New Theory

ISSN: 2149-1402

29 (2019) 71-78 Journal of New Theory http://www.newtheory.org Open Access

Bipolar Fuzzy k-Ideals in KU-Semigroups

Fatema Faisal Kareem¹, Elaf Raad Hasan²

Article HistoryAbstract – We have studied some types of ideals in a KU-semigroup by using the conceptReceived: 27.06.2019of a bipolar fuzzy set. Bipolar fuzzy S-ideals and bipolar fuzzy k-ideals are introduced, andAccepted: 16.10.2019some properties are investigated. Also, some relations between a bipolar fuzzy k-ideal andPublished: 30.12.2019k-ideal are discussed. Moreover, a bipolar fuzzy k-ideal under homomorphism and theOriginal Articleproduct of two bipolar fuzzy k-ideals are studied.

Keywords- KU-algebra, KU-semigroup, fuzzy S-ideal, bipolar fuzzy S-ideal, bipolar fuzzy k-ideal

1. Introduction

In 1956, Zadeh [1] introduced the notion of fuzzy sets. This concept has been applied to many mathematical branches. In [2, 3], Mostafa et al. studied the fuzzy KU-ideals and investigated some basic properties. Intuitionistic fuzzy sets, interval-valued fuzzy sets and Bipolar-valued fuzzy sets are extension fuzzy sets theory. In 2000, Lee [4] introduced bipolar-valued fuzzy sets. Bipolar-valued fuzzy sets are an extension of fuzzy sets whose membership degree from [0,1] to [-1,1]. In bipolar-valued fuzzy set, the membership degree 0 means that elements are irrelevant to the corresponding property, while the membership degree [-1,0) indicates that elements satisfy the implicit counter property. In [5-8], the authors introduced a bipolar-valued fuzzy set on different structures. In this work, we study the bipolar-valued fuzzy set theory to *k*-ideal of a KU-semigroup and discuss some relations between a bipolar fuzzy *k*-ideal and *k*-ideal. Also, a bipolar fuzzy *k*-ideal under homomorphism and the product of two bipolar fuzzy *k*-ideals are studied.

2. Preliminaries

In this part, we review some concepts related to KU-semigroup and a bipolar fuzzy logic.

Definition 2.1 [9] Algebra ($\aleph, \ast, 0$) is a KU-algebra if, for all $\chi, \gamma, \tau \in \aleph$,

 $(ku_1) (\chi * \gamma) * ((\gamma * \tau) * (\chi * \tau)) = 0$ $(ku_2) \chi * 0 = 0$ $(ku_3) 0 * \chi = \chi$ $(ku_4) \chi * \gamma = 0 \text{ and } \gamma * \chi = 0 \text{ implies } \chi = \gamma$ $(ku_5) \chi * \chi = 0$

¹fa_sa20072000@yahoo.com (Corresponding Author); ²math88012@gmail.com

^{1,2}Department of Mathematics, Ibn-Al-Haitham College of Education, University of Baghdad, Iraq

On a KU-algebra \aleph , a relation \leq is defined by $\leq \gamma \Leftrightarrow \gamma * \chi = 0$. Therefore (\aleph, \leq) is a partially ordered set. It follows that 0 is the smallest element in \aleph .

Thus $(\aleph, *, 0)$ satisfies the following. For all $\chi, \gamma, \tau \in \aleph$,

 $\begin{aligned} &(ku_1) \ (\gamma * \tau) * (\chi * \tau) \leq (\chi * \gamma) \\ &(ku_2) \ 0 \leq \chi \\ &(ku_3) \ \chi \leq \gamma, \gamma \leq \chi \text{ implies } \chi = \gamma \\ &(ku_4) \ \gamma * \chi \leq \chi \end{aligned}$

Theorem 2.2. [9] In a KU-algebra \aleph . The following axioms hold. For all $\chi, \gamma, \tau \in \aleph$,

i. $\chi \leq \gamma$ imply $\gamma * \tau \leq \chi * \tau$ *ii.* $\chi * (\gamma * \tau) = \gamma * (\chi * \tau)$ *iii.* $((\gamma * \chi) * \chi) \leq \gamma$

Definition 2.3. [10] A non-empty subset *E* of a KU-algebra ($\aleph, *, 0$) is called KU-subalgebra of \aleph if $\chi * \gamma \in E$ whenever $\chi, \gamma \in E$.

Definition 2.4. [10] A non-empty subset Γ of a KU-algebra ($\aleph, *, 0$) is said to be an ideal of \aleph if it satisfies, for any $\chi, \gamma \in \aleph$

i. $0 \in \Gamma$ and *ii*. $*\gamma \in \Gamma$, $\chi \in \Gamma$ imply that $\gamma \in \Gamma$

Definition 2.5. [3] Let I be a nonempty subset of a KU-algebra ℵ. Then, I is said to be a KU-ideal of ℵ, if

 $(I_1) \ 0 \in \Gamma$ and

 $(I_2) \ \forall \chi, \gamma, \tau \in \aleph, \chi * (\gamma * \tau) \in \Gamma$ and $\gamma \in \Gamma$ imply that $\chi * \tau \in \Gamma$

Definition 2.6. [11] A KU-semigroup is a non-empty set \aleph with two binary operations $*,\circ$ and constant 0 satisfying the following axioms

i. (ℵ,∗,0) is a KU-algebra

ii. (\aleph , \circ) is a semigroup

iii. The operation • is distributive (on both sides) over the operation *, i.e.,

 $\chi \circ (\gamma * \tau) = (\chi \circ \gamma) * (\chi \circ \tau) \text{ and } (\chi * \gamma) \circ \tau = (\chi \circ \tau) * (\gamma \circ \tau), \forall \chi, \gamma, \tau \in \aleph$

Example 2.7. [11] Let $\aleph = \{0,1,2,3\}$. Define *-operation and °-operation by the following tables

*	0	1	2	3
0	0	1	2	3
1	0	0	0	2
2	0	2	0	1
3	0	0	0	0

0	0	1	2	3
0	0	0	0	0
1	0	1	0	1
2	0	0	2	2
3	0	1	2	3

Then, $(\aleph, *, \circ, 0)$ is a KU-semigroup.

