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Abstract − One of the objectives of this paper is to introduce some weak N-
topological open sets. We characterize N-topological continuous, N∗-quotient, N∗-
α quotient and N∗-semi quotient mappings and derive some new topologies with
suitable examples.
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1. Introduction

In 1963 Norman Levine [1] initiated the concept of semi open sets and its continuous functions. In
1965 O.Njastad [2] developed the α-open set and its properties in classical topology. Mashhour et
al. [3] investigated the properties of pre open sets. Andrijevic [4] discussed the behaviour of β-open
sets in classical topology. The general form of classical topology called N -topology and Nτ -open sets
were initiated by Lellis Thivagar et al. [5]. In this paper we introduce Nτα-open set, Nτ semi-open
set, Nτ pre-open set and Nτβ-open set in N -topological space. We also establish that the set of all
Nτα-open sets forms a topology. Apart from this we investigate the properties of some N -topological
continuous and quotient mappings. In this section we discuss some basic properties of N -topological
spaces which are useful in sequel. Here by a space (X,Nτ), we mean a N -topological space with
N -topology Nτ defined on X in which no separation axioms are assumed unless otherwise explicitly
stated.

Definition 1.1. [5] Let X be a non empty set, τ1, τ2, ... , τN be N -arbitrary topologies defined
on X and let the collection Nτ = {S ⊆ X : S = (

⋃N
i=1

Ai) ∪ (
⋂N

i=1
Bi), Ai, Bi ∈ τi}, is said to be

N -topology on X if it satisfies the following axioms:

(i) X, ∅ ∈ Nτ

(ii)
⋃

∞

i=1
Si ∈ Nτ for all {Si}

∞

i=1
∈ Nτ

(iii)
⋂n

i=1
Si ∈ Nτ for all {Si}

n
i=1

∈ Nτ

Then the pair (X,Nτ) is called a N -topological space on X. The elements of Nτ are known as
Nτ -open set and the complement of Nτ -open set is called Nτ -closed.
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Definition 1.2. [5] Let A be a subset of N -topological space (X,Nτ). Then

(i) Nτ -int(A) = ∪{G : G ⊆ A and G is Nτ -open}

(ii) Nτ -cl(A) = ∩{F : A ⊆ F and F is Nτ -closed}

Theorem 1.3. [5] Let (X,Nτ) be a topological space on X and A ⊆ X. Then x ∈ Nτ -cl(A) if and
only if G ∩A 6= ∅ for every open set G containing x.

Definition 1.4. A subset A of a topological space (X, τ) is called

(i) α-open [2] if A ⊆ int(cl(int(A)))

(ii) semi-open [1] if A ⊆ cl(int(A))

(iii) pre-open [3] if A ⊆ int(cl(A))

(iv) β-open [4] if A ⊆ cl(int(cl(A)))

The complement of α-open (resp. semi-open, pre-open and β-open) set is called α-closed (resp.
semi-closed, pre-closed and β-closed).

2.Weak Forms of Open Sets in N-Topological Space

In this section we investigate some classes of open sets in N -topological space and discuss the rela-
tionship between them.

Definition 2.1. A subset A of a N -topological space (X,Nτ) is called

(i) Nτα-open set if A ⊆ Nτ -int(Nτ -cl(Nτ -int(A)))

(ii) Nτ semi-open set if A ⊆ Nτ -cl(Nτ -int(A))

(iii) Nτ pre-open set if A ⊆ Nτ -int(Nτ -cl(A))

(iv) Nτβ-open set if A ⊆ Nτ -cl(Nτ -int(Nτ -cl(A)))

The complement of Nτα-open (resp. Nτ semi-open, Nτ pre-open and Nτβ-open) set is
called Nτα-closed (resp. Nτ semi-closed, Nτ pre-closed and Nτβ-closed). The set of all Nτα-
open (resp. Nτ semi-open, Nτ pre-open and Nτβ-open) sets of (X,Nτ) is denoted by NταO(X)
(resp. NτSO(X), NτPO(X) and NτβO(X) and the set of all Nτα-closed (resp. Nτ semi-closed, Nτ

pre-closed and Nτβ-closed) sets of (X,Nτ) is denoted by NταC(X) (resp. NτSC(X), NτPC(X)
and NτβC(X).

