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Original Article

Abstract − Soft sets have been successfully applied to many different fields to
cope with uncertainties. Recently, to increase the success of the applications, these
sets have been combined with other theories, such as fuzzy sets and intuitionistic
fuzzy sets. In this study, we propose the concept of fuzzy parameterized intuitionistic
fuzzy soft sets (fpifs-sets). We then apply these sets to a performance-based value
assignment (PVA) problem. Finally, we give suggestions for further research.
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1. Introduction

Researchers in many scientific fields make an effort to model problems containing uncertain data.
However, the classical methods are not always successful in describing uncertainties. In 1965, therefore,
fuzzy sets were developed by Zadeh [1] to overcome the uncertainties. In 1986, these sets have been
generalised to intuitionistic fuzzy sets (if -sets) by Atanassov [2]. In 1999, Molodtsov [3] proposed the
concept of soft sets as a general mathematical tool to model the problems with uncertainties.

So far, many novel concepts based on the soft sets, fuzzy sets, and if -sets have been propounded.
These concepts can be classified as follows:

- Fuzzy soft sets [4],
- Intuitionistic fuzzy soft sets [5],
- Fuzzy parameterized soft sets [6],
- Fuzzy parameterized fuzzy soft set [7],
- Fuzzy parameterized intuitionistic fuzzy soft sets [In this study],
- Intuitionistic fuzzy parameterized soft sets [8],
- Intuitionistic fuzzy parameterized fuzzy soft sets [9],
- Intuitionistic fuzzy parameterized intuitionistic fuzzy soft sets [10],

In the present paper, as it is pointed out above, we define parameterized intuitionistic fuzzy soft
sets (fpifs-sets) by using fuzzy sets and if -sets. We then apply this concept to a decision-making
problem. Finally, we discuss fpifs-sets and give suggestions for their further research.
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2. Preliminaries

This section presents some of the basic definitions of soft sets [3], fuzzy sets [1], and if -sets [2].

2.1. Soft Sets

In this subsection, we introduce some of the basic definitions and properties of soft sets provided
in [3, 11, 12].

Definition 2.1. Let U be a universal set, P (U) be the power set of U , and X be a set of parameters.
Then, a soft set S over U is defined as a set of ordered pairs

S = {(x, s(x)) : x ∈ X} where s : X → P (U)

Here, s is called approximate function of the soft set S and the elements (x, ∅) is not displayed in S.

Hereafter, the soft sets are denoted by S, S1, S2, . . . and their approximate functions by s, s1, s2, . . . ,
respectively. The set of all soft sets over U is denoted by S.

Definition 2.2. Let S ∈ S. Then,
S is called empty soft set, denoted by S∅, if s(x) = ∅ for all x ∈ X, and
S is called universal soft set, denoted by SU , if s(x) = U for all x ∈ X.

Example 2.3. Let U = {u1, u2, u3, u4, u5, u6} be a universal set and X = {x1, x2, x3, x4} be a set of
parameters. If s(x1) = {u1, u2, u4, u6}, s(x2) = ∅, s(x3) = {u1, u3, u5}, and s(x4) = U , then the soft
set S is written by

S = {(x1, {u1, u2, u4, u6}), (x3, {u1, u3, u5}), (x4, U)}

Definition 2.4. Let S1, S2 ∈ S. Then,
S1 and S2 are called equal, denoted by S1 = S2, if s1(x) = s2(x) for all x ∈ X, and
S1 is called soft subset of soft set S2, denoted by S1 ⊆ S2, if s1(x) ⊆ s2(x) for all x ∈ X.

Definition 2.5. Let S, S1, S2 ∈ S. Then,
the complement of S is defined by Sc = {(x,U \ s(x)) : x ∈ X},
the union of S1 and S2 is defined by S1 ∪ S2 = {(x, s1(x) ∪ s2(x)) : x ∈ X}, and
the intersection of S1 and S2 is defined by S1 ∩ S2 = {(x, s1(x) ∩ s2(x)) : x ∈ X}.