Definition 2.8. [11] A nonempty subset *R* of \aleph is called a sub-KU-semigroup of \aleph , if $\chi * \gamma, \chi \circ \gamma \in R$, for all $\chi, \gamma \in R$.

Definition 2.9. [11] A non-empty subset R of a KU-semigroup is an S-ideal of X, if

i. *R* is an ideal of ℵ

ii. For all $\chi \in \aleph$, and $a \in R$, we have $\chi \circ a \in R$ and $a \circ \chi \in R$

Definition 2.10. [11] A subset *R* of a KU-semigroup ℵ is a *k*-ideal of ℵ, if

- i. R is a KU-ideal of X
- *ii.* For all $\chi \in \aleph$, and $a \in R$, we have $\chi \circ a \in R$ and $a \circ \chi \in R$

Definition 2.11. [11] Let \aleph and \aleph' be two KU-semigroups. A mapping $f: \aleph \to \aleph'$ is called a KU-semigroup homomorphism if $f(\chi * \gamma) = f(\chi) * f(\gamma)$ and $f(\chi \circ \gamma) = f(\chi) \circ f(\gamma)$ for all $\chi, \gamma \in \aleph$. The set $\{\chi \in \aleph: f(\chi) = 0\}$ is called the kernel of f and denote by *ker* f Moreover, the set $\{f(\chi) \in \aleph' : \chi \in \aleph\}$ is called the image of f and denote by *imf*.

We review some concepts of fuzzy logic.

Let \aleph be the collection of objects, then a fuzzy set $\mu(\chi)$ in \aleph is defined as $\mu: \aleph \to [0,1]$, where $\mu(\chi)$ is called the membership value of χ in \aleph and $0 \le \mu(\chi) \le 1$. The set $U(\mu, t) = \{\chi \in \aleph: \mu(\chi) \ge t\}$, where $0 \le t \le 1$ is said to be a level set of $\mu(\chi)$.

Definition 2.12. [12] Let $\mu(\chi)$ be a fuzzy set in \aleph , then $\mu(\chi)$ is called a fuzzy sub KU-semigroup of \aleph if it satisfies the following condition : for all $\chi, \gamma \in \aleph$.

i. $\mu(\chi * \gamma) \ge \min\{\mu(\chi), \mu(\gamma)\}$ *ii.* $\mu(\chi \circ \gamma) \ge \min\{\mu(\chi), \mu(\gamma)\}$

Definition 2.13. [12] A fuzzy set $\mu(\chi)$ in \aleph is called a fuzzy S-ideal of \aleph if for all $\chi, \gamma \in \aleph$

i. $\mu(0) \ge \mu(\chi)$ ii. $\mu(\gamma) \ge \min\{\mu(\chi * \gamma), \mu(\chi)\}$ iii. $\mu(\chi \circ \gamma) \ge \min\{\mu(\chi), \mu(\gamma)\}$

Definition 2.14. [12] A fuzzy set $\mu(\chi)$ in \aleph is called a fuzzy *k*-ideal, if it satisfies the following condition: for all $\chi, \gamma \in \aleph$

$$(k_1) \mu(0) \ge \mu(\chi)$$

$$(k_2) \mu(\chi * \tau) \ge \min\{\mu(\chi * (\gamma * \tau)), \mu(\gamma)\}$$

$$(k_3) \mu(\chi \circ \gamma) \ge \min\{\mu(\chi), \mu(\gamma)\}$$

Example 2.15. [12] Let $\aleph = \{0, a, b, c, d\}$ be a set. Define *-operation and o-operation by the following tables

*	0	a	b	с	d
					_
0	0	a	b	c	d
9	0	0	h	0	1
a	V	V		<u>۲</u>	d
b	0	a	0	c	d
					-
с	0	a	0	0	d
1	0				
d	0	0	0	0	0

Then, $(\aleph, *, \circ, 0)$ is a KU-semigroup. Define a fuzzy set $\mu: \aleph \to [0,1]$ by $\mu(0) = \mu(a) = 0.4, \mu(b) = \mu(c) = 0.2, \mu(d) = 0.1$. Then, it is easy to see $\mu(\chi), \forall \chi \in \aleph$ is a fuzzy *k*-ideal.

We will refer to ℵ is a KU-semigroup unless otherwise indicated.

3. Bipolar fuzzy k-ideals of a KU-semigroup

In this section, we give the definition and properties of bipolar fuzzy ideals of \aleph . Now, A bipolar valued fuzzy subset *B* in a nonempty set \aleph is an object having the form $B = \{(\chi, \mu^-(\chi), \mu^+(\chi) | \chi \in \aleph\}$ where $\mu^-: \aleph \to [-1,0]$ and $\mu^+: \aleph \to [0,1]$ are two mappings. The membership degree $\mu^+(\chi)$ denotes the satisfaction degree of

 χ to the property corresponding of *B*, and the membership degree $\mu^{-}(\chi)$ denotes the satisfaction degree of χ to some implicit counter-property of *B*. We shall use the symbol $B = (\chi, \mu^{-}, \mu^{+})$, for $B = \{(\chi, \mu^{-}(\chi), \mu^{+}(\chi)) : \chi \in \aleph\}$, and use the concept of a bipolar fuzzy set instead of the concept of bipolar-valued fuzzy set.

Now, let $B = (\chi, \mu^-, \mu^+)$ be a bipolar fuzzy set and $(s, t) \in [-1, 0] \times [0, 1]$.