Particularly if N = 1, then the 1τα-open, 1τ semi-open, 1τ pre-open and 1τβ-open set of (X, 1τ)
respectively become α-open, semi-open, pre-open and β-open set of (X, τ) which are defined in defi-
nition 2.4.

Theorem 2.2. Let A be a subset of N -topological space (X,Nτ). Then

(i) every Nτ -open set is Nτα-open.

(ii) every Nτα-open set is Nτ semi-open.

(iii) every Nτα-open set is Nτ pre-open.

(iv) every Nτ semi-open set is Nτβ-open.

(v) every Nτ pre-open set is Nτβ-open.

The converse of the above theorem need not be true as shown in the following examples.

Example 2.3. If we take N = 3, X = {a, b, c}, τ1 = {∅,X, {a}}, τ2 = {∅,X} and τ3 = {∅,X, {a, b}}.
Then 3τO(X) = {∅,X, {a}, {a, b}} and 3ταO(X) = {∅,X, {a}, {a, b}, {a, c}}. Here the set A = {a, c}
is 3τα-open but not 3τ -open.
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Example 2.4. If N = 5, X = {a, b, c, d}, τ1 = {∅,X, {a}}, τ2 = {∅,X, {b, c}}, τ3 = {∅,X, {a, b, c}},
τ4 = {∅,X, {a}, {a, b, c}} and τ5 = {∅,X, {b, c}, {a, b, c}}. Then, 5τO(X) = {∅,X, {a}, {b, c}, {a, b, c}}
= 5ταO(X), 5τSO(X) = {∅,X, {a}, {a, d}, {b, c}, {a, b, c}, {b, c, d}}, 5τPO(X) = {∅,X, {a}, {b}, {c},
{a, b}, {a, c}, {b, c}, {a, b, c}, {a, c, d}, {a, b, d}} and 5τβO(X) = {∅,X, {a}, {b}, {c}, {a, b}, {a, c}, {a, d},
{b, c}, {b, d}, {c, d}, {a, b, c}, {a, c, d}, {a, b, d}, {b, c, d}}. Here the set {a, d} is 5τ semi-open and 5τβ-
open but not 5τα-open as well as not 5τ pre-open. Also the set {a, c} is 5τ pre-open and 5τβ-open
but not 5τα-open as well as 5τ semi-open.

We observe that the following theorem is analogous to the 1985 topological space result of Reilly
and Vamanamurthy [6].

Theorem 2.5. Let (X,Nτ) be aN -topological space. Then every Nτα-open set is bothNτ semi-open
and Nτ pre-open and conversely.

Lemma 2.6. The arbitrary union of Nτα-open ( resp. Nτ semi-open, Nτ pre-open, Nτβ-open) sets
is Nτα-open ( resp. Nτ semi-open, Nτ pre-open, Nτβ-open).

Remark 2.7. Intersection of any two Nτ semi-open (resp. Nτ pre-open, Nτβ-open) sets need not
be a Nτ semi-open (resp. Nτ pre-open, Nτβ-open) set. Consider example 3.4, the sets {a, d} and
{b, c, d} are 5τ semi-open, but {d} is not 5τ semi-open. The sets {a, c, d} and {a, b, d} are 5τ pre-open,
but {a, d} is not 5τ semi-open. Also the sets {a, d} and {c, d} are 5τβ-open, but {d} is not 5τβ-open.

Theorem 2.8. Let (X,Nτ) be a N -topological space. Then NταO(X) = {A ⊆ X : A ∩ B ∈
NτSO(X)∀B ∈ NτSO(X)}.
Proof: Proof follows as similar as the Proposition 1 of [2].

