tau$$
-kint $(X - A) = X - N\tau$ -kcl (A)

(ii)
$$N\tau$$
- $kcl(X - A) = X - N\tau$ - $kint(A)$

Remark 3.11. Let $(X, N\tau)$ be a N-topological space X and $A \subseteq X$. Let $N\tau$ -kint(A) and $N\tau$ -kcl(A) are the weak interior and closure operator in N-topological space. By k-closed set, we mean any one of the following $N\tau\alpha$ -closed set, $N\tau$ semi-closed set, $N\tau$ pre-closed set and $N\tau\beta$ -closed set. If we take the complement of either side of part(i) and part(ii) of previous theorems, we get

(i)
$$N\tau$$
- $kcl(A) = X - N\tau$ - $kint(X - A)$

(ii)
$$N\tau$$
-kint(A) = X - $N\tau$ -kcl(X - A)

4. Some Weak Continuous Functions in *N*-topology

In this section, we introduce some weak form of continuous functions in N-topological space and investigate the relationship between them. By the spaces X and Y, we means the N-topological spaces $(X, N\tau)$ and $(Y, N\sigma)$ respectively.

Definition 4.1. Let X and Y be two N-Topological spaces. A function $f : X \to Y$ is said to be $N^* - \alpha$ continuous (resp. N^* -semi continuous, N^* -pre continuous, $N^* - \beta$ continuous) on X if the inverse image of every $N\sigma$ -open set in Y is a $N\tau\alpha$ -open set (resp. $N\tau$ semi-open, $N\tau$ pre-open, $N\tau\beta$ -open) in X.

Theorem 4.2. A function $f : X \to Y$ is $N^* \cdot \alpha$ continuous (resp. N^* -semi continuous, N^* -pre continuous, $N^* \cdot \beta$ continuous) on X if and only if the inverse image of every $N\sigma$ -closed set in Y is a $N\tau\alpha$ -closed set (resp. $N\tau$ semi-closed, $N\tau$ pre-closed, $N\tau\beta$ -closed) in X.

Theorem 4.3. A function $f: X \to Y$ is N^* -continuous on X, then it is N^* - α continuous function on X.

Proof: Assume $f : X \to Y$ be a N^* -continuous function on X and let $A \subseteq Y$ be a $N\sigma$ -open set. Then $f^{-1}(A) \subseteq X$ is $N\tau$ -open set in X. Since every $N\tau$ -open set is $N\tau\alpha$ -open set, then f is $N^*-\alpha$ continuous on X.

The converse of the above theorem need not be true as shown in the following example.

Example 4.4. For N = 2, let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$. Consider $\tau_1 O(X) = \{X, \emptyset\}, \tau_2 O(X) = \{X, \emptyset, \{a\}\}$ and $\sigma_1 O(Y) = \{Y, \emptyset, \{x\}\}$ and $\sigma_2 O(Y) = \{Y, \emptyset, \{x, y\}\}$. Then $2\tau O(X) = \{X, \emptyset, \{a\}\}$ and $2\sigma O(Y) = \{Y, \emptyset, \{x\}, \{x, y\}\}$. Define $f : X \to Y$ by f(a) = x, f(b) = y and f(c) = z. Therefore, f is $2^* - \alpha$ continuous function on X but not 2^* -continuous.

Theorem 4.5. A function $f: X \to Y$ is $N^* - \alpha$ continuous on X if and only if it is N^* -semi continuous and N^* -pre continuous.

Proof: The proof follows from the theorem 3.5.

Theorem 4.6. A function $f: X \to Y$ is N^* -semi continuous on X, then it is $N^* - \beta$ continuous.

Theorem 4.7. A function $f: X \to Y$ is N^{*}-pre continuous on X, then it is N^{*}- β continuous.

The converse of the above theorems need not be true as shown in the following example.