The set $B_s^- = \{\chi \in \aleph; \mu^-(\chi) \le s\}$ and $B_t^+ = \{\chi \in \aleph; \mu^+(\chi) \ge t\}$ which are called the negative s-cut and the positive t-cut of $B = (\chi, \mu^-, \mu^+)$, respectively.

Definition 3.1. A fuzzy set μ in \aleph is called a bipolar fuzzy sub-KU-semigroup of \aleph if it satisfies the following condition : for all $\chi, \gamma \in \aleph$

i.
$$\mu^-(\chi * \gamma) \le \max\{\mu^-(\chi), \mu^-(\gamma)\}$$
 and $\mu^+(\chi * \gamma) \ge \min\{\mu^+(\chi), \mu^+(\gamma)\}$
ii. $\mu^-(\chi \circ \gamma) \le \max\{\mu^-(\chi), \mu^-(\gamma)\}$ and $\mu^+(\chi \circ \gamma) \ge \min\{\mu^+(\chi), \mu^+(\gamma)\}$

Proposition 3.2. Let $B = (\chi, \mu^-, \mu^+)$ be a bipolar fuzzy sub-KU-semigroup. Then, $\mu^-(0) \le \mu^-(\chi)$ and $\mu^+(0) \ge \mu^+(\chi)$, for all $\chi \in \aleph$.

PROOF. Clear.

Example 3.3. Let $\aleph = \{0, a, b, c\}$ be a set. Define *-operation and \circ -operation by the following tables

*	0	a	b	с
0	0	a	b	с
a	0	0	0	с
b	0	a	0	с
с	0	0	0	0

	o	0	a	b	с
	0	0	0	0	0
_	a	0	a	0	a
	b	0	0	b	b
	с	0	a	b	с

Then, $(\aleph, *, \circ, 0)$ is a KU-semigroup. Define $B = (x, \mu^-, \mu^+)$ by $B = \{(0, -0.6, 0.7), (a, -0.5, 0.5), (b, -0.3, 0.4), (c, -0.2, 0.1)\}$. Then, we can prove that *B* is a bipolar fuzzy sub-KU-semigroup of \aleph .

Definition 3.4. A bipolar fuzzy set $B = (\chi, \mu^-, \mu^+)$ in X is called a bipolar fuzzy S-ideal of \aleph if it satisfies, for all $\chi, \gamma \in \aleph$

 $(Bf_1) \mu^-(0) \le \mu^-(\chi) \text{ and } \mu^+(0) \ge \mu^+(\chi)$ $(Bf_2) \mu^-(\gamma) \le \max \{\mu^-(\chi * \gamma), \mu^-(\chi)\} \text{ and } \mu^+(\gamma) \ge \min \{\mu^+(\chi * \gamma), \mu^+(\chi)\}$ $(Bf_3) \mu^-(\chi \circ \gamma) \le \max \{\mu^-(\chi), \mu^-(\gamma)\}, \mu^+(\chi \circ \gamma) \ge \min \{\mu^+(\chi), \mu^+(\gamma)\}$

Definition 3.5. A bipolar fuzzy set $B = (\chi, \mu^-, \mu^+)$ in \aleph is called a bipolar fuzzy *k*-ideal of \aleph if it satisfies: for all $\chi, \gamma, \tau \in \aleph$

 $(BF_1) \mu^{-}(0) \le \mu^{-}(\chi) \text{ and } \mu^{+}(0) \ge \mu^{+}(\chi)$ $(BF_2) \mu^{-}(\chi * \tau) \le \max\{\mu^{-}(\chi * (\gamma * \tau)), \mu^{-}(\gamma)\} \text{ and } \mu^{+}(\chi * \tau) \ge \min\{\mu^{+}(\chi * (\gamma * \tau)), \mu^{+}(\gamma)\}$ $(BF_3) \mu^{-}(\chi \circ \gamma) \le \max\{\mu^{-}(\chi), \mu^{-}(\gamma)\}, \mu^{+}(\chi \circ \gamma) \ge \min\{\mu^{+}(\chi), \mu^{+}(\gamma)\}$

Example 3.6. Let $\aleph = \{0, a, b, c\}$ with \ast defined as in Example (3.3), and $B = (x, \mu^-, \mu^+)$ be a bipolar fuzzy set in \aleph given by the following $B = \{(0, -0.7, 0.6), (a, -0.4, 0.2), (b, -0.4, 0.2), (c, -0.3, 0.1)\}$. Then, $B = (\chi, \mu^-, \mu^+)$ is a bipolar fuzzy *k*-ideal of \aleph .

Theorem 3.7. Let \aleph be a KU-semigroup, a bipolar fuzzy set $B = (\chi, \mu^-, \mu^+)$ of \aleph is a bipolar fuzzy *k*-ideal of \aleph if and only if *B* is a bipolar fuzzy *S*-ideal of \aleph .

PROOF.

(⇒) Let $B = (\chi, \mu^-, \mu^+)$ be a bipolar fuzzy k-ideal of \aleph . If we put $\chi = 0$ in (BF₂), then $\mu^-(\tau) \le \max \{\mu^-(\gamma * \tau), \mu^-(\gamma)\}$ and

 $\mu^+(\tau) \ge \min \{\mu^+(\gamma * \tau), \mu^+(\gamma)\}$. Also, since $B = (\chi, \mu^-, \mu^+)$ is a bipolar fuzzy *k*-ideal of KU-semigroup, then (BF₃) is true. Hence, $B = (\chi, \mu^-, \mu^+)$ is a bipolar fuzzy *S*-ideal of \aleph .