Theorem 2.9. Let (X,Nτ) be a N -topological space. Then NταO(X) is a topology finer than
NτO(X).
Proof: Clearly ∅ ∈ NταO(X) and

⋃
i∈ΛAi ∈ NταO(X) for every {Ai}i∈Λ ∈ NταO(X) by lemma

3.6. By theorem 3.8 we have NταO(X) is a topology and clearly NτO(X) ⊆ NταO(X).

Definition 2.10. Let (X,Nτ) be a N -topological space. A subset A of X is said to be Nτ -nowhere
dense set if Nτ -int(Nτ -cl(A)) = ∅.

Lemma 2.11. Let (X,Nτ) be a N -topological space. A subset A of X is Nτα-open set, then it can
be written as a difference of Nτ -open set and Nτ -nowhere dense set.

Remark 2.12. NτO(X) = NταO(X) if and only if all Nτ -nowhere dense sets are Nτ -closed.

Definition 2.13. An N -topological space (X,Nτ) is said to be extremely disconnected if Nτ -cl(A)
is Nτ -open for all Nτ -open sets A.

Lemma 2.14. NτSO(X) is a topology if and only if (X,Nτ) is extremely disconnected.

3.Weak Closure and Interior Operators
in N-Topology

In this section, we introduce some weak closure and interior operators in N -topological space and
investigate their properties.

Definition 3.1. Let (X,Nτ) be a N -topological space and A be a subset of X.

(i) The Nτ -α closure of A, denoted by Nτ -αcl(A), and defined by

Nτ -αcl(A) = ∩{F : A ⊆ F and F is Nτα-closed set}

(ii) The Nτ -semi closure of A, denoted by Nτ -scl(A), and defined by

Nτ -scl(A) = ∩{F : A ⊆ F and F is Nτ semi-closed set}

(iii) The Nτ -pre closure of A, denoted by Nτ -pcl(A), and defined by
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Nτ -pcl(A) = ∩{F : A ⊆ F and F is Nτ pre-closed set}

(iv) The Nτ -β closure of A, denoted by Nτβcl(A), and defined by

Nτ -βcl(A) = ∩{F : A ⊆ F and F is Nτβ-closed set}

Definition 3.2. Let (X,Nτ) be a N -topological space and A be a subset of X.

(i) The Nτ -α interior of A, denoted by Nταint(A), and is defined by

Nτ -αint(A) = ∪{G : G ⊆ A and G is Nτα-open set}

(ii) The Nτ -semi interior of A, denoted by Nτ -sint(A), and is defined by

Nτ -sint(A) = ∪{G : G ⊆ A and G is Nτ semi-open set}

(iii) The Nτ -pre interior of A, denoted by Nτ -pint(A), and is defined by

Nτ -pint(A) = ∪{G : G ⊆ A and G is Nτ pre-open set}

(iv) The Nτ -β interior of A, denoted by Nτ -βint(A), and is defined by

Nτ -βint(A) = ∪{G : G ⊆ A and G is Nτβ-open set}

Theorem 3.3. Let (X,Nτ) be a N -topological space on X and let A,B ⊆ X. Then

(i) Nτ -αcl(A) is the smallest Nτα-closed set which containing A.

(ii) A is Nτα-closed iff Nτ -αcl(A) = A. In particular, Nτ -αcl(∅) = ∅ and Nτ -αcl(X) = X.

(iii) A ⊆ B ⇒ Nτ -αcl(A) ⊆ Nτ -αcl(B)

(iv) Nτ -αcl(A ∪B) = Nτ -αcl(A) ∪Nτ -αcl(B)

(v) Nτ -αcl(A ∩B) ⊆ Nτ -αcl(A) ∩Nτ -αcl(B)

(vi) Nτ -αcl(Nτ -αcl(A)) = Nτ -αcl(A)

Proof:

(i) Since the intersection of any collection of Nτα-closed sets is also Nτα-closed, then Nτ -αcl(A)
is a Nτα-closed set. By definition 4.1, A ⊆ Nτ -αcl(A). Now let B be any Nτα-closed set
containing A. Then Nτ -αcl(A) = ∩{F : A ⊆ F and F is Nτα-closed}⊆ B. Therefore, A is the
smallest Nτα-closed set containing A.