Example 4.8. If N = 2, $X = \{a, b, c\}$ and $Y = \{x, y, z\}$. Consider $\tau_1 O(X) = \{X, \emptyset, \{a\}\}, \tau_2 O(X) = \{X, \emptyset, \{b, c\}\}$ and also $\sigma_1 O(Y) = \{Y, \emptyset, \{x\}\}, \sigma_2 O(Y) = \{Y, \emptyset, \{x, y\}\}$. Then $2\tau O(X) = \{X, \emptyset, \{a\}, \{b, c\}\}, 2\sigma O(Y) = \{Y, \emptyset, \{x\}, \{x, y\}\}$. Define $f : X \to Y$ by f(a) = x, f(b) = z and f(c) = y. Then f is 2*-pre continuous and 2*- β continuous function on X but it is not 2*-semi

continuous and not 2^* - α continuous function. Also if N = 3, $X = \{a, b, c\}$ and $Y = \{x, y, z\}$. Consider $\tau_1 O(X) = \{X, \emptyset, \{a\}, \{a, b\}\}, \tau_2 O(X) = \{X, \emptyset, \{b\}, \{a, b\}\}, \tau_3 O(X) = \{X, \emptyset, \{a, b\}\}$ and also $\sigma_1 O(Y) = \{Y, \emptyset, \{x\}\}, \sigma_2 O(Y) = \{Y, \emptyset, \{y, z\}\}, \sigma_3 O(Y) = \{Y, \emptyset\}$. Then $3\tau O(X) = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}, 3\sigma O(Y) = \{Y, \emptyset, \{x\}, \{y, z\}\}$. Define $f : X \to Y$ by f(a) = x, f(b) = y and f(c) = z. Then f is 3*-semi continuous and 3*- β continuous on X but it is not 3*-pre continuous and not 3*- α continuous.

5. Quotient Mappings in N-Topology

In this section, we introduce and establish the properties of some new types of quotient mappings in N-topological spaces.

Definition 5.1. Let X and Y be N-topological spaces, then a surjective map $f: X \to Y$ is said to be

- (i) N^* -quotient map if f is N^* -continuous and for each subset G of Y, $f^{-1}(G)$ is $N\tau$ -open (or $N\tau$ -closed) in X implies G is $N\sigma$ -open (or $N\sigma$ -closed) in Y.
- (ii) $N^* \alpha$ quotient map if f is $N^* \alpha$ continuous and for each subset G of Y, $f^{-1}(G)$ is $N\tau$ -open (or $N\tau$ -closed) in X implies G is $N\sigma\alpha$ -open (or $N\sigma\alpha$ -closed) in Y.
- (iii) N^* -semi quotient map if f is N^* -semi continuous and for each subset G of Y, $f^{-1}(G)$ is $N\tau$ -open (or $N\tau$ -closed) in X implies G is $N\sigma$ semi-open (or $N\sigma$ semi-closed) in Y.

Proposition 5.2. Let X, Y be two N-topological spaces and $f: X \to Y$ be a surjective map. Then

- (i) every N^* -quotient map is N^* - α quotient.
- (ii) every N^* -quotient map is N^* -semi quotient.
- (iii) every N^* - α quotient map is N^* -semi quotient.

Proof: The proof is straightforward from the definition.

The following examples show that the converse of the above proposition need not be true.

Example 5.3. For N = 2, let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$. Consider $\tau_1 O(X) = \{X, \emptyset, \{a\}\}$, $\tau_2 O(X) = \{X, \emptyset\}$ and $\sigma_1 O(Y) = \{Y, \emptyset, \{x\}\}$ and $\sigma_2 O(Y) = \{Y, \emptyset, \{x, y\}\}$. Then $2\tau O(X) = \{X, \emptyset, \{a\}\}$ and $2\sigma O(Y) = \{Y, \emptyset, \{x\}, \{x, y\}\}$. Define $f : X \to Y$ by f(a) = x, f(b) = y and f(c) = z. Therefore, f is $2^* - \alpha$ quotient and 2^* -semi quotient map but not 2^* -quotient.