(\Leftarrow) Let $B = (\chi, \mu^-, \mu^+)$ be a bipolar fuzzy S-ideal of \aleph , then $\mu^-(\chi * \tau) \le \max \{\mu^-(\chi * \tau), \mu^-(\gamma)\}$ and

 $\mu^+(\chi * \tau) \ge \min \{\mu^+(\gamma * (\chi * \tau), \mu^+(\gamma)\}\}$. And by Theorem (2.2)(2), we get $\mu^-(\chi * \tau) \le \max \{\mu^-(\chi * (\gamma * \tau), \mu^-(\gamma))\}$ and $\mu^+(\chi * \tau) \ge \min \{\mu^+(\chi * (\gamma * \tau), \mu^+(\gamma))\}$. Also, since $B = (\chi, \mu^-, \mu^+)$ is a bipolar fuzzy *S*-ideal of KU-semigroup, then (Bf₃) is true. Hence, $B = (\chi, \mu^-, \mu^+)$ is a bipolar fuzzy *k*-ideal of \aleph .

Proposition 3.8. Let $B = (\chi, \mu^-, \mu^+)$ be a bipolar fuzzy *k*-ideal of \aleph . If the inequality $\chi * \gamma \le \tau$ holds in \aleph , then $\mu^-(\gamma) \le \max \{\mu^-(\chi), \mu^-(\tau)\}$ and $\mu^+(\gamma) \ge \min \{\mu^+(\chi), \mu^+(\tau)\}$, for all $\chi, \gamma, \tau \in \aleph$.

Proof.

Assume that the inequality $\chi * \gamma \leq \tau$ holds in \aleph , then $\tau * (\chi * \gamma) = 0$ and by (BF₂)

$$\mu^{-}(\chi * \gamma) \le \max\{\mu^{-}(\chi * (\tau * \gamma)), \mu^{-}(\tau)\}$$

= max { $\mu^{-}(\tau * (\chi * \gamma)), \mu^{-}(\tau)$ }
= max{ $\mu^{-}(0), \mu^{-}(\tau)$ } = $\mu^{-}(\tau) \dots \dots (1)$

Now, $\mu^{-}(0 * \gamma) = \mu^{-}(\gamma) \le max\{\mu^{-}(0 * (\chi * \gamma)), \mu^{-}(\chi)\} = max\{\mu^{-}(\chi * \gamma), \mu^{-}(\chi)\} \le max\{\mu^{-}(\tau), \mu^{-}(\chi)\}$ (by using (1)) i.e. $\mu^{-}(\gamma) \le max\{\mu^{-}(\chi), \mu^{-}(\tau)\}$. Similarly,

$$\mu^{+}(\chi * \gamma) \geq \min\{\mu^{+}(\chi * (\tau * \gamma)), \mu^{+}(\tau)\} = \min\{\mu^{+}(\tau * (\chi * \gamma)), \mu^{+}(\tau)\} = \min\{\mu^{+}(0), \mu^{+}(\tau)\} = \mu^{+}(\tau) \dots (2)$$

Now, $\mu^+(0*\gamma) = \mu^+(\gamma) \ge \min\{\mu^+(0*(\chi*\gamma)), \mu^+(\chi)\} = \min\{\mu^+(\chi*\gamma), \mu^+(\chi)\} \ge \min\{\mu^+(\tau), \mu^+(\chi)\}$ (by using (2)) i.e. $\mu^+(\gamma) \ge \min\{\mu^+(\chi), \mu^+(\tau)\}.$

Theorem 3.9. Let \aleph be a KU-semigroup, a bipolar fuzzy set $B = (\chi, \mu^-, \mu^+)$ of \aleph is a bipolar fuzzy *k*-ideal of \aleph if and only if *B* is a bipolar fuzzy sub-KU-semigroup of \aleph .

PROOF. (\Rightarrow) Let $B = (\chi, \mu^-, \mu^+)$ be a bipolar fuzzy k-ideal of \aleph . By Theorem (3.7), B is a bipolar fuzzy S-ideal of \aleph . For any $\chi, \gamma \in \aleph$, from (ku_{4^1}) we have $\chi * \gamma \leq \gamma$, then by Proposition (3.2) $\mu^-(\chi * \gamma) \leq \mu^-(\gamma)$ and $\mu^+(\chi * \gamma) \geq \mu^+(\gamma)$. And by Proposition (3.8) $\mu^-(\gamma) \leq \max \{\mu^-(\chi), \mu^-(\tau)\}$ and $\mu^+(\gamma) \geq \min \{\mu^+(\chi), \mu^+(\tau)\}$, Hence, $\mu^-(\chi * \gamma) \leq \max \{\mu^-(\chi), \mu^-(\tau)\}$ and $\mu^+(\chi * \gamma) \geq \min \{\mu^+(\chi), \mu^+(\tau)\}$. Then, B is a bipolar fuzzy sub-KU-semigroup of \aleph .

(\Leftarrow) Let $B = (\chi, \mu^{-}, \mu^{+})$ be a bipolar fuzzy sub-KU-semigroup. We have

(i)
$$\mu^{-}(0) \leq \mu^{-}(\chi)$$
 and $\mu^{+}(0) \geq \mu^{+}(\chi)$, for all $\chi \in \aleph$

(*ii*) By Theorem (2.2) (2) and (3), we have $(\gamma * (\chi * \tau)) * (\chi * \tau) = (\chi * (\gamma * \tau)) * (\chi * \tau) \le \gamma$, for all $\chi, \gamma, \tau \in \aleph$. It follows from Proposition (3.3.7) that $\mu^-(\chi * \tau) \le \max\{\mu^-(\chi * (\gamma * \tau)), \mu^-(\gamma)\}$ and $\mu^+(\chi * \tau) \ge \min\{\mu^+(\chi * (\gamma * \tau)), \mu^+(\gamma)\}$, for all $\gamma, \tau \in \aleph$. Also, since $B = (\chi, \mu^-, \mu^+)$ is a bipolar fuzzy sub-KU-semigroup, then (BF₃) is true. Therefore, $B = (\chi, \mu^-, \mu^+)$ is a bipolar fuzzy *k*-ideal of \aleph .