(ii) Assume A is Nτα-closed, then A is the only smallest Nτα-closed set containing itself and
therefore, Nτ -αcl(A) = A. Conversely, assume Nτ -αcl(A) = A. Then A is the smallest Nτα-
closed set containing itself. Therefore, A is Nτα-closed. In particular, since ∅ and X are
Nτα-closed sets, then Nτ -αcl(∅) = ∅ and Nτ -αcl(X) = X.

(iii) Assume A ⊆ B, and since B ⊆ Nτ -αcl(B), then A ⊆ Nτ -αcl(B). Since
Nτ -αcl(A) is the smallest Nτα-closed set containing A. Therefore, Nτ -αcl(A) ⊆ Nτ -αcl(B).

(iv) Since A ⊆ A ∪ B and B ⊆ A ∪ B. Then by (iii), we have Nτ -αcl(A) ∪
Nτ -αcl(B) ⊆ Nτ -αcl(A ∪ B). On the other hand, by(i), A ∪ B ⊆
Nτ -αcl(A)∪Nτ -αcl(B). Since Nτ -αcl(A∪B) is the smallest Nτα-closed set containing A∪B.
Then Nτ -αcl(A∪B) ⊆ Nτ -αcl(A)∪Nτ -αcl(B). Therefore, Nτ -αcl(A∪B) = Nτ -αcl(A)∪Nτ -
αcl(B).

(v) Since A ∩B ⊆ A and A ∩B ⊆ B, then Nτ -αcl(A ∩B) ⊆ Nτ -αcl(A) ∩Nτ -αcl(B).

(vi) Since Nτ -αcl(A) is a Nτα-closed set, then Nτ -αcl(Nτ -αcl(A)) = Nτ -αcl(A).
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Remark 3.4. From the above theorem, we can observe that the closure operator Nτ -αcl satisfies the
Kuratowski’s closure axioms. The following theorem can be proved as the above theorem.

Theorem 3.5. Let (X,Nτ) be a N -topological space on X and let A,B ⊆ X. Let Nτ -kcl(A) is the
intersection of all k-closed sets containing A (where k-closed set is can be any one of the following Nτ

semi-closed set, Nτ pre-closed set and Nτβ-closed set). Then

(i) Nτ -kcl(A) is the smallest k-closed set containing A.

(ii) A is k-closed iff Nτ -kcl(A) = A. In particular, Nτ -kcl(∅) = ∅ and Nτ -kcl(X) = X.

(iii) A ⊆ B ⇒ Nτ -kcl(A) ⊆ Nτ -kcl(B)

(iv) Nτ -kcl(A ∪B) ⊇ Nτ -kcl(A) ∪Nτ -kcl(B)

(v) Nτ -kcl(A ∩B) ⊆ Nτ -kcl(A) ∩Nτ -kcl(B)

(vi) Nτ -kcl(Nτ -kcl(A)) = Nτ -kcl(A).

Example 3.6. LetX = {a, b, c, d}. ForN = 3, consider τ1O(X) = {X, ∅, {a}}, τ2O(X) = {X, ∅, {b, c}}
and τ3O(X) = {X, ∅, {a, b, c}}. Then, we have 3τO(X) = {X, ∅, {a}, {b, c}, {a, b, c}} = NταO(X),
3τC(X) = {X, ∅, {d}, {a, d}, {b, c, d}}. Also 3τSO(X) = {∅,X, {a}, {a, d}, {b, c}, {a, b, c}, {b, c, d}},
3τPO(X) = {∅,X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, c, d}, {a, b, d}} and 3τβO(X) = {∅,X,

{a}, {b}, {c}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, c, d}, {a, b, d}, {b, c, d}}. Let A = {a}
and B = {b}. Then 3τ -scl(A)∪3τ -scl(B) = {a}∪{b, d} = {a, b, d} 6= X = 3τ -scl(A∪B). Let A = {a}
and B = {b}. Then 3τ -pcl(A) ∪ 3τ -pcl(B) = {a} ∪ {b} = {a, b} 6= {a, b, d} = 3τ -pcl(A ∪ B). Also let
A = {a} and B = {b, c}, then 3τ -βcl(A) ∪ 3τ -βcl(B) = {a} ∪ {b, c} = {a, b, c} 6= X = 3τ -βcl(A ∪B).