Proposition 2.6. If S ∈ S, then

i) S ∪ S = S

ii) S ∩ S = S

iii) S ∪ S∅ = S

iv) S ∩ S∅ = S∅

v) S ∪ SU = SU

vi) S ∩ SU = S

Proposition 2.7. If S1, S2, S3 ∈ S, then

i) S1 ∪ S2 = S2 ∪ S1

ii) S1 ∩ S2 = S2 ∩ S1

iii) (S1 ∪ S2)
c = Sc

1 ∩ Sc
2

iv) (S1 ∩ S2)
c = Sc

1 ∪ Sc
2

v) S1 ∪ (S2 ∪ S3) = (S1 ∪ S2) ∪ S3

vi) S1 ∩ (S2 ∩ S3) = (S1 ∩ S2) ∩ S3

vii) S1 ∪ (S2 ∩ S3) = (S1 ∪ S2) ∩ (S1 ∪ S3)

viii) S1 ∩ (S2 ∪ S3) = (S1 ∩ S2) ∪ (S1 ∩ S3)

2.2. Fuzzy Sets

This subsection provides some of the basic definitions and properties of fuzzy sets presented in [1]. For
more details, see [13–15].

Definition 2.8. Let X be a universal set. Then, a fuzzy set F over X is defined by

F = {xf(x) : x ∈ X} where f : X → [0, 1]

Here f is called the membership function of F , the elements x0 is not displayed in F , and the elements
x1 is displayed as x in F . Moreover, the value f(x) is called the degree of membership of x ∈ X and
represents the degree of belonging of x to the fuzzy set F .
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From now on, the fuzzy sets are denoted by F,F1, F2, . . . and their membership functions by
f, f1, f2, . . . respectively. The set of all fuzzy sets over X is denoted by F.

Definition 2.9. Let F ∈ F. Then,
F is called empty fuzzy set, denoted by F∅, if f(x) = 0 for all x ∈ X.
F is called universal fuzzy set, denoted by FX , if f(x) = 1 for all x ∈ X.

Example 2.10. Let U = {x1, x2, x3, x4, x5, x6}, f(x1) = 0.7, f(x2) = 0.5, f(x3) = 0.2, f(x4) = 0,
f(x5) = 0.7, and f(x6) = 1, then the fuzzy set F is as follows:

F =
{

x0.71 , x0.52 , x0.23 , x0.75 , x6
}

Definition 2.11. Let F1, F2 ∈ F. Then,
F1 and F2 are called equal, denoted by F1 = F2, if f1(x) = f2(x) for all x ∈ X, and
F1 is called fuzzy subset of F2, denoted by F1 ⊆ F2, if f1(x) ≤ f2(x) for all x ∈ X.

Definition 2.12. Let F,F1, F2 ∈ F. Then,
the complement of F is defined by F c = {x1−f(x) : x ∈ X},
the union of F1 and F2 is defined by F1 ∪ F2 = {xmax{f1(x),f2(x)} : x ∈ X}, and
the intersection of F1 and F2 is defined by F1 ∩ F2 = {xmin{f1(x),f2(x)} : x ∈ X}.

Proposition 2.13. If F ∈ F, then

i) F ∪ F = F

ii) F ∩ F = F

iii) F ∪ F∅ = F

iv) F ∩ F∅ = F∅

v) F ∪ FX = FX

vi) F ∩ FX = F

Proposition 2.14. If F1, F2, F3 ∈ F, then

i) F1 ∪ F2 = F2 ∪ F1

ii) F1 ∩ F2 = F2 ∩ F1

iii) (F1 ∪ F2)
c = F c

1 ∩ F c
2

iv) (F1 ∩ F2)
c = F c

1 ∪ F c
2

v) F1 ∪ (F2 ∪ F3) = (F1 ∪ F2) ∪ F3

vi) F1 ∩ (F2 ∩ F3) = (F1 ∩ F2) ∩ F3

vii) F1 ∪ (F2 ∩ F3) = (F1 ∪ F2) ∩ (F1 ∪ F3)

viii) F1 ∩ (F2 ∪ F3) = (F1 ∩ F2) ∪ (F1 ∩ F3)

2.3. Intuitionistic Fuzzy Sets

This subsection features some of the basic definitions and properties of if -sets provided in [2]. For
more details, see [16, 17].

