New Theory

ISSN: 2149-1402

29 (2019) 111-119 Journal of New Theory http://www.newtheory.org Open Access

On μ sp-Continuous Maps in Topological Spaces

Selvaraj Ganesan¹, Rajamanickam Selva Vinayagam², Balakrishnan Sarathkumar³

Article History

Received: 20.01.2019 Accepted: 25.12.2019 Published: 30.12.2019 Original Article

Abstract — In this paper, we introduce a new class of continuous maps called μ sp-continuous maps and study their properties in topological spaces.

Keywords – Topological space, μsp -closed set, μsp -continuous map, μsp -irresolute map

1. Introduction and Preliminaries

Several authors [1–7] working in the field of general topology have shown more interest in studying the concepts of generalizations of continuous maps. A weak form of continuous maps called g-continuous maps were introduced by Balachandran et al. [8]. As generalizations of closed sets, μ sp-closed sets were introduced and studied by the same author [9]. In this paper, we first introduce μ sp-continuous maps and study their relations with various generalized continuous maps. We also discuss some properties of μ sp-continuous maps. We introduce μ sp-irresolute maps in topological spaces and discuss some of their properties. Various properties and characterizations of such maps are discussed by using μ sp-closure and μ sp-interior under certain conditions. Throughout this paper, (X, τ) , (Y, σ) , and (Z, η) (or X, Y, and Z) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A), and A^C denote the closure of A, the interior of A, and complement of A, respectively.

We recall the following definitions which are useful in the sequel.

Definition 1.1. A subset A of a space (X, τ) is called:

- 1. α -open set [10] if $A \subseteq int(cl(int(A)))$.
- 2. semi-open set [11] if $A \subseteq cl(int(A))$.
- 3. pre-open set [5] if $A \subseteq int(cl(A))$.
- 4. β -open set [1] (= semi-pre-open set [12]) if $A \subseteq cl(int(cl(A)))$.

¹sgsgsgsgsg77@gmail.com (Corresponding Author); ²rsvrrc@gmail.com; ³sarathkumarsk6696@gmail.com

^{1,3}PG & Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu, India

 $^{^2\}mathrm{PG}$ & Research Department of Computer Science, Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu, India

The complements of the above mentioned open sets are called their respective closed sets. The α -closure [10](resp. semi-closure [13], pre-closure [14], semi-pre-closure [12]) of a subset A of X, denoted by $\alpha cl(A)$ (resp. scl(A), pcl(A), spcl(A)) is defined to be the intersection of all α -closed (resp. semi-closed, pre-closed, semi-pre-closed) sets of (X, τ) containing A.

Definition 1.2. A subset A of a space (X, τ) is called:

- 1. a generalized closed (briefy g-closed) set [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of g-closed set is called g-open set.
- 2. a generalized semi-closed (briefly gs-closed) set [16] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of gs-closed set is called gs-open set.
- 3. an α -generalized closed (briefly αg -closed) set [17] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of αg -closed set is called αg -open set.
- 4. a generalized α -closed (briefly $g\alpha$ -closed) set [18] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) . The complement of $g\alpha$ -closed set is called $g\alpha$ -open set.
- 5. a $g^{\#}$ -closed set [19] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open in (X, τ) . The complement of $g^{\#}$ -closed set is called $g^{\#}$ -open set.
- 6. a generalized semi-preclosed (briefly gsp-closed) set [20] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of gsp-closed set is called gsp-open set.
- 7. a \hat{g} -closed set [7] (= ω -closed set [6]) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) . The complement of \hat{g} -closed set is called \hat{g} -open set.
- 8. a *g-closed set [21] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in (X, τ) . The complement of *g-closed set is called *g-open set.
- 9. a #g-semi-closed(briefly #gs-closed) set [22] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is *g-open in (X, τ) . The complement of #gs-closed set is called #gs-open set.
- 10. a $g\alpha^*$ -closed set [18,23] if $\alpha cl(A) \subseteq int(U)$ whenever $A \subseteq U$ and U is α -open in (X, τ) . The complement of $g\alpha^*$ -closed set is called $g\alpha^*$ -open set.
- 11. a μ -closed set [24] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha^*$ -open in (X, τ) . The complement of μ -closed set is called μ -open set.
- 12. a μp -closed set [25] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha^*$ -open in (X, τ) . The complement of μp -closed set is called μp -open set.
- 13. a μ s-closed set [26] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha^*$ -open in (X, τ) . The complement of μ s-closed set is called μ s-open set.
- 14. a μsp -closed set [9] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g\alpha^*$ -open in (X, τ) . The complement of μsp -closed set is called μsp -open set.