Proposition 3.10. If $B = (\chi, \mu^-, \mu^+)$ is a bipolar fuzzy *k*-ideal of \aleph , then the sets $J = \{\chi \in \aleph: \mu^+(\chi) = \mu^+(0)\}$ and $K = \{\chi \in \aleph: \mu^-(\chi) = \mu^-(0)\}$ are *k*-ideals of \aleph .

PROOF. Since $0 \in \aleph, \mu^+(0) = \mu^+(0)$ and $\mu^-(0) = \mu^-(0)$ implies $0 \in J$ and $0 \in K$, so $J \neq \emptyset, K \neq \emptyset$. Let $(\chi * (\gamma * \tau)) \in J$ and $\gamma \in J$ implies $\mu^+(\chi * (\gamma * \tau)) = \mu^+(0)$ and $\mu^+(\gamma) = \mu^+(0)$. Since $\mu^+(\chi * \tau) \ge \min\{\mu^+(\chi * (\gamma * \tau)), \mu^+(\gamma)\} = \mu^+(0) \Rightarrow \mu^+(\chi * \tau) \ge \mu^+(0)$ but $\mu^+(0) = \mu^+(\chi * \tau)$. It follows that $(\chi * \tau) \in J$, for all $\chi, \gamma, \tau \in \aleph$.

Also, let $\chi \in J$ and $\gamma \in J$ implies $\mu^+(\chi) = \mu^+(0)$ and $\mu^+(\gamma) = \mu^+(0)$. Since, $\mu^+(\chi \circ \gamma) \ge \min\{\mu^+(\chi), \mu^+(\gamma)\} = \mu^+(0)$, then $\mu^+(\chi \circ \gamma) = \mu^+(0)$. It follows that $\chi \circ \gamma \in J$, similarly $\gamma \circ \chi \in J$. Hence, *J* is *k*-ideal of \aleph . Similarly, we can prove *K* is *k*-ideal of \aleph .

Theorem 3.11. For a bipolar fuzzy set $B = (\chi, \mu^-, \mu^+)$ in \aleph , the following are equivalent:

(1) $B = (\chi, \mu^-, \mu^+)$ is a bipolar fuzzy *k*-ideal of \aleph .

(2) $B = (\chi, \mu^-, \mu^+)$ is satisfies the following:

i. $\forall s \in [-1,0], (B_s^- \neq \emptyset \Rightarrow B_s^-)$ is a *k*-ideal of \aleph . *ii.* $\forall t \in [0,1], (B_t^+ \neq \emptyset \Rightarrow B_t^+)$ is a *k*-ideal of \aleph .

PROOF. (1) \Rightarrow (2) (i) Let $s \in [-1,0]$ be such that $B_s^- \neq \emptyset$. Then, there exists $\gamma \in B_s^-$ and so $\mu^-(\gamma) \leq s$. It follows from (BF₁) that $\mu^-(0) \leq \mu^-(\gamma) \leq s$, then $0 \in B_s^-$. Let, $\gamma, \tau \in B_s^-$, such that $(\chi * (\gamma * \tau)) \in B_s^-$ and $\gamma \in B_s^-$. Then, $\mu^-(\chi * (\gamma * \tau)) \leq s$ and $\mu^-(\gamma) \leq s$. By using (BF₂), we have $\mu^-(\chi * \tau) \leq \max\{\mu^-(\chi * (\gamma * \tau)), \mu^-(\gamma)\} = \max\{s, s\} = s$, which implies that $(\chi * \tau) \in B_s^-$. By using (BF₃), we have $\mu^-(\chi \circ \gamma) \leq \max\{\mu^-(\chi \circ \gamma) \leq \max\{\mu^-(\chi), \mu^-(\gamma)\} = \max\{s, s\} = s$, which implies that $(\chi \circ \gamma) \in B_s^-$ (res. $(\gamma \circ \chi) \in B_s^-$). Therefore, B_s^- is a *k*-ideal of \aleph .

(ii) Assume that $B_t^+ \neq \emptyset$, for $t \in [0,1]$ and let $a \in B_t^+$. Then, $\mu^+(a) \ge t$ and $\mu^+(0) \ge \mu^+(a) \ge t$ by (BF₁), thus $0 \in B_t^+$. Let $\chi, \gamma, \tau \in \aleph$ be such that $(\chi * (\gamma * \tau)) \in B_t^+$ and $\gamma \in B_t^+$. Then, $\mu^+(\chi * (\gamma * \tau)) \ge t$ and $\mu^+(\gamma) \ge t$.

It follows from (BF₂) that $\mu^+(\chi * \tau) \ge \min\{\mu^+(\chi * (\gamma * \tau)), \mu^+(\gamma)\} = \min\{t, t\} = t$, so that $(\chi * \tau) \in B_t^+$. Also, by (BF₃), $\mu^+(\chi \circ \gamma) \ge \min\{\mu^+(\chi), \mu^+(\gamma)\} = \min\{t, t\} = t$, then $(\chi \circ \gamma) \in B_t^+$ (res. $(\gamma \circ \chi) \in B_t^+$). Hence, B_t^+ is a k-ideal of \aleph .