Theorem 3.7. Let (X,Nτ) be a N -topological space on X and A ⊆ X. Let Nτ -kcl(A) is the
intersection of all k-closed sets containing A (where k-closed set is can be any one of the following
Nτα-closed set, Nτ semi-closed set, Nτ pre-closed set and Nτβ-closed set). Then x ∈ Nτ -kcl(A) if
and only if G ∩A 6= ∅ for every k-open set G containing x.

Theorem 3.8. Let (X,Nτ) be a N -topological space X and A,B ⊆ X. Then

(i) Nτ -αint(A) is the largest Nτα-open set contained in A.

(ii) A is Nτα-open set iff Nτ -αint(A) = A. In particular, Nτ -αint(∅) = ∅ and Nτ -αint(X) = X.

(iii) A ⊆ B, then Nτ -αint(A) ⊆ Nτ -αint(B)

(iv) Nτ -αint(A ∪B) ⊇ Nτ -αint(A) ∪Nτ -αint(B)

(v) Nτ -αint(A ∩B) = Nτ -αint(A) ∩Nτ -αint(B)

(vi) Nτ -αint(Nτ -αint(A)) = Nτ -αint(A)

Proof: The proof is obvious from the fact that a set is Nτα-open if and only if its complement is
Nτα-closed.

The proof of the following theorem can be proved as similar as the above theorem.

Theorem 3.9. Let (X,Nτ) be a N -topological space X and A,B ⊆ X. Let Nτ -kint(A) is the union
of all k-open sets contained in A (where k-open set can be any one of Nτ semi-open set, Nτ pre-open
set and Nτβ-open set). Then

(i) Nτ -kint(A) is the largest k-open set contained in A.

(ii) A is k-open set iff Nτ -kint(A) = A. In particular, Nτ -kint(∅) = ∅ and Nτ -kint(X) = X.

(iii) A ⊆ B, then Nτ -kint(A) ⊆ Nτ -kint(B)

(iv) Nτ -kint(A ∪B) ⊇ Nτ -kint(A) ∪Nτ -kint(B)

(v) Nτ -kint(A ∩B) ⊆ Nτ -kint(A) ∩Nτ -kint(B)
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(vi) Nτ -kint(Nτ -kint(A)) = Nτ -kint(A)

Theorem 3.10. Let (X,Nτ) be a N -topological space X and A ⊆ X. Let Nτ -kint(A) and Nτ -
kcl(A) are the weak interior and closure operator in N -topological space. By k-closed set, we mean
any one of the following Nτα-closed set, Nτ semi-closed set, Nτ pre-closed set and Nτβ-closed set.
Then

(i) Nτ -kint(X −A) = X −Nτ -kcl(A)

(ii) Nτ -kcl(X −A) = X −Nτ -kint(A)

Remark 3.11. Let (X,Nτ) be a N -topological space X and A ⊆ X. Let Nτ -kint(A) and Nτ -kcl(A)
are the weak interior and closure operator in N -topological space. By k-closed set, we mean any one
of the following Nτα-closed set, Nτ semi-closed set, Nτ pre-closed set and Nτβ-closed set. If we take
the complement of either side of part(i) and part(ii) of previous theorems, we get

(i) Nτ -kcl(A) = X −Nτ -kint(X −A)

(ii) Nτ -kint(A) = X −Nτ -kcl(X −A)

4. Some Weak Continuous Functions in N-topology

In this section, we introduce some weak form of continuous functions in N -topological space and
investigate the relationship between them. By the spaces X and Y , we means the N -topological
spaces (X,Nτ) and (Y,Nσ) respectively.

Definition 4.1. Let X and Y be two N -Topological spaces. A function f : X → Y is said to be
N∗-α continuous (resp. N∗-semi continuous, N∗-pre continuous, N∗-β continuous) on X if the inverse
image of every Nσ-open set in Y is a Nτα-open set (resp. Nτ semi-open, Nτ pre-open, Nτβ-open)
in X.