Definition 2.15. Let U be a universal set. An intuitionistic fuzzy set (if -set) I over U is defined by

I =
{

uµ(u);ν(u) : u ∈ U
}

where µ : U → [0, 1] and ν : U → [0, 1] such that 0 ≤ µ(u) + ν(u) ≤ 1 for all u ∈ U . Here, µ and ν

are called membership and non-membership function of I and the elements u0;1 is not displayed in I.
Moreover, the values µ(u) and ν(u) denote the membership degree and non-membership degree of the
u ∈ U , respectively.

Hereafter, the if -sets are denoted by I, I1, I2, . . . and their membership and non-membership func-
tions by µ, µ1, µ2, . . . and ν, ν1, ν2, . . . , respectively. The set of all if -sets over U is denoted by I.

Definition 2.16. Let I ∈ I. Then,
I is called empty if -set, denoted by I∅, if µ(u) = 0 and ν(u) = 1 for all u ∈ U , and
I is called universal if -set, denoted by IU , if µ(u) = 1 and ν(u) = 0 for all u ∈ U .

Example 2.17. Let U = {u1, u2, u3, u4} be a universal set, µ(u1) = 0.7, ν(u1) = 0.2, µ(u2) = 0,
ν(u2) = 1, µ(u3) = 0.2, ν(u3) = 0.6, µ(u4) = 0.3, and ν(u4) = 0.7. Then, the if -set I is written by

I =
{

u
0.7;0.2
1 , u

0.2;0.6
3 , u

0.3;0.7
4

}
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Definition 2.18. Let I1, I2 ∈ I. Then,
I1 and I2 is called equal, denoted by I1 = I2, if µ1(u) = µ2(u) and ν1(u) = ν2(u) for all u ∈ U , and
I1 is called if -subset of I2, denoted by I1 ⊆ I2, if µ1(u) ≤ µ2(u) and ν2(u) ≤ ν1(u) for all u ∈ U .

Definition 2.19. Let I, I1, I2 ∈ I. Then,
the complement of I is defined by Ic = {uν(u);µ(u) : u ∈ U},
the union of I1 and I2 is defined by I1 ∪ I2 = {umax{µ1(u),µ2(u)};min{ν1(u),ν2(u)} : u ∈ U}, and
the intersection of I1 and I2 is defined by I1 ∩ I2 = {umin{µ1(u),µ2(u)};max{ν1(u),ν2(u)} : u ∈ U}.

Proposition 2.20. If I ∈ I, then

i) I ∪ I = I

ii) I ∩ I = I

iii) I ∪ I∅ = I

iv) I ∩ I∅ = I∅

v) I ∪ IU = IU

vi) I ∩ IU = I

Proposition 2.21. If I1, I2, I3 ∈ I, then

i) I1 ∪ I2 = I2 ∪ I1

ii) I1 ∩ I2 = I2 ∩ I1

iii) (I1 ∪ I2)
c = Ic1 ∩ Ic2

iv) (I1 ∩ I2)
c = Ic1 ∪ Ic2

v) I1 ∪ (I2 ∪ I3) = (I1 ∪ I2) ∪ I3

vi) I1 ∩ (I2 ∩ I3) = (I1 ∩ I2) ∩ I3

vii) I1 ∪ (I2 ∩ I3) = (I1 ∪ I2) ∩ (I1 ∪ I3)

viii) I1 ∩ (I2 ∪ I3) = (I1 ∩ I2) ∪ (I1 ∩ I3)

3. Fuzzy Parameterized Intuitionistic Fuzzy Soft Sets

In this section, we define fuzzy parameterized intuitionistic fuzzy soft sets (fpifs-sets) as a new concept
of the soft sets. We then present some of their basic properties.

Definition 3.1. Let U be a universal set and X be a set of parameters. If F =
{

xf(x) : x ∈ X
}

is a
fuzzy set over X and p : X → I, p(x) =

{

uµx(u);νx(u) : u ∈ U
}

is an if -set over U for x ∈ X, then

P =
{(

xf(x), p(x)
)

: x ∈ X
}

is called an fpifs-set over U . Here, p is called approximate function of P and the elements (x0, I∅) is
not displayed in P .

