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Abstract − In this paper, we study ordered hyperideals in ordered semihyper-
groups. Also, we study (m,n)-regular ordered semihypergroups in terms of ordered
(m,n)-hyperideals. Furthermore, we obtain some ideal theoretic results in ordered
semihypergroups.

Keywords − Ordered semihypergroup, regular ordered semihypergroup, ordered bi-hyperideal, ordered (m,n)-
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1. Introduction and Basic Definitions

The concept of the hypergroup introduced by the French Mathematician Marty at the 8th Congress
of Scandinavian Mathematicians [1]. The concept of a semihypergroup is a generalization of the
concept of a semigroup. Algebraic hyperstructures are a standard generalization of classical algebraic
structures. In a classical algebraic structure, the composition of two elements is an element, while in
an algebraic hyperstructure, the composition of two elements is a set. Many authors studied different
aspects of semihypergroups, for instance, Davvaz [2], De Salvo et al. [3], Fasino and Freni [4], Gutan [5].
The monograph on application of hyperstructures to various area of study has been written by Corsini
and Leoreanu [6]. Heideri and Davvaz studied ordered hyperstructures [7]. For semihypergroups,
we refer [2, 8, 9]. Hila et al. studied quasi-hyperideals of ordered semihypergroups [10]. Corsini also
studied hypergroup theory [11], [12]. Changphas and Davvaz [13] studied properties of hyperideals in
ordered semihypergroups. Most recently, Basar et al. [14–16] investigated different types of hyperideals
in ordered hypersemigroups, ordered LA-Γ-semigroups and LA-Γ-semihypergroups.

Let H be a nonempty set, then the mapping ◦ : H × H → H is called hyperoperation or join
operation on H, where P ⋆(H) = P (H) \ {0} is the set of all nonempty subsets of H. Let A and B be
two nonempty sets. Then, a hypergroupoid (S, ◦) is called a semihypergroups if for every x, y, z ∈ S,

x ◦ (y ◦ z) = (x ◦ y) ◦ z

i.e., ⋃

u∈y◦z

x ◦ u =
⋃

v∈x◦y

v ◦ z
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A semihypergroup (S, ◦) together with a partial order ” ≤ ” on S that is compatible with semihyper-
group operation such that for all x, y, z ∈ S, we have

x ≤ y ⇒ z ◦ x ≤ z ◦ y

and
x ◦ z ≤ y ◦ z

is called an ordered semihypergroup. For subsets A,B of an ordered semihypergroup S, the product
set A ◦B of the pair (A,B) relative to S is defined as below:

A ◦B = {a ◦ b : a ∈ A, b ∈ B}

and for A ⊆ S, the product set A ◦A relative to S is defined as A2 = A ◦A. For M ⊆ S, (M ] = {s ∈
S | s ≤ m for some m ∈ M}. Also, we write (s] instead of ({s}] for s ∈ S. Let A ⊆ S. Then for a
non-negative integer m, the power of A is defined by Am = A ◦A ◦A ◦A · · · , where A occurs m times.
Note that the power vanishes if m = 0. So, A0 ◦ S = S = S ◦ A0. In what follows we denote ordered
semihypergroup (S,≤) by S unless otherwise specified.

Suppose S is an ordered semihypergroup and I is a nonempty subset of S. Then, I is called an
ordered right (resp. left) hyperideal of S if

(i) I ◦ S ⊆ I(resp. S ◦ I ⊆ I)

(ii) a ∈ I, b ≤ a for b ∈ S ⇒ b ∈ I

Definition 1.1. Suppose B is a sub-semihypergroup (resp. nonempty subset) of an ordered semihy-
pergroup S. Then B is called an (resp. generalized) (m,n)-hyperideal of S if (i) Bm ◦ S ◦ Bn ⊆ B,
and (ii) for b ∈ B, s ∈ S, s ≤ b ⇒ s ∈ B.

Note that in the above Definition 1.1, if we setm = n = 1, then B is called a (generalized) bi-hyperideal
of S.

Definition 1.2. Suppose (S, ◦,≤) is an ordered semihypergroup and m,n are nonnegative integers.
Then S is called (m,n)-regular if for any s ∈ S, there exists x ∈ S such that s ≤ sm ◦ x ◦ sn.
Equivalently: (S, ◦,≤) is (m,n)-regular if s ∈ (sm ◦ S ◦ sn] for all s ∈ S.

2. Preliminary

We begin with the following:

Lemma 2.1. Suppose (S, ◦,≤) is an ordered semihypergroup and s ∈ S. Let m,n be non-negative
integers. Then, the intersection of all ordered (generalized) (m,n)-hyperideals of S containing s, de-
noted by [s]m,n, is an ordered (generalized) (m,n)-hyperideal of S containing s.