Remark 1.3. The collection of all g-closed (resp. gs-closed, αg -closed, $g\alpha$ -closed, $g^{\#}$ -closed, gsp-closed, \hat{g} -closed, #gs-closed, $g\alpha^*$ -closed, μ -closed, μp -closed, μs -closed, μsp -closed) sets is denoted by $gc(\tau)$ (resp. $gsc(\tau)$, $\alpha gc(\tau)$, $g\alpha c(\tau)$, $g^{\#}c(\tau)$, $gspc(\tau)$, $\hat{g}c(\tau)$, $\#gsc(\tau)$, $\#gsc(\tau)$, $g\alpha^*c(\tau)$, $\mu c(\tau)$, $\mu pc(\tau)$, $\mu sc(\tau)$, $\mu sc(\tau)$).

We denote the power set of X by P(X).

Definition 1.4. A map $f : (X, \tau) \to (Y, \sigma)$ is called:

- 1. α -continuous [27] if $f^{-1}(V)$ is a α -closed set of (X, τ) for every closed set V of (Y, σ) .
- 2. semi-continuous [11] if $f^{-1}(V)$ is a semi-closed set of (X, τ) for every closed set V of (Y, σ) .
- 3. pre-continuous [5] if $f^{-1}(V)$ is a pre-closed set of (X, τ) for every closed set V of (Y, σ) .

- 4. β -continuous [1] if $f^{-1}(V)$ is a β -closed set of (X, τ) for every closed set V of (Y, σ) .
- 5. g-continuous [8] if $f^{-1}(V)$ is a g-closed set of (X, τ) for every closed set V of (Y, σ) .
- 6. gs-continuous [2] if $f^{-1}(V)$ is a gs-closed set of (X, τ) for every closed set V of (Y, σ) .
- 7. αg -continuous [28] if $f^{-1}(V)$ is a αg -closed set of (X, τ) for every closed set V of (Y, σ) .
- 8. $g\alpha$ -continuous [28] if $f^{-1}(V)$ is a $g\alpha$ -closed set of (X, τ) for every closed set V of (Y, σ) .
- 9. $g^{\#}$ -continuous [19] if $f^{-1}(V)$ is a $g^{\#}$ -closed set of (X, τ) for every closed set V of (Y, σ) .
- 10. gsp-continuous [20] if $f^{-1}(V)$ is a gsp-closed set of (X, τ) for every closed set V of (Y, σ) .
- 11. \hat{g} -continuous [7] if $f^{-1}(V)$ is a \hat{g} -closed set of (X, τ) for every closed set V of (Y, σ) .
- 12. *g-continuous [21] if $f^{-1}(V)$ is a *g-closed set of (X, τ) for every closed set V of (Y, σ) .
- 13. #g-semi-continuous [22] if $f^{-1}(V)$ is a #g-semi-closed set of (X, τ) for every closed set V of (Y, σ) .
- 14. μ -continuous [24] if $f^{-1}(V)$ is a μ -closed set of (X, τ) for every closed set V of (Y, σ) .
- 15. μp -continuous [25] if $f^{-1}(V)$ is a μp -closed set of (X, τ) for every closed set V of (Y, σ) .
- 16. μ s-continuous [26] if $f^{-1}(V)$ is a μ s-closed set of (X, τ) for every closed set V of (Y, σ) .

Definition 1.5. [9] For a space (X, τ) , the following hold:

- 1. $T_{\mu sp}$ -space if every μ sp-closed set is closed.
- 2. $\mu T_{\mu sp}$ -space if every μ sp-closed set is μ -closed.
- 3. $pT_{\mu sp}$ -space if every μ sp-closed set is pre-closed.
- 4. $spT_{\mu sp}$ -space if every μ sp-closed set is semi-preclosed.
- 5. $\alpha T_{\mu sp}$ -space if every μ sp-closed set is α -closed.
- 6. $g\alpha T_{\mu sp}$ -space if every μ sp-closed set is $g\alpha$ -closed.
- **Result 1.6.** 1. Every closed set (resp. pre-closed set, α -closed set, semi-closed set, β -closed set) is μsp -closed but not conversely [9].
 - 2. Every μ -closed set (resp. μp -closed set, μs -closed set) is $\mu s p$ -closed but not conversely [9].
 - 3. Every $g\alpha$ -closed set (resp. $g^{\#}$ -closed set, \hat{g} -closed set) is μsp -closed but not conversely [9].
 - 4. Every open set is μsp -open set but not conversely.