Throughout this paper, the fpifs-sets are denoted by P,P1, P2, . . . and their approximate functions
by p, p1, p2, . . . , respectively. The set of all fpifs-sets over U is denoted by P.

Definition 3.2. Let P ∈ P. Then,
P is called empty fpifs-sets, denoted by P∅, if f(x) = 0 and p(x) = I∅ for all x ∈ X, and
P is called universal if -set, denoted by PU , if f(x) = 1 and p(x) = IU for all x ∈ X.

Example 3.3. Let U = {u1, u2, u3}, X = {x1, x2, x3, x4}, F =
{

x0.71 , x0.42 , x0.54

}

, and

p(x1) =
{

u
0.7;0.2
1 , u

0.5;0.2
3

}

,

p(x2) =
{

u
0.5;0.3
2 , u

0.8;0.1
3

}

,

p(x3) = I∅,

p(x4) =
{

u
0.6;0.2
1 , u

0.5;0.3
2 , u

0.8;0.1
3

}

.

Then,

P =
{

(x0.71 , p(x1)), (x
0.4
2 , p(x2)), (x

0.5
4 , p(x4))

}

=
{(

x0.71 ,
{

u
0.7;0.2
1 , u

0.5;0.2
3

})

,
(

x0.42 ,
{

u
0.5;0.3
2 , u

0.8;0.1
3

})

,
(

x0.54 ,
{

u
0.6;0.2
1 , u

0.5;0.3
2 , u

0.8;0.1
3

})}

is an fpifs-set over U .
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Definition 3.4. Let P1, P2 ∈ P. Then, P1 and P2 are called equal, denoted by P1 = P2, if f1(x) =
f2(x) and p1(x) = p2(x) for all x ∈ X.

Definition 3.5. Let P1, P2 ∈ P. Then, P1 is called fpifs-subset of P2, denoted by P1 ⊆ P2, if
f1(x) ≤ f2(x) and p1(x) ⊆ p2(x) for all x ∈ X.

Definition 3.6. Let P1, P2 ∈ P. Then, the union of P1 and P2 is defined by

P1 ∪ P2 :=
{

(xmax{f1(x),f2(x)}, p1(x) ∪ p2(x)) : x ∈ X
}

Definition 3.7. Let P1, P2 ∈ P. Then, the intersection of P1 and P2 is defined by

P1 ∩ P2 :=
{

(xmin{f1(x),f2(x)}, p1(x) ∩ p2(x)) : x ∈ X
}

Definition 3.8. Let P ∈ P. Then, the complement of P is defined by

P c :=
{

(x1−f(x), pc(x)) : x ∈ X
}

Proposition 3.9. If P ∈ P, then

i) P ∪ P = P

ii) P ∩ P = P

iii) P ∪ P∅ = P

iv) P ∩ P∅ = P∅

v) P ∪ PU = PU

vi) P ∩ PU = P

Proof. Let P = {(xf(x), p(x)) : x ∈ X} be an fpifs-set over U . Then,

i) P ∪ P = {(xmax{f(x),f(x)}, p(x) ∪ p(x)) : x ∈ X} = {(xf(x), p(x)) : x ∈ X} = P

ii) P ∩ P = {(xmin{f(x),f(x)}, p(x) ∩ p(x)) : x ∈ X} = {(xf(x), p(x)) : x ∈ X} = P