Proof. Let {Ai : i ∈ I} be the set of all ordered (generalized) (m,n)-hyperideals of S containing
s. Obviously,

⋂
i∈I Ai is a sub-semihypergroup of S containing s. Let j ∈ I. As,

⋂
i∈I Ai ⊆ Aj , we

have

(
⋂

i∈I

Ai)
m ◦ S ◦ (

⋂

i∈I

Ai)
n ⊆ Am

j ◦ S ◦ An
j

⊆ Aj

Therefore, (
⋂

i∈I Ai)
m ◦ S ◦ (

⋂
i∈I Ai)

n ⊆
⋂

i∈I Ai as
⋂

i∈I Ai is a sub-semihypergroup of S containing
s. Let a ∈

⋂
i∈I Ai and b ∈ S so that b ≤ a. Therefore, b ∈

⋂
i∈I Ai. Hence,

⋂
i∈I Ai is an ordered

(generalized) (m,n)-hyperideal of S containing s.

Theorem 2.2. Suppose (S, ◦,≤) is an ordered semihypergroup and s ∈ S. Then, we have the
following:

(i) [s]m,n = (
⋃m+n

i=1 si ∪ sm ◦ S ◦ sn] for any positive integers m,n
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(ii) [s]m,0 = (
⋃m

i=1 s
i ∪ sm ◦ S] for any positive integer m

(iii) [s]0,n = (
⋃n

i=1 s
i ∪ sn] for any positive integer n

Proof. (i) (
⋃m+n

i=1 si ∪ sm ◦ S ◦ sn] 6= ∅. Let a, b ∈ (
⋃m+n

i=1 si ∪ sm ◦ S ◦ sn] be such that a ≤ x and
b ≤ y for some x, y ∈ (

⋃m+n
i=1 si ∪ sm ◦ S ◦ sn]. If x, y ∈ sm ◦ S ◦ sn or x ∈

⋃m+n
i=1 si, y ∈ sm ◦ S ◦ sn or

x ∈ sm ◦ S ◦ sn, y ∈
⋃m+n

i=1 si, then
x ◦ y ⊆ sm ◦ S ◦ sn

and therefore,

x ◦ y ⊆
m+n⋃

i=1

si ∪ sm ◦ S ◦ sn

It follows that a ◦ b ⊆ (
⋃m+n

i=1 si ∪ sm ◦ S ◦ sn]. Let x, y ∈
⋃m+n

i=1 si. Then, x = sp, y = sq for some
1 ≤ p, q ≤ m+ n.
Now two cases arise: If 1 ≤ p+ q ≤ m+ n, then x ◦ y ⊆

⋃m+n
i=1 si.

If m + n < p + q, then x ◦ y ⊆ sm ◦ S ◦ sn. So, x ◦ y ⊆ (
⋃m+n

i=1 si ∪ sm ◦ S ◦ sn]. This implies that
(
⋃m+n

i=1 si ∪ sm ◦ S ◦ sn] is a sub-semihypergroup of S. Moreover, we have

(

m+n⋃

i=1

si ∪ sm ◦ S]m ◦ S = (

m+n⋃

i=1

si ∪ sm ◦ S]m−1 ◦ (
m+n⋃

i=1

si ∪ sm ◦ S] ◦ S

⊆ (
m+n⋃

i=1

si ∪ sm ◦ S]m−1 ◦ (
m+n⋃

i=1

si ◦ S ∪ sm ◦ S ◦ S]

⊆ (
m+n⋃

i=1

si ∪ sm ◦ S]m−1 ◦ (s ◦ S]

= (

m+n⋃

i=1

si ∪ sm ◦ S]m−2 ◦ (
m+n⋃

i=1

si ∪ sm ◦ S] ◦ (s ◦ S]

⊆ (

m+n⋃

i=1

si ∪ sm ◦ S]m−2 ◦ (
m+n⋃

i=1

si ∪ sm ◦ S ◦ (s ◦ S]]

⊆ (

m+n⋃

i=1

si ∪ sm ◦ S]m−2 ◦ (s2 ◦ S]

...

⊆ (sm ◦ S]

In a similar fashion, we have

S ◦ (
m+n⋃

i=1

si ∪ sm ◦ S ◦ sn]n ⊆ (S ◦ sn]

Therefore,

(
m+n⋃

i=1

si ∪ sm ◦ S ◦ sn]m ◦ S ◦ (
m+n⋃

i=1

si ∪ sm ◦ S ◦ sn]n ⊆ (sm ◦ S ◦ sn]

⊆ (
m+n⋃

i=1

si ∪ sm ◦ S ◦ sn]

So, (
⋃m+n

i=1 si∪sm◦S◦sn] is an (m,n)-hyperideal of S containing s; hence, [s]m,n ⊆ (
⋃m+n

i=1 si∪sm◦S◦sn].
For the reverse inclusion, suppose a ∈ (

⋃m+n
i=1 si ∪ sm ◦ S ◦ sn] is such that a ≤ t for some t ∈

(
⋃m+n

i=1 si ∪ sm ◦ S ◦ sn]. If t = sj for some 1 ≤ j ≤ m + n, then t ∈ [s]m,n, therefore, a ∈ [s]m,n. If
t ∈ sm ◦ S ◦ sn, by

sm ◦ S ◦ sn ⊆ ([s]m,n)
m ◦ S ◦ ([s]m,n)

n ⊆ [s]m,n

then t ∈ [s]m,n; hence, a ∈ [s]m,n. This implies that (
⋃m+n

i=1 si ∪ sm ◦ S ◦ sn] ⊆ [s]m,n. Hence,
[s]m,n = (

⋃m+n
i=1 si ∪ sm ◦ S ◦ sn].