2. µsp-Continuous Maps and Irresolute Maps

We introduce the following definition.

Definition 2.1. A map $f: (X, \tau) \to (Y, \sigma)$ is called μsp -continuous if $f^{-1}(V)$ is a μsp -closed set of (X, τ) for every closed set V of (Y, σ) .

Proposition 2.2. Every continuous (resp. prec-continuous, α -continuous, semi-continuous, β -continuous) is μsp -continuous but not conversely.

PROOF. The proof follows from Result 1.6 (1).

Example 2.3. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, c\}, X\}$, and $\sigma = \{\phi, \{b\}, X\}$. Then, $\mu spc(\tau) = \{\phi, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $pc(\tau) = \alpha c(\tau) = sc(\tau) = spc(\tau) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Define $f : (X, \tau) \to (Y, \sigma)$ be the identity map. Then, f is μsp -continuous but not continuous (resp. prec-continuous, α -continuous, semi-continuous, semi-preclosed), since $f^{-1}(\{a, c\}) = \{a, c\}$ is not closed (resp. preclosed, α -closed, semi-closed, semi-preclosed).

Proposition 2.4. Every μ -continuous (resp. μp -continuous, μs -continuous) is $\mu s p$ -continuous but not conversely.

PROOF. The proof follows from Result 1.6 (2).

Example 2.5. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$, and $\sigma = \{\phi, \{a, c\}, X\}$. Then, $\mu spc(\tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $\mu c(\tau) = \mu pc(\tau) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$. Define $f : (X, \tau) \to (Y, \sigma)$ be the identity map. Then, f is μsp -continuous but not μ -continuous (resp. μp -continuous), since $f^{-1}(\{b\}) = \{b\}$ is not μ -closed (resp. μp -closed).

Example 2.6. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$, and $\sigma = \{\phi, \{b\}, X\}$. Then, $\mu spc(\tau) = P(X)$ and $\mu sc(\tau) = \{\phi, \{a\}, \{b, c\}, X\}$. Define $f : (X, \tau) \to (Y, \sigma)$ be the identity map. Then, f is μsp -continuous but not μs -continuous, since $f^{-1}(\{a, c\}) = \{a, c\}$ is not μs -closed.

Proposition 2.7. Every $g\alpha$ -continuous (resp. $g^{\#}$ -continuous, \hat{g} -continuous) is μsp -continuous but not conversely.

PROOF. The proof follows from Result 1.6 (3).

Example 2.8. Let X, Y, τ, σ , and f be as in the Example 2.5. Then, $g\alpha c(\tau) = g^{\#}c(\tau) = \hat{g}c(\tau) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$. Then, f is μsp -continuous but not $g\alpha$ -continuous (resp. $g^{\#}$ -continuous, \hat{g} -continuous), since $f^{-1}(\{b\}) = \{b\}$ is not $g\alpha$ -closed (resp. $g^{\#}$ -closed, \hat{g} -closed).

Theorem 2.9. μsp -continuity is independent of g-continuity, αg -continuity, gs-continuity, gsp-continuity, *g-continuity, and #gs-continuity.

PROOF. It follows from the following Example.

Example 2.10.

- 1. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$, and $\sigma = \{\phi, \{c\}, Y\}$. Then, $\mu spc(\tau) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}, gc(\tau) = *gc(\tau) = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$, and $\alpha gc(\tau) = gsc(\tau) = gspc(\tau) = \#gsc(\tau) = \{\phi, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$. Define $f : (X, \tau) \to (Y, \sigma)$ be the identity map. Then, f is μsp -continuous but not g-continuous (resp. αg -continuous, gs-continuous, gsp-continuous, and #gs-continuous), since $f^{-1}(\{a, b\}) = \{a, b\}$ is not g-closed (resp. αg -closed, gs-closed, gsp-closed, *g-closed, and #gs-closed).
- 2. Let X and τ be defined as an Example 2.10 (1). Let $Y = \{a, b, c\}$ and $\sigma = \{\phi, \{b\}, \{a, b\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ be the identity map. Then, f is g-continuous (resp. αg -continuous, gs-continuous, gs-continuous, sg-continuous, sg

Remark 2.11. The composition of two μsp -continuous maps need not be μsp -continuous and this is shown from the following example.