iii) P ∪ P∅ = {(xmax{f(x),0}, p(x) ∪ I∅) : x ∈ X} = {(xf(x), p(x)) : x ∈ X} = P

iv) P ∩ P∅ = {(xmin{f(x),0}, p(x) ∩ I∅) : x ∈ X} = {(x0, I∅) : x ∈ X} = P∅

v) P ∪ PU = {(xmax{f(x),1}, p(x) ∪ IU ) : x ∈ X} = {(x1, IU ) : x ∈ X} = PU

vi) P ∩ PU = {(xmin{f(x),1}, p(x) ∩ IU ) : x ∈ X} = {(xf(x), p(x)) : x ∈ X} = P

Proposition 3.10. If P1, P2, P3 ∈ P, then

i) P1 ∪ P2 = P2 ∪ P1

ii) P1 ∩ P2 = P2 ∩ P1

iii) (P1 ∪ P2)
c = P c

1 ∩ P c
2

iv) (P1 ∩ P2)
c = P c

1 ∪ P c
2

v) P1 ∪ (P2 ∪ P3) = (P1 ∪ P2) ∪ P3

vi) P1 ∩ (P2 ∩ P3) = (P1 ∩ P2) ∩ P3

vii) P1 ∪ (P2 ∩ P3) = (P1 ∪ P2) ∩ (P1 ∪ P3)

viii) P1 ∩ (P2 ∪ P3) = (P1 ∩ P2) ∪ (P1 ∩ P3)

Proof. Let P1 = {(xf1(x), p1(x)) : x ∈ X}, P2 = {(xf2(x), p2(x)) : x ∈ X} and
P3 = {(xf3(x), p3(x)) : x ∈ X} be three fpifs-sets over U . Then,

i) P1 ∪ P2 = {(xmax{f1(x),f2(x)}, p1(x) ∪ p2(x)) : x ∈ X},
= {(xmax{f2(x),f1(x)}, p2(x) ∪ p1(x)) : x ∈ X},
= P2 ∪ P1

ii) P1 ∩ P2 = {(xmin{f1(x),f2(x)}, p1(x) ∩ p2(x)) : x ∈ X},
= {(xmin{f2(x),f1(x)}, p2(x) ∩ p1(x)) : x ∈ X},
= P2 ∩ P1
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iii) (P1 ∪ P2)
c = {(x1−max{f1(x),f2(x)}, (p1(x) ∪ p1(x))

c) : x ∈ X},
= {(xmin{1−f1(x),1−f2(x)}, pc1(x) ∩ pc2(x)) : x ∈ X},
= P c

1 ∩ P c
2

iv) (P1 ∩ P2)
c = {(x1−min{f1(x),f2(x)}, (p1(x) ∩ p2(x))

c) : x ∈ X},
= {(xmax{1−f1(x),1−f2(x)}, pc1(x) ∪ pc2(x)) : x ∈ X},
= P c

1 ∪ P c
2

v) P1 ∪ (P2 ∪ P3) = {(xmax{f1(x),max{f2(x),f3(x)}}, p1(x) ∪ (p2(x) ∪ p3(x))) : x ∈ X}
= {(xmax{max{f1(x),f2(x)},f3(x)}, (p1(x) ∪ p2(x)) ∪ p3(x)) : x ∈ X}
= (P1 ∪ P2) ∪ P3

vi) P1 ∩ (P2 ∩ P3) = {(xmin{f1(x),min{f2(x),f3(x)}}, p1(x) ∩ (p2(x) ∩ p3(x))) : x ∈ X}
= {(xmin{min{f1(x),f2(x)},f3(x)}, (p1(x) ∩ p2(x)) ∩ p3(x)) : x ∈ X}
= (P1 ∩ P2) ∩ P3

vii) P1 ∪ (P2 ∩ P3) = {(xmax{f1(x),min{f2(x),f3(x)}}, p1(x) ∪ (p2(x) ∩ p3(x))) : x ∈ X}

= {(xmin{max{f1(x),f2(x)},max{f1(x),f3(x)}}, (p1(x) ∪ p2(x)) ∩ (p1(x) ∪ p3(x))) : x ∈ X}
= (P1 ∪ P2) ∩ (P1 ∪ P3)

viii) P1 ∩ (P2 ∪ P3) = {(xmin{f1(x),max{f2(x),f3(x)}}, p1(x) ∩ (p2(x) ∪ p2(x))) : x ∈ X}

= {(xmax{min{f1(x),f2(x)},min{f1(x),f3(x)}}, (p1(x) ∩ p2(x)) ∪ (p1(x) ∩ p3(x))) : x ∈ X}
= (P1 ∩ P2) ∪ (P1 ∩ P3)

4. A Soft Decision-Making Method Proposed on fpifs-sets

In this section, we suggest a soft decision-making method that assigns a performance-based value to
the alternatives via fpifs-sets. Thus, we can choose the optimal elements among the alternatives.