(2) \Rightarrow (1) Assume that there exists $a \in \aleph$ such that $\mu^{-}(0) \ge \mu^{-}(a)$. Taking $s_{0} = \frac{1}{2}(\mu^{-}(0) + \mu^{-}(a))$, for some $s_{0} \in [-1,0]$ implies that $\mu^{-}(a) < s_{0} < \mu^{-}(0)$. This is a contradiction, and thus $\mu^{-}(0) \le \mu^{-}(\gamma)$, for all $\gamma \in \aleph$. Suppose that $\mu^{-}(\chi * \tau) \le \max\{\mu^{-}(\chi * (\gamma * \tau)), \mu^{-}(\gamma)\}$, for some $\chi, \gamma, \tau \in \aleph$, and let $s_{1} = \frac{1}{2}(\mu^{-}(\chi * \tau) + \max\{\mu^{-}(\chi * (\gamma * \tau)), \mu^{-}(\gamma)\})$. Then, $\max\{\mu^{-}(\chi * (\gamma * \tau)), \mu^{-}(\gamma)\} < s_{1} < \mu^{-}(\chi * \tau)$, which is a contradiction. Therefore, $\mu^{-}(\chi * \tau) \le \max\{\mu^{-}(\chi * (\gamma * \tau)), \mu^{-}(\gamma)\}$, for all $\chi, \gamma, \tau \in \aleph$. Suppose that $\mu^{-}(\chi \circ \gamma) \le \max\{\mu^{-}(\chi), \mu^{-}(\gamma)\}$, for some $\chi, \gamma \in \aleph$, and let $s_{2} = \frac{1}{2}(\mu^{-}(\chi \circ \gamma) + \max\{\mu^{-}(\chi), \mu^{-}(\gamma)\})$. Then, $\max\{\mu^{-}(\chi), \mu^{-}(\gamma)\} < s_{2} < \mu^{-}(\chi \circ \gamma)$, which is a contradiction. Therefore, $\mu^{-}(\chi \circ \gamma)$, which is a contradiction. Therefore, $\mu^{-}(\chi \circ \gamma) \le \max\{\mu^{-}(\chi), \mu^{-}(\gamma)\}$, for all $\chi, \gamma \in \aleph$.

Now, if $\mu^+(0) < \mu^+(\gamma)$, for some $\gamma \in \aleph$, then $\mu^+(0) < t_0 < \mu^+(\gamma)$, for some $t_0 \in (0,1]$. This is a contradiction. Thus $\mu^+(0) \ge \mu^+(\gamma)$, for all $\gamma \in \aleph$.

If $\mu^+(\chi * \tau) \leq \min\{\mu^+(\chi * (\gamma * \tau)), \mu^+(\gamma)\}$, for some $\chi, \gamma, \tau \in \mathbb{X}$. Then, there exists $t_1 \in (0,1]$, such that $\mu^+(\chi * \tau) < t_1 \leq \min\{\mu^+(\chi * (\gamma * \tau)), \mu^+(\gamma)\}$. We get $\chi * (\gamma * \tau) \in B_{t_1}^+$ and $\gamma \in B_{t_1}^+$ but $\chi * \tau \notin B_{t_1}^+$. This is a contradiction. Consequently, $\mu^+(\chi * \tau) \geq \min\{\mu^+(\chi * (\gamma * \tau)), \mu^+(\gamma)\}$, for all $\chi, \gamma, \tau \in \mathbb{X}$. And if $\mu^+(\chi \circ \gamma) \leq \min\{\mu^+(\chi), \mu^+(\gamma)\}$, for some, $\gamma \in \mathbb{X}$.

Then, there exists $t_2 \in (0,1]$ such that $\mu^+(\chi \circ \gamma) < t_2 \le \min\{\mu^+(\chi), \mu^+(\gamma)\}$. It follows that $\chi \in B_{t_2}^+$ and $\gamma \in B_{t_2}^+$ but $(\chi \circ \gamma) \notin B_{t_2}^+$, which is a contradiction. Hence, $\mu^+(\chi \circ \gamma) \ge \min\{\mu^+(\chi), \mu^+(\gamma)\}$, for all $\chi, \gamma \in \aleph$.

Therefore $B = (\chi, \mu^-, \mu^+)$ is a bipolar fuzzy k-ideal of \aleph .

4. Bipolar fuzzy k-ideals under homomorphism

Definition 4.1. For any $\chi \in \aleph$. We define a new bipolar fuzzy set $B_f = (\chi, \mu_f^-, \mu_f^+)$ in \aleph by $\mu_f^-(\chi) = \mu^-(f(\chi))$ and $\mu_f^+(\chi) = \mu^+(f(\chi))$, where $f \colon \aleph \to \aleph'$ is a KU-semigroup homomorphism.

Theorem 4.2. Let $f: \aleph \to \aleph'$ be a KU-semigroup homomorphism and onto mapping. Then, $B = (\chi', \mu^-, \mu^+)$ is a bipolar fuzzy *k*-ideal of \aleph' if and only if $B_f = (\chi, \mu_f^-, \mu_f^+)$ is a bipolar fuzzy *k*-ideal of \aleph .

PROOF: For any $\chi' \in \aleph'$ there exists $\chi \in \aleph$ such that $f(\chi) = \chi'$, we have

$$\mu_{f}^{+}(0) = \mu^{+}(f(0)) = \mu^{+}(0') \ge \mu^{+}(\chi') = \mu^{+}(f(\chi)) = \mu_{f}^{+}(\chi)$$

and

$$\mu_{f}^{-}(0) = \mu^{-}(f(0)) = \mu^{-}(0') \le \mu^{-}(\chi') = \mu^{-}(f(\chi)) = \mu_{f}^{-}(\chi)$$

Let $\chi, \tau \in \aleph, \gamma' \in \aleph'$ then there exists $\gamma \in \aleph$ such that $f(\gamma) = \gamma'$. We have

$$\mu_{f}^{+}(\chi * \tau) = \mu^{+}(f(\chi * \tau)) = \mu^{+}(f(\chi) * f(\tau)) \ge \min \{\mu^{+}(f(\chi) * (\gamma' * f(\tau)), \mu^{+}(\gamma')\}$$