Example 2.12. Let X and τ be as in Example 2.3. Let $Y = Z = \{a, b, c\}, \sigma = \{\phi, \{a\}, Y\},$ and $\eta = \{\phi, \{a, b\}, Z\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a, and f(c) = c. Define $g : (Y, \sigma) \to (Z, \eta)$ by g(a) = b, g(b) = c, and g(c) = a. Clearly, f and g are μsp -continuous but their $g \circ f : (X, \tau) \to (Z, \eta)$ is not μsp -continuous, because $V = \{c\}$ is closed in (Z, η) but $(g \circ f^{-1}(\{c\})) = f^{-1}(g^{-1}(\{c\})) = f^{-1}(\{b\}) = \{a\}$, which is not μsp -closed in (X, τ) .

Theorem 2.13. If $f: (X, \tau) \to (Y, \sigma)$ is μsp -continuous and $g: (Y, \sigma) \to (Z, \eta)$ is continuous, then $g \circ f: (X, \tau) \to (Z, \eta)$ is μsp -continuous.

PROOF. Clearly follows from definitions.

Proposition 2.14. A map $f: (X, \tau) \to (Y, \sigma)$ is μsp -continuous if and only if $f^{-1}(U)$ is μsp -open in (X, τ) for every open set U in (Y, σ) .

PROOF. Let $f: (X, \tau) \to (Y, \sigma)$ be μsp -continuous and U be an open set in (Y, σ) . Then, U^c is closed in (Y, σ) and since f is μsp -continuous, $f^{-1}(U^c)$ is μsp -closed in (X, τ) . But $f^{-1}(U^c) = f^{-1}((U))^c$ and so $f^{-1}(U)$ is μsp -open in (X, τ) .

Conversely, assume that $f^{-1}(U)$ is μsp -open in (X, τ) for each open set U in (Y, σ) . Let F be a closed set in (Y, σ) . Then, F^c is open in (Y, σ) and by assumption, $f^{-1}(F^c)$ is μsp -open in (X, τ) . Since $f^{-1}(F^c) = f^{-1}((F))^c$, we have $f^{-1}(F)$ is closed in (X, τ) and so f is μsp -continuous. We introduce the following definition

Definition 2.15. A map $f: (X, \tau) \to (Y, \sigma)$ is called μsp -irresolute if $f^{-1}(V)$ is a μsp -closed set of (X, τ) for every μsp -closed set V of (Y, σ) .

Theorem 2.16. Every μsp -irresolute map is μsp -continuous but not conversely.

PROOF. Let $f: (X,\tau) \to (Y,\sigma)$ be a μsp -irresolute map. Let V be a closed set of (Y,σ) . Then, by the Result 1.6 (1), V is μsp -closed. Since f is μsp -irresolute, then $f^{-1}(V)$ is a μsp -closed set of (X,τ) . Therefore, f is μsp -continuous.

Example 2.17. Let X, Y, τ, σ , and f be as in the Example 2.12. $\{b\}$ is μsp -closed set of (Y, σ) but $f^{-1}(\{b\}) = \{a\}$ is not a μsp -closed set of (X, τ) . Thus, f is not μsp -irresolute map. However, f is μsp -continuous map.

Theorem 2.18. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be any two maps. Then,

- 1. $g \circ f$ is μsp -continuous if g is continuous and f is μsp -continuous.
- 2. $g \circ f$ is μsp -irresolute if both f and g are μsp -irresolute.
- 3. $g \circ f$ is μsp -continuous if g is μsp -continuous and f is μsp -irresolute.

PROOF. Omitted.

Theorem 2.19. Let $f: (X, \tau) \to (Y, \sigma)$ be an μsp -continuous map. If (X, τ) , the domain of f is an $T_{\mu sp}$ -space, then f is continuous.

PROOF. Let V be a closed set of (Y, σ) . Then, $f^{-1}(V)$ is a μsp -closed set of (X, τ) , since f is μsp -continuous. Since (X, τ) is an $T_{\mu sp}$ -space, then $f^{-1}(V)$ is a closed set of (X, τ) . Therefore, f is continuous.

Theorem 2.20. Let $f: (X, \tau) \to (Y, \sigma)$ be a μsp -continuous map. If (X, τ) , the domain of f is an $\alpha T_{\mu sp}$ -space, then f is α -continuous.

PROOF. Let V be a closed set of (Y, σ) . Then, $f^{-1}(V)$ is a μsp -closed set of (X, τ) , since f is μsp continuous. Since (X, τ) is an $\alpha T_{\mu sp}$ -space, then $f^{-1}(V)$ is a α -closed set of (X, τ) . Therefore, f is α -continuous.

Theorem 2.21. Let $f: (X, \tau) \to (Y, \sigma)$ be a μsp -continuous map. If (X, τ) , the domain of f is an $pT_{\mu sp}$ -space, then f is pre-continuous.