The Proposed Algorithm Steps

Step 1. Construct an fpifs-set P such that P =
{(

xf(x),
{

uµx(u);νx(u) : u ∈ U
})

: x ∈ X
}

Step 2. Obtain the values ω(u) = 1
|E|

∑

x∈X
f(x)(µx(u)− νx(u)), for all u ∈ U

Step 3. Obtain the decision set {u
d(uk)
k |uk ∈ U} such that d(uk) =

ω(uk)+|min
i

ω(ui)|

max
i

ω(ui)+|min
i

ω(ui)|

5. An Application of the Proposed Method to a Performance-Based Value Assign-
ment Problem

In this section, we apply the proposed method to the performance-based value assignment (PVA)
problem for seven filters used in image denoising, namely Decision Based Algorithm (DBA) [18],
Modified Decision Based Unsymmetrical Trimmed Median Filter (MDBUTMF) [19], Based on Pixel
Density Filter (BPDF) [20], Noise Adaptive Fuzzy Switching Median Filter (NAFSMF) [21], A New
Adaptive Weighted Mean Filter (AWMF) [22], Different Applied Median Filter (DAMF) [23], and
Adaptive Riesz Mean Filter (ARmF) [24]. Hereafter, let U = {u1, u2, u3, u4, u5, u6, u7} be the set of
the alternatives such that

u1 = “DBA”, u2 = “MDBUTMF”, u3 = “BPDF”, u4 = “NAFSMF”, u5 = “AWMF”, u6 = “DAMF”,
and u7 = “ARmF”

Moreover, let X = {x1, x2, x3, x4, x5, x6, x7, x8, x9} be a parameter set determined by a decision-maker
such that

x1 = “noise density 10%”, x2 = “noise density 20%”, x3 = “noise density 30%”,
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x4 = “noise density 40%”, x5 = “noise density 50%”, x6 = “noise density 60%”,
x7 = “noise density 70%”, x8 = “noise density 80%”, and x9 = “noise density 90%”.

Further, let bold numbers in a table point out the best scores therein.

We first present the results of the filters in [24] by Structural Similarity (SSIM) [25] for the im-
age Cameraman in Table 1. Hereinafter, let µx(u) corresponds to the SSIM/MSSIM results of the
image/images for filter u and noise density x. Moreover, let νx(u) = 1 − µx(u), for all x ∈ X and
u ∈ U .

Table 1. The SSIM results of the filters for the Cameraman image.

Filters 10% 20% 30% 40% 50% 60% 70% 80% 90%

DBA 0.9938 0.9847 0.9710 0.9520 0.9222 0.8843 0.8283 0.7584 0.6645

MDBUTMF 0.9897 0.9278 0.7945 0.7964 0.8844 0.9158 0.8962 0.8056 0.4451

BPDF 0.9910 0.9783 0.9588 0.9306 0.8934 0.8406 0.7700 0.6665 0.4990

NAFSMF 0.9798 0.9636 0.9484 0.9329 0.9164 0.8954 0.8696 0.8335 0.7288

AWMF 0.9872 0.9839 0.9798 0.9748 0.9667 0.9541 0.9345 0.9015 0.8346

DAMF 0.9960 0.9906 0.9833 0.9749 0.9638 0.9492 0.9293 0.8973 0.8294

ARmF 0.9969 0.9933 0.9885 0.9824 0.9735 0.9600 0.9395 0.9059 0.8376

The application of the soft decision-making method proposed in Section 4 is as follows:

Step 1. Suppose that the success at high noise densities is more important than in the presence
of other densities. In this case, the values in Table 1 can be represented with fpifs-set as
follows:

P1 =
{(

x1
0.1,

{

u1
0.9938;0.0062, u2

0.9897;0.0103, u3
0.9910;0.0090, u4

0.9798;0.0202, u5
0.9872;0.0128, u6

0.9960;0.0040,

u7
0.9969;0.0031

})

,
(

x2
0.2,

{

u1
0.9847;0.0153, u2

0.9278;0.0722, u3
0.9783;0.0217, u4

0.9636;0.0364, u5
0.9839;0.0161,

u6
0.9906;0.0094, u7

0.9933;0.0067
})