Theorem 4.2. A function f : X → Y is N∗-α continuous (resp. N∗-semi continuous, N∗-pre
continuous, N∗-β continuous) on X if and only if the inverse image of every Nσ-closed set in Y is a
Nτα-closed set (resp. Nτ semi-closed, Nτ pre-closed, Nτβ-closed) in X.

Theorem 4.3. A function f : X → Y is N∗-continuous on X, then it is N∗-α continuous function
on X.
Proof: Assume f : X → Y be a N∗-continuous function on X and let A ⊆ Y be a Nσ-open set.
Then f−1(A) ⊆ X is Nτ -open set in X. Since every Nτ -open set is Nτα-open set, then f is N∗-α
continuous on X.

The converse of the above theorem need not be true as shown in the following example.

Example 4.4. For N = 2, let X = {a, b, c} and Y = {x, y, z}. Consider τ1O(X) = {X, ∅}, τ2O(X) =
{X, ∅, {a}} and σ1O(Y ) = {Y, ∅, {x}} and σ2O(Y ) = {Y, ∅, {x, y}}. Then 2τO(X) = {X, ∅, {a}} and
2σO(Y ) = {Y, ∅, {x}, {x, y}}. Define f : X → Y by f(a) = x, f(b) = y and f(c) = z. Therefore, f is
2∗-α continuous function on X but not 2∗-continuous.

Theorem 4.5. A function f : X → Y is N∗-α continuous on X if and only if it is N∗-semi continuous
and N∗-pre continuous.
Proof: The proof follows from the theorem 3.5.

Theorem 4.6. A function f : X → Y is N∗-semi continuous on X, then it is N∗-β continuous.

Theorem 4.7. A function f : X → Y is N∗-pre continuous on X, then it is N∗-β continuous.

The converse of the above theorems need not be true as shown in the following example.

Example 4.8. If N = 2, X = {a, b, c} and Y = {x, y, z}. Consider τ1O(X) = {X, ∅, {a}},
τ2O(X) = {X, ∅, {b, c}} and also σ1O(Y ) = {Y, ∅, {x}} , σ2O(Y ) = {Y, ∅, {x, y}}. Then 2τO(X) =
{X, ∅, {a}, {b, c}}, 2σO(Y ) = {Y, ∅, {x}, {x, y}}. Define f : X → Y by f(a) = x, f(b) = z and
f(c) = y. Then f is 2∗-pre continuous and 2∗-β continuous function on X but it is not 2∗-semi
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continuous and not 2∗-α continuous function. Also if N = 3, X = {a, b, c} and Y = {x, y, z}. Con-
sider τ1O(X) = {X, ∅, {a}, {a, b}}, τ2O(X) = {X, ∅, {b}, {a, b}}, τ3O(X) = {X, ∅, {a, b}} and also
σ1O(Y ) = {Y, ∅, {x}}, σ2O(Y ) = {Y, ∅, {y, z}}, σ3O(Y ) = {Y, ∅}. Then 3τO(X) = {X, ∅, {a}, {b},
{a, b}}, 3σO(Y ) = {Y, ∅, {x}, {y, z}}. Define f : X → Y by f(a) = x, f(b) = y and f(c) = z.
Then f is 3∗-semi continuous and 3∗-β continuous on X but it is not 3∗-pre continuous and not 3∗-α
continuous.

5.Quotient Mappings in N-Topology

In this section, we introduce and establish the properties of some new types of quotient mappings in
N -topological spaces.

Definition 5.1. Let X and Y be N -topological spaces, then a surjective map f : X → Y is said to
be

(i) N∗-quotient map if f is N∗-continuous and for each subset G of Y , f−1(G) is Nτ -open (or
Nτ -closed) in X implies G is Nσ-open (or Nσ-closed) in Y .

(ii) N∗-α quotient map if f is N∗-α continuous and for each subset G of Y , f−1(G) is Nτ -open (or
Nτ -closed) in X implies G is Nσα-open (or Nσα-closed) in Y .

(iii) N∗-semi quotient map if f is N∗-semi continuous and for each subset G of Y , f−1(G) is Nτ -open
(or Nτ -closed) in X implies G is Nσ semi-open (or Nσ semi-closed) in Y .