PROOF. Let V be a closed set of (Y, σ) . Then, $f^{-1}(V)$ is a μsp -closed set of (X, τ) , since f is μsp continuous. Since (X, τ) is an $pT_{\mu sp}$ -space, then $f^{-1}(V)$ is a pre-closed set of (X, τ) . Therefore, f is pre-continuous.

Theorem 2.22. Let $f: (X, \tau) \to (Y, \sigma)$ be a μsp -continuous map. If (X, τ) , the domain of f is an $\mu T_{\mu sp}$ -space, then f is μ -continuous.

PROOF. Let V be a closed set of (Y, σ) . Then, $f^{-1}(V)$ is a μsp -closed set of (X, τ) , since f is μsp -continuous. Since (X, τ) is an $\mu T_{\mu sp}$ -space, then $f^{-1}(V)$ is a μ -closed set of (X, τ) . Therefore, f is μ -continuous.

Theorem 2.23. Let $f: (X, \tau) \to (Y, \sigma)$ be a μsp -continuous map. If (X, τ) , the domain of f is an $\mu pT_{\mu sp}$ -space, then f is μp -continuous.

PROOF. Let V be a closed set of (Y, σ) . Then, $f^{-1}(V)$ is a μsp -closed set of (X, τ) , since f is μsp -continuous. Since (X, τ) is an $\mu pT_{\mu sp}$ -space, then $f^{-1}(V)$ is a μp -closed set of (X, τ) . Therefore, f is μp -continuous.

Theorem 2.24. Let $f: (X, \tau) \to (Y, \sigma)$ be a μsp -continuous map. If (X, τ) , the domain of f is an $spT_{\mu sp}$ -space, then f is β -continuous.

PROOF. Let V be a closed set of (Y, σ) . Then $f^{-1}(V)$ is a μsp -closed set of (X, τ) , since f is μsp -continuous. Since (X, τ) is an $spT_{\mu sp}$ -space, then $f^{-1}(V)$ is a β -closed set of (X, τ) . Therefore, f is β -continuous.

Theorem 2.25. Let $f: (X,\tau) \to (Y,\sigma)$ be a μsp -continuous map. If (X,τ) , the domain of f is an $g\alpha T_{\mu sp}$ -space, then f is $g\alpha$ -continuous.

PROOF. Let V be a closed set of (Y, σ) . Then, $f^{-1}(V)$ is a μsp -closed set of (X, τ) , since f is μsp -continuous. Since (X, τ) is an $g\alpha T_{\mu sp}$ -space, then $f^{-1}(V)$ is a $g\alpha$ -closed set of (X, τ) . Therefore, f is $g\alpha$ -continuous.

3. Characterization of μsp -Continuous Maps

In this section we introduce μsp -interior and μsp -closure of a set and obtain the characterization theorem for μsp -continuous maps under certain conditions.

Definition 3.1. For any $A \subseteq X$, $\mu sp\text{-int}(A)$ is defined as the union of all μsp -open sets contained in A, i.e., $\mu sp\text{-int}(A) = \bigcup \{G : G \subseteq A \text{ and } G \text{ is } \mu sp\text{-open} \}.$

Lemma 3.2. For any $A \subseteq X$, $int(A) \subseteq \mu sp\text{-}int(A) \subseteq A$.

PROOF. The proof follows from Result 1.6 (4).

The following two Propositions are easy consequences from definitions.

Proposition 3.3. For any $A \subseteq X$, the following holds.

- 1. $\mu sp\text{-int}(A)$ is the largest μsp -open set contained in A.
- 2. A is μsp -open if and only if μsp -int(A) = A.

Proposition 3.4. For any subsets A and B of (X, τ) , the following holds.

- 1. $\mu sp\text{-}int(A \cap B) = \mu sp\text{-}int(A) \cap \mu sp\text{-}int(B).$
- 2. $\mu sp\text{-}int(A \cup B) \supseteq \mu sp\text{-}int(A) \cup \mu sp\text{-}int(B)$.
- 3. If $A \subseteq B$, then $\mu sp\text{-}int(A) \subseteq \mu sp\text{-}int(B)$.
- 4. $\mu sp\text{-}int(X) = X$ and $\mu sp\text{-}int(\phi) = \phi$.

Definition 3.5. For every set $A \subseteq X$, we define the μsp -closure of A to be the intersection of all μsp -closed sets containing A, i.e., μsp -cl $(A) = \cap \{F : A \subseteq F \in \mu spc(\tau)\}$.

Lemma 3.6. For any $A \subseteq X$, $A \subseteq \mu sp\text{-}cl(A) \subseteq cl(A)$.