,
(

x3
0.3,

{

u1
0.9710;0.0290, u2

0.7945;0.2055, u3
0.9588;0.0412, u4

0.9484;0.0516,

u5
0.9798;0.0202, u6

0.9833;0.0167, u7
0.9885;0.0115

})

,
(

x4
0.4,

{

u1
0.9520;0.0480, u2

0.7964;0.2036, u3
0.9306;0.0694,

u4
0.9329;0.0671, u5

0.9748;0.0252, u6
0.9749;0.0251, u7

0.9824;0.0176
})

,
(

x5
0.5,

{

u1
0.9222;0.0778, u2

0.8844;0.1156,

u3
0.8934;0.1066, u4

0.9164;0.0836, u5
0.9667;0.0333, u6

0.9638;0.0362, u7
0.9735;0.0265

})

,
(

x6
0.6,

{

u1
0.8843;0.1157,

u2
0.9158;0.0842, u3

0.8406;0.1594, u4
0.8954;0.1046, u5

0.9541;0.0459, u6
0.9492;0.0508, u7

0.9600;0.0400
})

,
(

x7
0.7,

{

u1
0.8283;0.1717, u2

0.8962;0.1038, u3
0.7700;0.2300, u4

0.8696;0.1304, u5
0.9345;0.0655, u6

0.9293;0.0707, u7
0.9395;0.0605

})

,

(

x8
0.8,

{

u1
0.7584;0.2416, u2

0.8056;0.1944, u3
0.6665;0.3335, u4

0.8335;0.1665, u5
0.9015;0.0985, u6

0.8973;0.1027,

u7
0.9059;0.0941

})

,
(

x9
0.9,

{

u1
0.6645;0.3355, u2

0.4451;0.5549, u3
0.4990;0.5010, u4

0.7288;0.2712, u5
0.8346;0.1654,

u6
0.8294;0.1706, u7

0.8376;0.1624
})}

Step 2. The values ω(u) are as follows:

ω(u1) = 0.3322, ω(u2) = 0.2790, ω(u3) = 0.2616, ω(u4) = 0.3612, ω(u5) = 0.4248, ω(u6) = 0.4220, andω(u7) = 0.4304

Step 3. The decision set is as follows:

{

DBA0.8580,MDBUTMF0.7812,BPDF0.7560,NAFSMF0.8999,AWMF0.9919,DAMF0.9878,ARmF1
}

The results show that ARmF outperforms the others and the ranking order BPDF ≺ MDBUTMF ≺
DBA ≺ NAFSMF ≺ DAMF ≺ AWMF ≺ ARmF is valid. Moreover, the results confirm the expert’s
view.
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The visual performances of the filters are provided in Fig. 1. The performances of the filters can
not be discriminated in consideration of Fig. 1. Moreover, when a large number of data come into
question, it is impossible to do so. Therefore, the proposed method has an essential role in dealing
with PVA problems.

Fig. 1. [24] SSIM results for “Cameraman” of 512 × 512 with a SPN ratio of 30. (a) Noisy image
0.0550, (b) DBA 0.9710, (c) MDBUTMF 0.7945, (d) BPDF 0.9588, (e) NAFSMF 0.9484, (f) AWMF
0.9798, (g) DAMF 0.9833, and (h) ARmF 0.9885

Secondly, to better establish the success of the proposed method, we present the results of the
filters in [24] by Mean Structural Similarity (MSSIM) for the 20 traditional images in Table 2.

Table 2. The MSSIM results of the filters for the 20 traditional images.