Proposition 5.2. Let X, Y be two N -topological spaces and f : X → Y be a surjective map. Then

(i) every N∗-quotient map is N∗-α quotient.

(ii) every N∗-quotient map is N∗-semi quotient.

(iii) every N∗-α quotient map is N∗-semi quotient.

Proof: The proof is straightforward from the definition.

The following examples show that the converse of the above proposition need not be true.

Example 5.3. For N = 2, let X = {a, b, c} and Y = {x, y, z}. Consider τ1O(X) = {X, ∅, {a}},
τ2O(X) = {X, ∅} and σ1O(Y ) = {Y, ∅, {x}} and σ2O(Y ) = {Y, ∅, {x, y}}. Then 2τO(X) = {X, ∅, {a}}
and 2σO(Y ) = {Y, ∅, {x}, {x, y}}. Define f : X → Y by f(a) = x , f(b) = y and f(c) = z. Therefore,
f is 2∗-α quotient and 2∗-semi quotient map but not 2∗-quotient.

Example 5.4. For N = 3, let X = {a, b, c} and Y = {x, y, z}. Consider τ1O(X) = {X, ∅, {a}, {a, b}},
τ2O(X) = {X, ∅, {b}, {a, b}}, τ3O(X) = {X, ∅, {b}} and σ1O(Y ) = {Y, ∅, {x}, {x, z}}, σ2O(Y ) =
{Y, ∅, {y}, {x, y}} and σ3O(Y ) = {Y, ∅, {x}, {x, y}, {x, z}}. Then 3τO(X) = {X, ∅, {a}, {b}, {a, b}}
and 3σO(Y ) = {Y, ∅, {x}, {y}, {x, y}, {x, z}}. Define f : X → Y by f(a) = y, f(b) = x and f(c) = z.
Therefore, f is 3∗-semi quotient map but not 3∗-α quotient and not 3∗-quotient.

Definition 5.5. Let X and Y be two N -topological spaces, then a map f : X → Y is said to be

(i) N∗-open (or N∗-closed) if for every Nτ -open (Nτ -closed) set G of X, f(G) is Nσ-open (or
Nσ-closed) in Y .

(ii) N∗-α open (or N∗-α closed) if for every Nτ -open (Nτ -closed) set G of X, f(G) is Nσα-open
(or Nσα-closed) in Y .

(iii) N∗-semi open (or N∗-semi closed) if for every Nτ -open (Nτ -closed) set G of X, f(G) is Nσ

semi-open (or Nσ semi-closed) in Y .

Theorem 5.6. (i) Every surjective N∗-continuous map f : X → Y which is either N∗-open or
N∗-closed is N∗-quotient map.

(ii) Every surjective N∗-α continuous map f : X → Y which is either N∗-α open or N∗-α closed is
N∗-α quotient map.
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(iii) Every surjective N∗-semi continuous map f : X → Y which is either N∗-semi open or N∗-semi
closed is N∗-semi quotient map.

Proof: The proof is trivial from the definition.

Lemma 5.7. Let X be a N -topological space, Y be a set and f : X → Y be a surjective map. Then
define Nτf = {G ⊆ Y : f−1(G) ∈ NτO(X)} is a topology on Y relative to which f is a N∗-quotient
map. It is called N∗-quotient topology on Y induced by f .
Proof: The proof follows from the facts that f−1(∅) = ∅, f−1(Y ) = X, f−1(∪∞

i=1
Gi)

= ∪∞

i=1
f−1(Gi) and f−1(∩n

i=1
Gi) = ∩n

i=1
f−1(Gi).

The following lemmas can be proved similarly as the above lemma.

Lemma 5.8. Let X be a N -topological space, Y be a set and f : X → Y be a surjective map. Then
define Nταf = {G ⊆ Y : f−1(G) ∈ NταO(X)} is a topology on Y relative to which f is a N∗-α
quotient map. It is called N∗-α quotient topology on Y induced by f .