PROOF. The proof follows from Result 1.6(1).

Remark 3.7. Both containment relations in Lemma 3.6 may be proper as seen from the following example.

Example 3.8. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\}$. Here $\mu spc(\tau) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$. Let $A = \{a\}$. Then, $\mu sp\text{-}cl(\{a\}) = \{a, b\}$ and so $A \subseteq \mu sp\text{-}cl(A) \subseteq cl(A)$.

The following two Propositions are easy consequences from definitions.

Proposition 3.9. For any $A \subseteq X$, the following holds.

1. $\mu sp-cl(A)$ is the smallest μsp -closed set containing A.

2. A is μsp -closed if and only if μsp -cl(A) = A.

Proposition 3.10. For any two subsets A and B of (X, τ) , the following holds.

- 1. If $A \subseteq B$, then $\mu sp\text{-}cl(A) \subseteq \mu sp\text{-}cl(B)$.
- 2. $\mu sp-cl(A \cap B) \subseteq \mu sp-cl(A) \cap \mu sp-cl(B)$.

Proposition 3.11. Let A be a subset of a space X, then the following are true.

- 1. $(\mu sp\text{-}int(A))^c = \mu sp\text{-}cl(A^c).$
- 2. $\mu sp\text{-}int(A) = (\mu sp\text{-}cl(A^c))^c$.
- 3. $\mu sp\text{-}cl(A) = (\mu sp\text{-}int(A^c))^c$.

PROOF. 1. Clearly follows from definitions.

- 2. Follows by taking complements in (1).
- 3. Follows by replacing A by A^c in (1).

Definition 3.12. Let (X, τ) be a topological space. Let x be a point of X and G be a subset of X. Then, G is called an μsp -neighbourhood of x (briefly, μsp -nbhd of x) in X if there exists an μsp -open set U of X such that $x \in U \subseteq G$.

Proposition 3.13. Let A be a subset of (X, τ) . Then, $x \in \mu sp\text{-}cl(A)$ if and only if for any μsp -nbhd G_x of x in (X, τ) , $A \cap G_x \neq \phi$.

PROOF. Necessity. Assume $x \in \mu sp\text{-}cl(A)$. Suppose that there is an $\mu sp\text{-}nbhd G$ of the point x in (X, τ) such that $G \cap A = \phi$. Since G is $\mu sp\text{-}nbhd$ of x in (X, τ) , by Definition 3.12, there exists an $\mu sp\text{-}open$ set U_x such that $x \in U_x \subseteq G$. Therefore, we have $U_x \cap A = \phi$ and so $A \subseteq (U_x)^c$. Since $(U_x)^c$ is an $\mu sp\text{-}closed$ set containing A, we have by Definition 3.5, $\mu sp\text{-}cl(A) \subseteq (U_x)^c$ and therefore $x \notin \mu sp\text{-}cl(A)$, which is a contradiction. Sufficiency. Assume for each $\mu sp\text{-}nbhd G_x$ of x in (X, τ) , $A \cap G_x \neq \phi$. Suppose that $x \notin \mu sp\text{-}cl(A)$. Then, by Definition 3.5, there exists an $\mu sp\text{-}closed$ set F of (X, τ) such that $A \subseteq F$ and $x \notin F$. Thus, $x \in F^c$ and F^c is $\mu sp\text{-}open$ in (X, τ) and hence F^c is a $\mu sp\text{-}nbhd$ of x in (X, τ) . But $A \cap F^c = \phi$, which is a contradiction.

In the next theorem we explore certain characterizations of μsp -continuous functions.

Theorem 3.14. Let $f: (X, \tau) \to (Y, \sigma)$ be a map from a topological space (X, τ) into a topological space (Y, σ) . Then the following statements are equivalent.

- 1. The function f is μsp -continuous.
- 2. The inverse of each open set is μsp -open.
- 3. For each point x in (X, τ) and each open set V in (Y, σ) with $f(x) \in V$, there is an μsp -open set U in (X, τ) such that $x \in U$, $f(U) \subseteq V$.
- 4. The inverse of each closed set is μsp -closed.
- 5. For each x in (X, τ) , the inverse of every neighbourhood of f(x) is an μsp -nbhd of x.
- 6. For each x in (X, τ) and each neighbourhood N of f(x), there is an μsp -nbhd G of x such that $f(G) \subseteq N$.
- 7. For each subset A of (X, τ) , $f(\mu sp-cl(A)) \subseteq cl(f(A))$.
- 8. For each subset B of (Y, σ) , $\mu sp-cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$.