Filters 10% 20% 30% 40% 50% 60% 70% 80% 90%

DBA 0.9796 0.9584 0.9315 0.8968 0.8520 0.7949 0.7213 0.6265 0.4966

MDBUTMF 0.9774 0.9197 0.8117 0.7973 0.8399 0.8410 0.8025 0.7023 0.3566

BPDF 0.9783 0.9536 0.9229 0.8838 0.8323 0.7634 0.6680 0.5096 0.2585

NAFSMF 0.9748 0.9504 0.9248 0.8973 0.8666 0.8320 0.7910 0.7357 0.6190

AWMF 0.9728 0.9622 0.9484 0.9315 0.9098 0.8816 0.8437 0.7904 0.7028

DAMF 0.9854 0.9699 0.9516 0.9303 0.9051 0.8748 0.8368 0.7846 0.6964

ARmF 0.9868 0.9735 0.9581 0.9400 0.9173 0.8880 0.8491 0.7947 0.7056

Similarly, the values in Table 2 can be represented with fpifs-set as follows:

P2 =
{(

x1
0.1,

{

u1
0.9796;0.0204, u2

0.9774;0.0226, u3
0.9783;0.0217, u4

0.9748;0.0252, u5
0.9728;0.0272, u6

0.9854;0.0146,

u7
0.9868;0.0132

})

,
(

x2
0.2,

{

u1
0.9584;0.0416, u2

0.9197;0.0803, u3
0.9536;0.0464, u4

0.9504;0.0496, u5
0.9622;0.0378,

u6
0.9699;0.0301, u7

0.9735;0.0265
})

,
(

x3
0.3,

{

u1
0.9315;0.0685, u2

0.8117;0.1183, u3
0.9229;0.0771, u4

0.9248;0.0752,

u5
0.9484;0.0516, u6

0.9516;0.0484, u7
0.9581;0.0419

})

,
(

x4
0.4,

{

u1
0.8968;0.1032, u2

0.7973;0.2027, u3
0.8838;0.1162,

u4
0.8973;0.1027, u5

0.9315;0.0685, u6
0.9303;0.0697, u7

0.9400;0.0600
})

,

(

x5
0.5,

{

u1
0.8520;0.1480, u

0.8399;0.1601
2 ,
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u3
0.8323;0.1677, u4

0.8666;0.1334, u5
0.9098;0.0902, u6

0.9051;0.0949, u7
0.9173;0.0827

})

,
(

x6
0.6,

{

u1
0.7949;0.02051,

u2
0.8410;0.1590, u3

0.7634;0.2366, u4
0.8320;0.1680, u5

0.8816;0.1184, u6
0.8748;0.1252, u7

0.8880;0.1120
})

,
(

x7
0.7,

{

u1
0.7213;0.2787, u2

0.8025;0.1975, u3
0.6680;0.3320, u4

0.7910;0.2090, u5
0.8437;0.1563, u6

0.8368;0.1632, u7
0.8491;0.1509

})

,

(

x8
0.8,

{

u1
0.6265;0.3735, u2

0.7023;0.2977, u3
0.5096;0.4904, u4

0.7357;0.2643, u5
0.7904;0.2096, u6

0.7846;0.2154

u7
0.7947;0.2053

})

,
(

x9
0.9,

{

u1
0.4966;0.5034, u2

0.3566;0.6434, u3
0.2585;0.7415, u4

0.6190;0.3810, u5
0.7028;0.2972,

u6
0.6964;0.3036, u7

0.7056;0.2944
})}

If we apply the proposed method to the fpifs-set P2, then the decision set is as follows:
{

DBA0.7608,MDBUTMF0.7289,BPDF0.5880,NAFSMF0.8837,AWMF0.9877,DAMF0.9794,ARmF1
}

The results show that ARmF outperforms the others and the following ranking order is valid.

BPDF ≺ MDBUTMF ≺ DBA ≺ NAFSMF ≺ DAMF ≺ AWMF ≺ ARmF

Moreover, performance ranking order of filters obtained with the SSIM results of the filters only for the
Cameraman image is the same therein. Therefore, the proposed method has been successfully applied
to the PVA problem.

6. Conclusion

To deal with uncertainties, the soft set theory has been applied to many theoretical and practical
fields. Recently, soft sets, using other theories, have been prominent. In this work, we defined fuzzy
parameterized intuitionistic fuzzy soft sets (fpifs-sets) by using fuzzy sets, intuitionistic fuzzy sets, and
soft sets. We then proposed a soft decision-making method and successfully applied it to a decision-
making problem. We think that this study will be beneficial for future studies on soft sets and their
applications, particularly in decision-making.
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