Lemma 5.9. Let X be a N -topological space, Y be a set and f : X → Y be a surjective map. Then
define NτSf = {G ⊆ Y : f−1(G) ∈ NτSO(X)} is a generalized topology on Y relative to which f

is a N∗-semi quotient map but it need not be a topology. It is called N∗-semi quotient generalized
topology on Y induced by f . If X is an extremally disconnected N -topological space, the intersection
of two Nτ semi-open sets in X is Nτ semi-open and hence NτSf becomes a topology on Y .

Example 5.10. For N = 2, let X = {a, b, c} = Y . Consider τ1O(X) = {X, ∅, {a}} = σ1O(Y ) and
τ2O(X) = {X, ∅} = σ2O(Y ). Then 2τO(X) = {X, ∅, {a}} = 2σO(Y ) and 2ταO(X) = 2τSO(X) =
2σαO(Y ) = 2σSO(Y ) = {X, ∅, {a}, {a, b}, {a, c}}. Define f : X → Y by f(a) = a, f(b) = b and f(c) =
c. Clearly f is 2∗-quotient, 2∗-α quotient and 2∗-semi quotient map. Therefore, 2τf = {Y, ∅, {a}} and
2ταf = 2τSf = {Y, ∅, {a}, {a, b}, {a, c}}.

Example 5.11. In example 6.4, f is 3∗-semi quotient map and therefore, 3τSf = {Y, ∅, {x}, {y}, {x, y},
{x, z}, {y, z}} is not a topology on Y .

Theorem 5.12. Let X,Y , Z be N -topological spaces, f : X → Y be a N∗-quotient map and
h : X → Z be a map that is constant on each set f−1({y}), for y ∈ Y . Then h induces a map
g : Y → Z such that g ◦ f = h. Then the induced map g is N∗-continuous if and only if h is N∗-
continuous; g is N∗-quotient map if and only if h is N∗-quotient map.
Proof: Since h is constant on each set f−1({y}), for each y ∈ Y , the set h(f−1({y})) is a one-point set
in Z. Let us take this point as g(y), then the map g : Y → Z such that for each x ∈ X, g(f(x)) = h(x).
If g is N∗-continuous, then h = g ◦ f is N∗-continuous. Conversely, assume h is N∗-continuous, for
each Nη-open set G of Z, h−1(G) = f−1(g−1(G)) is Nτ -open in X. Since f is N∗-quotient, g−1(G)
is Nσ-open in Y and hence g is N∗-continuous.

If g is N∗-quotient map, then h is the composite of two N∗-quotient map and so is a N∗-quotient
map. Conversely, assume h is a N∗-quotient map and since h is surjective, then g is surjective. Let
g−1(G) be a Nσ-open set in Y and since f is N∗-continuous, then the set f−1(g−1(G)) = h−1(G) is
Nτ -open in X. Since h is a N∗-quotient map, G is Nη-open in Z.

The following theorems can be proved similarly as the above theorem.

Theorem 5.13. Let X,Y , Z be N -topological spaces, f : X → Y be a N∗-α quotient map and
h : X → Z be a N∗-continuous map that is constant on each set f−1({y}), for y ∈ Y . Then h induces
a N∗-α continuous map g : Y → Z such that g ◦ f = h.

Theorem 5.14. Let X,Y , Z be N -topological spaces, f : X → Y be a N∗-semi quotient map and
h : X → Z be a N∗-continuous map that is constant on each set f−1({y}), for y ∈ Y . Then h induces
a N∗-semi continuous map g : Y → Z such that g ◦ f = h.

6. Conclusion

In this paper we established some weak form of open sets and its respective continuous and quotient
mappings in our N -topological spaces. These concepts can be extended to other applicable research
areas of topology such as Nano topology, Fuzzy topology, Supra topology and so on.
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[5] M. L. Thivagar, V. Ramesh, M. A. Dasan, On New Structure of N -Topology, Cogent Mathematics
(Taylor and Francise) 3 (2016) 1–10.

[6] I. L. Reilly, M. K. Vamanamurthy, On α Sets in Topological Spaces, Tamkang Journal of Mathe-
matics 16 (1985) 7–11.