Example 5.4. For N = 3, let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$. Consider $\tau_1 O(X) = \{X, \emptyset, \{a\}, \{a, b\}\}$, $\tau_2 O(X) = \{X, \emptyset, \{b\}, \{a, b\}\}$, $\tau_3 O(X) = \{X, \emptyset, \{b\}\}$ and $\sigma_1 O(Y) = \{Y, \emptyset, \{x\}, \{x, z\}\}$, $\sigma_2 O(Y) = \{Y, \emptyset, \{y\}, \{x, y\}\}$ and $\sigma_3 O(Y) = \{Y, \emptyset, \{x\}, \{x, y\}, \{x, z\}\}$. Then $3\tau O(X) = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $3\sigma O(Y) = \{Y, \emptyset, \{x\}, \{y\}, \{x, y\}, \{x, z\}\}$. Define $f : X \to Y$ by f(a) = y, f(b) = x and f(c) = z. Therefore, f is 3*-semi quotient map but not 3*- α quotient and not 3*-quotient.

Definition 5.5. Let X and Y be two N-topological spaces, then a map $f: X \to Y$ is said to be

- (i) N^* -open (or N^* -closed) if for every $N\tau$ -open ($N\tau$ -closed) set G of X, f(G) is $N\sigma$ -open (or $N\sigma$ -closed) in Y.
- (ii) $N^* \alpha$ open (or $N^* \alpha$ closed) if for every $N\tau$ -open ($N\tau$ -closed) set G of X, f(G) is $N\sigma\alpha$ -open (or $N\sigma\alpha$ -closed) in Y.
- (iii) N^* -semi open (or N^* -semi closed) if for every $N\tau$ -open ($N\tau$ -closed) set G of X, f(G) is $N\sigma$ semi-open (or $N\sigma$ semi-closed) in Y.
- **Theorem 5.6.** (i) Every surjective N^* -continuous map $f : X \to Y$ which is either N^* -open or N^* -closed is N^* -quotient map.
 - (ii) Every surjective $N^* \alpha$ continuous map $f : X \to Y$ which is either $N^* \alpha$ open or $N^* \alpha$ closed is $N^* \alpha$ quotient map.

(iii) Every surjective N^* -semi continuous map $f: X \to Y$ which is either N^* -semi open or N^* -semi closed is N^* -semi quotient map.

Proof: The proof is trivial from the definition.

Lemma 5.7. Let X be a N-topological space, Y be a set and $f: X \to Y$ be a surjective map. Then define $N\tau_f = \{G \subseteq Y : f^{-1}(G) \in N\tau O(X)\}$ is a topology on Y relative to which f is a N*-quotient map. It is called N*-quotient topology on Y induced by f.

Proof: The proof follows from the facts that $f^{-1}(\emptyset) = \emptyset$, $f^{-1}(Y) = X$, $f^{-1}(\bigcup_{i=1}^{\infty}G_i) = \bigcup_{i=1}^{\infty}f^{-1}(G_i)$ and $f^{-1}(\bigcap_{i=1}^{n}G_i) = \bigcap_{i=1}^{n}f^{-1}(G_i)$.

The following lemmas can be proved similarly as the above lemma.

Lemma 5.8. Let X be a N-topological space, Y be a set and $f: X \to Y$ be a surjective map. Then define $N\tau\alpha_f = \{G \subseteq Y : f^{-1}(G) \in N\tau\alpha O(X)\}$ is a topology on Y relative to which f is a $N^*-\alpha$ quotient map. It is called $N^*-\alpha$ quotient topology on Y induced by f.

Lemma 5.9. Let X be a N-topological space, Y be a set and $f: X \to Y$ be a surjective map. Then define $N\tau S_f = \{G \subseteq Y : f^{-1}(G) \in N\tau SO(X)\}$ is a generalized topology on Y relative to which f is a N*-semi quotient map but it need not be a topology. It is called N*-semi quotient generalized topology on Y induced by f. If X is an extremally disconnected N-topological space, the intersection of two $N\tau$ semi-open sets in X is $N\tau$ semi-open and hence $N\tau S_f$ becomes a topology on Y.

Example 5.10. For N = 2, let $X = \{a, b, c\} = Y$. Consider $\tau_1 O(X) = \{X, \emptyset, \{a\}\} = \sigma_1 O(Y)$ and $\tau_2 O(X) = \{X, \emptyset\} = \sigma_2 O(Y)$. Then $2\tau O(X) = \{X, \emptyset, \{a\}\} = 2\sigma O(Y)$ and $2\tau \alpha O(X) = 2\tau SO(X) = 2\sigma \alpha O(Y) = 2\sigma SO(Y) = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$. Define $f : X \to Y$ by f(a) = a, f(b) = b and f(c) = c. Clearly f is 2*-quotient, 2*- α quotient and 2*-semi quotient map. Therefore, $2\tau_f = \{Y, \emptyset, \{a\}\}$ and $2\tau \alpha_f = 2\tau S_f = \{Y, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$.