PROOF. (1) \Leftrightarrow (2). This follows from Proposition 2.14.

(1) \Leftrightarrow (3). Suppose that (3) holds and let V be an open set in (Y, σ) and let $x \in f^{-1}(V)$. Then, $f(x) \in V$ and thus there exists an μsp -open set U_x such that $x \in U_x$ and $f(U_x) \subseteq V$. Now, $x \in U_x \subseteq f^{-1}(V)$ and $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$. By assumption, $f^{-1}(V)$ is μsp -open in (X, τ) and therefore f is μsp -continuous.

Conversely, Suppose that (1) holds and let $f(x) \in V$. Then, $x \in f^{-1}(V) \in \mu sp(\tau)$, since f is μsp -continuous. Let $U = f^{-1}(V)$. Then, $x \in U$ and $f(U) \subseteq V$.

(2) \Leftrightarrow (4). This result follows from the fact if A is a subset of (Y, σ) , then $f^{-1}(A^c) = (f^{-1}(A))^c$.

(2) \Leftrightarrow (5). For x in (X, τ) , let N be a neighbourhood of f(x). Then, there exists an open set U in (Y, σ) such that $f(x) \in U \subseteq N$. Consequently, $f^{-1}(U)$ is an μsp -open set in (X, τ) and $x \in f^{-1}(U) \subseteq f^{-1}(N)$. Thus, $f^{-1}(N)$ is an μsp -nbhd of x.

(5) \Leftrightarrow (6). Let $x \in X$ and let N be a neighbourhood of f(x). Then, by assumption, $G = f^{-1}(N)$ is an μsp -nbhd of x and $f(G) = f(f^{-1}(N)) \subseteq N$.

(6) \Leftrightarrow (3). For x in (X, τ) , let V be an open set containing f(x). Then, V is a neighborhood of f(x). So by assumption, there exists an μsp -nbhd G of x such that $f(G) \subseteq V$. Hence, there exists an μsp -open set U in (X, τ) such that $x \in U \subseteq G$ and so $f(U) \subseteq f(G) \subseteq V$.

 $(7) \Leftrightarrow (4)$. Suppose that (4) holds and let A be a subset of (X, τ) . Since $A \subseteq f^{-1}(A)$, we have $A \subseteq f^{-1}(cl(f(A)))$. Since cl(f(A)) is a closed set in (Y, σ) , by assumption $f^{-1}(cl(f(A)))$ is an μsp -closed set containing A. Consequently, μsp - $cl(A) \subseteq f^{-1}(cl(f(A)))$. Thus, $f(\mu sp$ - $cl(A)) \subseteq f(f^{-1}(cl(f(A)))) \subseteq cl(f(A))$.

Conversely, suppose that (7) holds for any subset A of (X, τ) . Let F be a closed subset of (Y, σ) . Then, by assumption, $f(\mu sp\text{-}cl(f^{-1}(F))) \subseteq cl(f(f^{-1}(F))) \subseteq cl(F) = F$, i.e., $\mu sp\text{-}cl(f^{-1}(F)) \subseteq f^{-1}(F)$ and so $f^{-1}(F)$ is $\mu sp\text{-}closed$.

(7) \Leftrightarrow (8). Suppose that (7) holds and B be any subset of (Y, σ) . Then, replacing A by $f^{-1}(B)$ in (7), we obtain $f(\mu sp\text{-}cl(f^{-1}(B))) \subseteq cl(f(f^{-1}(B))) \subseteq cl(B)$, i.e., $\mu sp\text{-}cl(f^{-1}(B)) \subseteq f^{-1}cl(B)$.

Conversely, suppose that (8) holds. Let B = f(A) where A is a subset of (X, τ) . Then, we have, $\mu sp\text{-}cl(A) \subseteq \mu sp\text{-}cl(f^{-1}(B)) \subseteq f^{-1}(cl(f(A)) \text{ and so } f(\mu sp\text{-}cl(A)) \subseteq cl(f(A)).$

This completes the proof of the theorem.