= min { $\mu^{+}(f(\chi) * (f(\gamma) * f(\tau))$ }, $\mu^{+}(f(\gamma)) = \min \{\mu_{f}^{+}(\chi * (\gamma * \tau)), \mu_{f}^{+}(\gamma)\}$

and

$$\mu_{f}^{-}(\chi * \tau) = \mu^{-}(f(\chi * \tau)) = \mu^{-}(f(\chi) * f(\tau)) \le \max \{\mu^{-}(f(\chi) * (\gamma' * f(\tau)), \mu^{-}(\gamma')\}$$

= max { $\mu^{-}(f(\chi) * (f(\gamma) * f(\tau))$ }, $\mu^{-}(f(\gamma)) = \max \{\mu_{f}^{-}(\chi * (\gamma * \tau)), \mu_{f}^{-}(\gamma)\}$

Hence, $B_f = (\chi, \mu_f^-, \mu_f^+)$ is a bipolar fuzzy *k*-ideal of \aleph .

Conversely, since $f: \aleph \to \aleph'$ is an onto mapping, then for any $\chi, \gamma, \tau \in \aleph'$.

It follows that there exists $a, b, c \in \aleph$ such that $f(a) = \chi, f(b) = \gamma$ and $f(c) = \tau$. We have

$$\mu^{+}(\chi * \tau) = \mu^{+}(f(a) * f(c))) = \mu^{+}(f(a * c)) = \mu^{+}_{f}(a * c) \ge \min \{\mu^{+}_{f}(a * (b * c)), \mu^{+}_{f}(b)\}$$
$$= \min \{\mu^{+}(f(a) * (f(b) * f(c)))\}, \mu^{+}(f(b))\} = \min \{\mu^{+}(\chi * (\gamma * \tau)), \mu^{+}(\gamma)\}.$$

and

$$\mu^{-}(\chi * \tau) = \mu^{-}(f(a) * f(c))) = \mu^{-}(f(a * c)) = \mu_{f}^{-}(a * c) \le \max \{\mu_{f}^{-}(a * (b * c)), \mu_{f}^{-}(b)\}$$

= max { $\mu^{-}(f(a) * (f(b) * f(c))\}, \mu^{-}(f(b)) = \max \{\mu^{-}(\chi * (\gamma * \tau)), \mu^{-}(\gamma)\}$

Therefore, $B = (\chi, \mu^{-}, \mu^{+})$ is a bipolar fuzzy *k*-ideal of \aleph' .

Now, we introduce the product of bipolar fuzzy k-ideals in a KU-semigroup, and we study some results.

Definition 4.3. Let $B_1 = (\chi, \mu_1^-, \mu_1^+)$ and $B_2 = (\gamma, \mu_2^-, \mu_2^+)$ be two bipolar fuzzy sets of \aleph . The product $B_1 \times B_2 = ((\chi, \gamma), \mu_1^- \times \mu_2^-, \mu_1^+ \times \mu_2^+)$ is defined by the following: $(\mu_1^- \times \mu_2^-)(\chi, \gamma) = \max \{\mu_1^-(\chi), \mu_2^-(\gamma)\}$ and $(\mu_1^+ \times \mu_2^+)(\chi, \gamma) = \min \{\mu_1^+(\chi), \mu_2^+(\gamma)\}$, where $\mu_1^- \times \mu_2^- \colon \aleph \times \aleph \to [-1, 0]$ and $\mu_1^+ \times \mu_2^+ \colon \aleph \times \aleph \to [0, 1]$, for all $\chi, \gamma \in \aleph$.

Theorem 4.4. Let $B_1 = (\chi, \mu_1^-, \mu_1^+)$ and $B_2 = (\gamma, \mu_2^-, \mu_2^+)$ be two bipolar fuzzy *k*-ideals of KU-semigroup \aleph , then $B_1 \times B_2$ is a bipolar fuzzy *k*-ideal of $\aleph \times \aleph$.

PROOF. For any $(\chi, \gamma) \in \aleph \times \aleph$, we have

$$(\mu_1^+ \times \mu_2^+)(0,0) = \min\{\mu_1^+(0), \mu_2^+(0)\} \ge \min\{\mu_1^+(\chi), \mu_2^+(\gamma)\} = (\mu_1^+ \times \mu_2^+)(\chi, \gamma)$$

and

$$(\mu_1^- \times \mu_2^-)(0,0) = \max\{\mu_1^-(0), \mu_2^-(0)\} \le \max\{\mu_1^-(\chi), \mu_2^-(\gamma)\} = (\mu_1^- \times \mu_2^-)(\chi, \gamma)$$

Let $(\chi_1, \chi_2), (\gamma_1, \gamma_2)$ and $(\tau_1, \tau_2) \in \aleph \times \aleph$, then

$$(\mu_1^+ \times \mu_2^+)(\chi_1 * \tau_1, \chi_2 * \tau_2) = \min\{\mu_1^+(\chi_1 * \tau_1), \mu_2^+(\chi_2 * \tau_2)\} \geq \min\{\min\{\mu_1^+(\chi_1 * (\gamma_1 * \tau_1)), \mu_1^+(\gamma_1)\}, \min\{\mu_2^+(\chi_2 * (\gamma_2 * \tau_2)), \mu_2^+(\gamma_2)\}\} = \min\{\min\{\mu_1^+(\chi_1 * (\gamma_1 * \tau_1)), \mu_2^+(\chi_2 * (\gamma_2 * \tau_2)), \min\{\mu_1^+(\gamma_1), \mu_2^+(\gamma_2)\}\} = \min\{\min(\mu_1^+ \times \mu_2^+)\{(\chi_1 * (\gamma_1 * \tau_1)), (\chi_2 * (\gamma_2 * \tau_2))\}, \{(\mu_1^+ \times \mu_2^+)(\gamma_1, \gamma_2)\}\}$$