Example 5.11. In example 6.4, f is 3*-semi quotient map and therefore, $3\tau S_f = \{Y, \emptyset, \{x\}, \{y\}, \{x, y\}, \{x, z\}, \{y, z\}\}$ is not a topology on Y.

Theorem 5.12. Let X, Y, Z be N-topological spaces, $f : X \to Y$ be a N^{*}-quotient map and $h : X \to Z$ be a map that is constant on each set $f^{-1}(\{y\})$, for $y \in Y$. Then h induces a map $g : Y \to Z$ such that $g \circ f = h$. Then the induced map g is N^{*}-continuous if and only if h is N^{*}-continuous; g is N^{*}-quotient map if and only if h is N^{*}-quotient map.

Proof: Since h is constant on each set $f^{-1}(\{y\})$, for each $y \in Y$, the set $h(f^{-1}(\{y\}))$ is a one-point set in Z. Let us take this point as g(y), then the map $g: Y \to Z$ such that for each $x \in X$, g(f(x)) = h(x). If g is N*-continuous, then $h = g \circ f$ is N*-continuous. Conversely, assume h is N*-continuous, for each $N\eta$ -open set G of Z, $h^{-1}(G) = f^{-1}(g^{-1}(G))$ is $N\tau$ -open in X. Since f is N*-quotient, $g^{-1}(G)$ is $N\sigma$ -open in Y and hence g is N*-continuous.

If g is N^{*}-quotient map, then h is the composite of two N^{*}-quotient map and so is a N^{*}-quotient map. Conversely, assume h is a N^{*}-quotient map and since h is surjective, then g is surjective. Let $g^{-1}(G)$ be a N σ -open set in Y and since f is N^{*}-continuous, then the set $f^{-1}(g^{-1}(G)) = h^{-1}(G)$ is N τ -open in X. Since h is a N^{*}-quotient map, G is N η -open in Z.

The following theorems can be proved similarly as the above theorem.

Theorem 5.13. Let X, Y, Z be N-topological spaces, $f : X \to Y$ be a N^* - α quotient map and $h: X \to Z$ be a N^* -continuous map that is constant on each set $f^{-1}(\{y\})$, for $y \in Y$. Then h induces a N^* - α continuous map $g: Y \to Z$ such that $g \circ f = h$.

Theorem 5.14. Let X, Y, Z be N-topological spaces, $f : X \to Y$ be a N^{*}-semi quotient map and $h: X \to Z$ be a N^{*}-continuous map that is constant on each set $f^{-1}(\{y\})$, for $y \in Y$. Then h induces a N^{*}-semi continuous map $g: Y \to Z$ such that $g \circ f = h$.

6. Conclusion

In this paper we established some weak form of open sets and its respective continuous and quotient mappings in our N-topological spaces. These concepts can be extended to other applicable research areas of topology such as Nano topology, Fuzzy topology, Supra topology and so on.

References

- N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, The American Mathematical Monthly 70 (1963) 36–41.
- [2] O. Njastad, On Some Classes of Nearly Open Sets, Pacific Journal of Mathematics 15 (1965) 961–970.
- [3] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On Pre Continuous and Weak Pre Continuous mappings, Proceedings of the Mathematical and Physical Society of Egypt 53 (1982) 47–53.
- [4] D. Andrijevic, Semi-Preopen Sets, Matematički Vesnik 38(1) (1986) 24–32.
- [5] M. L. Thivagar, V. Ramesh, M. A. Dasan, On New Structure of N-Topology, Cogent Mathematics (Taylor and Francise) 3 (2016) 1–10.
- [6] I. L. Reilly, M. K. Vamanamurthy, On α Sets in Topological Spaces, Tamkang Journal of Mathematics 16 (1985) 7–11.