References

- M. E. Abd El-Monsef, S. N. El-Deeb, R. A. Mahmoud, β-Open Sets and β-Continuous Mapping, Bulletin of the Faculty of Science Assiut University 12 (1983) 77–90.
- [2] R. Devi, K. Balachandran, H. Maki, Semi-Generalized Homeomorphisms and Generalized Semi-Homeomorphisms in Topological Spaces, Indian Journal of Pure and Applied Mathematics 26 (1995) 271–284.
- [3] R. Devi, K. Balachandran, H. Maki, Generalized α-Closed Maps and α-Generalized Closed Maps, Indian Journal of Pure and Applied Mathematics 29 (1998) 37–49.
- [4] J. Dontchev, M. Ganster, On δ -Generalized Closed Sets and $T_{3/4}$ -Spaces, Memoirs of the Faculty of Science Kochi University Series A Mathematics 17 (1996) 15–31.
- [5] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On Precontinuous and Weak Pre Continuous Mappings, Proceedings of the Mathematical and Physical Society of Egypt 53 (1982) 47–53.
- [6] M. Sheik John, A Study on Generalizations of Closed Sets and Continuous Maps in Topological and Bitopological Spaces, PhD dissertation, Bharathiar University (2002) Coimbatore, India.
- [7] M. K. R. S. Veera Kumar, *ĝ-Closed Sets in Topological Spaces*, Bulletin of The Allahabad Mathematical Society 18 (2003) 99–112.
- [8] K. Balachandran. P. Sundaram, H. Maki, On Generalized Continuous Maps in Topological Spaces, Memoirs of the Faculty of Science Kochi University Series A Mathematics 12 (1991) 5–13.

- [9] S. Ganesan, R. Selva Vinayagam, B. Sarathkumar, On μsp-Closed Sets in Topological Spaces, Proceedings International Conference On Emerging Trends and Challenges in Mathematics, December 28, NPR Arts and Science College, Tamil Nadu, (2018) 82–97.
- [10] O. Njastad, On Some Classes of Nearly Open Sets, Pacific Journal of Mathematics 15 (1965) 961–970.
- [11] N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, The American Mathematical Monthly 70 (1963) 36–41.
- [12] D. Andrijevic, Semi-Preopen Sets, Matematički Vesnik 38 (1986) 24–32.
- [13] S. G. Crossley, S. K. Hildebrand, Semi-Closure, Texas Journal of Science 22 (1971) 99–112.
- [14] T. Noiri, H. Maki, J. Umehara, *Generalized Preclosed Functions*, Memoirs of the Faculty of Science Kochi University Series A Mathematics 19 (1998) 13–20.
- [15] N. Levine, Generalized Closed Sets in Topology, Rendiconti del Circolo Matematico di Palermo 19(2) (1970) 89–96.
- [16] S. P. Arya, T. M. Nour, Characterization of S-Normal Spaces, Indian Journal of Pure and Applied Mathematics 21(8) (1990) 717–719.
- [17] H. Maki, R. Devi, K. Balachandran, Associated Topologies of Generalized α-Closed Sets and α-Generalized Closed Sets, Memoirs of the Faculty of Science Kochi University Series A Mathematics 15 (1994) 51–63.
- [18] H. Maki, R. Devi, K. Balachandran, Generalized α-Closed Sets in Topology, Bulletin of Fukuoka University of Education Part III 42 (1993) 13–21.
- [19] M. K. R. S. Veera Kumar, g[#]-Closed Sets in Topological Spaces, Kochi Journal of Mathematics 24 (2003) 1–13.
- [20] J. Dontchev, On Generalizing Semi-Preopen Sets, Memoirs of the Faculty of Science Kochi University Series A Mathematics 16 (1995) 35–48.
- [21] M. K. R. S. Veera Kumar, Between g*-Closed Sets in Topological Spaces, Antarctica Journal of Mathematics 3(1) (2006) 43–65.
- [22] M. K. R. S. Veera Kumar, #g-semi-Closed Sets in Topological Spaces, Antarctica Journal of Mathematics 2(2) (2005) 201–222.
- [23] M. K. R. S. Veera Kumar, Between Closed Sets and g-Closed Sets, Memoirs of the Faculty of Science Kochi University 21 (2000) 1–19.
- [24] M. K. R. S. Veera Kumar, μ-Closed Sets in Topological Spaces, Antarctica Journal of Mathematics 2(1) (2005) 1–18.
- [25] M. K. R. S. Veera Kumar, µp-Closed Sets in Topological Spaces, Antarctica Journal of Mathematics 2(1) (2005) 31–52.
- [26] M. K. R. S. Veera Kumar, μs-Closed Sets in Topological Spaces, Antarctica Journal of Mathematics 2(1) (2005) 91–109.
- [27] A. S. Mashhour, I. A. Hasanein, S. N. El-Deeb, α-Continuous and α-Open Mappings, Acta Mathematica Hungarica 41(3–4) (1983) 213–218.
- [28] R. Devi, K. Balachandran, H. Maki, On Generalized α-Continuous Maps and α-Generalized Continuous Maps, Far East Journal of Mathematical Sciences Special Volume part I (1997) 1–15.