and

$$\begin{aligned} (\mu_1^- \times \mu_2^-)(\chi_1 * \tau_1, \chi_2 * \tau_2) &= \max\{\mu_1^-(\chi_1 * \tau_1), \mu_2^-(\chi_2 * \tau_2)\} \\ &\leq \max\{\max\{\mu_1^-(\chi_1 * (\gamma_1 * \tau_1)), \mu_1^-(\gamma_1)\}, \max\{\mu_2^-(\chi_2 * (\gamma_2 * \tau_2), \mu_2^-(\gamma_2)\} \\ &= \max\{\max\{\mu_1^-(\chi_1 * (\gamma_1 * \tau_1)), \mu_2^-(\chi_2 * (\gamma_2 * \tau_2)), \max\{\mu_1^-(\gamma_1), \mu_2^-(\gamma_2)\} \\ &= \max\{(\mu_1^- \times \mu_2^-)\{(\chi_1 * (\gamma_1 * \tau_1)), (\chi_2 * (\gamma_2 * \tau_2))\}, \{(\mu_1^- \times \mu_2^-)(\gamma_1, \gamma_2)\}\} \end{aligned}$$

and

$$(\mu_{1}^{+} \times \mu_{2}^{+})(\chi_{1} \circ \gamma_{1}, \chi_{2} \circ \gamma_{2}) = \min\{\mu_{1}^{+}(\chi_{1} \circ \gamma_{1}), \mu_{2}^{+}(\chi_{2} \circ \gamma_{2})\}$$

$$\geq \min\{\min\{\mu_{1}^{+}(\chi_{1}), \mu_{1}^{+}(\gamma_{1})\}, \min\{\mu_{2}^{+}(\chi_{2}), \mu_{2}^{+}(\gamma_{2})\}\}$$

$$= \min\{\min\{\mu_{1}^{+}(\chi_{1}), \mu_{2}^{+}(\chi_{2})\}, \min\{\mu_{1}^{+}(\gamma_{1}), \mu_{2}^{+}(\gamma_{2})\}\}$$

$$= \min\{\{(\mu_{1}^{+} \times \mu_{2}^{+})(\chi_{1}, \chi_{2})\}, \{(\mu_{1}^{+} \times \mu_{2}^{+})(\gamma_{1}, \gamma_{2})\}\}$$

and

$$\begin{aligned} (\mu_1^- \times \mu_2^-)(\chi_1 \circ \gamma_1, \chi_2 \circ \gamma_2) &= \max\{\mu_1^-(\chi_1 \circ \gamma_1), \mu_2^-(\chi_2 \circ \gamma_2)\} \\ &\leq \max\{\max\{\mu_1^-(\chi_1), \mu_1^-(\gamma_1)\}, \max\{\mu_2^-(\chi_2), \mu_2^-(\gamma_2)\} \\ &= \max\{\max\{\mu_1^-(\chi_1), \mu_2^-(\chi_2)\}, \max\{\mu_1^-(\gamma_1), \mu_2^-(\gamma_2)\} \\ &= \max\{\{(\mu_1^- \times \mu_2^-)(\chi_1, \chi_2)\}, \{(\mu_1^- \times \mu_2^-)(\gamma_1, \gamma_2)\}\} \end{aligned}$$

Therefore $B_1 \times B_2$ is a bipolar fuzzy *k*-ideal of $\aleph \times \aleph$.

Acknowledgement

The authors have greatly appreciated the referees for their valuable comments and suggestions for improving the paper.

References

- [1] L. A. Zadeh, *Fuzzy Sets*, Information and Control 8 (1965) 338-353.
- [2] S. M. Mostafa, F. F. Kareem, *Fuzzy N-fold KU-ideals of KU-algebras*, Annals of Fuzzy Mathematics and Informatics 8(6) (2014) 987-1000.
- [3] S. M. Mostafa, M. A. Abd-Elnaby and M. M. M. Yousef, *Fuzzy Ideals of KU-Algebras*, International Mathematical Forum 6(63) (2011) 3139-3149.
- [4] K. M. Lee, *Bipolar-Valued Fuzzy Sets and Their Operations*, Proceeding of International Conference on Intelligent Technologies, Bangkok, Thailand, (2000) 307-312.
- [5] K. M. Lee, *Comparison of Interval-Valued Fuzzy Sets, Intuitionistic Fuzzy Sets, and Bipolar-Valued Fuzzy sets,* Journal of Fuzzy Logic and Intelligent Systems 14 (2004) 125-129.
- [6] S. M. Mostafa, F. F. Kareem, Bipolar Fuzzy N-fold KU-Ideals of KU-Algebras, Mathematica Eterna 4 (2014) 633-650.
- [7] G. Muhiuddin, *Bipolar Fuzzy KU-Subalgebras**Ideals of KU-Algebras*, Annals of Fuzzy Mathematics and Informatics 8(3) (2014) 409-418.
- [8] A. B. Saeid, *Bipolar-Valued Fuzzy BCK\BCI-Algebras*, World Applied Sciences Journal 7(11) (2009) 1404-1411.
- [9] C. Prabpayak, U. Leerawat, On Ideals and Congruence in KU-Algebras, Scientia Magna Journal 5(1) (2009) 54-57.
- [10] C. Prabpayak, U. Leerawat, On Isomorphisms of KU-Algebras, Scientia Magna Journal 5(3) (2009) 25-31.
- [11] F. F. Kareem, E. R. Hasan, On KU-Semigroups, International Journal of Science and Nature 9(1) (2018) 79-84.
- [12] E. R. Hasan, F. F. Kareem, Fuzzy KU-Semi-Groups and Investigate Some Basic Properties, Journal of Engineering and Applied Science 13(18) (2018) 7739-7744.