(ii) and (iii) can be proved in a similar fashion.
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Lemma 2.3. Suppose (S, ◦,≤) is an ordered semihypergroup and s ∈ S. Suppose m,n are positive
integers. Then, we have the following:

(i) ([s]m,0)
m ◦ S ⊆ (sm ◦ S]

(ii) S ◦ ([s]0,n)
n ⊆ (S ◦ sn]

(iii) ([s]m,n)
m ◦ S ◦ ([s]m,n)

n ⊆ (sm ◦ S ◦ sn]

Proof. (i)Using Theorem 2.2, we have

([s]m,0)
m ◦ S = (

m+n⋃

i=1

si ∪ sm ◦ S]m ◦ S

= (

m+n⋃

i=1

si ∪ sm ◦ S]m−1 ◦ (
m+n⋃

i=1

si ∪ sm ◦ S] ◦ S

⊆ (

m+n⋃

i=1

si ∪ sm ◦ S]m−1 ◦ (
m+n⋃

i=1

si ◦ S ∪ sm ◦ S ◦ S]

⊆ (

m+n⋃

i=1

si ∪ sm ◦ S]m−1 ◦ (s ◦ S]

...

⊆ (sm ◦ S]

Hence, ([s]m,0)
m ◦ S ⊆ (sm ◦ S]. (ii) can be proved similarly as (i).

(iii) Applying Theorem 2.2, we have

([s]m,n)
m ◦ S = (

m+n⋃

i=1

si ∪ sm ◦ S ◦ sn]m ◦ S

= (

m+n⋃

i=1

si ∪ sm ◦ S ◦ sn]m−1 ◦ (
m+n⋃

i=1

si ∪ sm ◦ S ◦ sn] ◦ S

⊆ (

m+n⋃

i=1

si ∪ sm ◦ S ◦ sn]m−1 ◦ (
m+n⋃

i=1

si ◦ S ∪ sm ◦ S ◦ sn ◦ S]

= (

m+n⋃

i=1

si ∪ sm ◦ S ◦ sn]m−1 ◦ (s ◦ S]

...

= (sm ◦ S]

Therefore, ([s]m,n)
m ◦ S ⊆ (sm ◦ S]. In a similar way, S ◦ ([s]m,n)

n ⊆ (S ◦ sn]. Therefore,

([s]m,n)
m ◦ S ◦ ([s]m,n)

n ⊆ (sm ◦ S] ◦ ([s]m,n)
n

⊆ (sm ◦ (S ◦ ([s]m,n)
n)]

⊆ (sm ◦ (S ◦ sn]]

⊆ (sm ◦ S ◦ sn]

Hence, (iii) holds.

Theorem 2.4. Suppose (S, ◦,≤) is an ordered semihypergroup and m,n are positive integers. Let
R(m,0) and L(0,n) be the set of all ordered (m, 0)-hyperideals and the set of all ordered (0, n)-hyperideals
of S, respectively. Then:

(i) S is (m, 0)-regular if and only if for all R ∈ R(m,0), R = (Rm ◦ S]
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(ii) S is (0, n)-regular if and only if for all L ∈ L(0,n), L = (S ◦ Ln]

Proof. (i) Suppose S is (m, 0)-regular. Then,

∀s ∈ S, s ∈ (sm ◦ S]. (1)

Suppose R ∈ R(m,0). As, R
m ◦S ⊆ R and R = (R], we have (Rm ◦S] ⊆ R. If s ∈ R, by (1), we obtain

s ∈ (sm ◦ S] ⊆ (Rm ◦ S], therefore, R ⊆ (Rm ◦ S]. So, (Rm ◦ S] = R.
Conversely, suppose

∀R ∈ R(m,0), R = (Rm ◦ S] (2)

Suppose s ∈ S. Therefore, [s]m,0 ∈ R(m,0). By (2), we obtain

[s]m,o = (([s]m,0)
m ◦ S]

Applying Lemma 2.3, we obtain
[s]m,o ⊆ (sm ◦ S]

Therefore, s ∈ (sm ◦ S]. Hence, S is (m, 0)-regular.
(ii) It can be proved analogously.

Theorem 2.5. Suppose (S, ◦,≤) is an ordered semihypergroup and m,n are non-negative integers.
Suppose A(m,n) is the set of all ordered (m,n)-hyperideals of S. Then,

S is (m,n)− regular ⇐⇒ ∀A ∈ A(m,n), A = (Am ◦ S ◦ An] (3)

Proof. Consider the following four conditions:
Case(i): m = 0 and n = 0. Then (3) implies
S is (0, 0)-regular ⇐⇒ ∀A ∈ A(0,0), A = S because A(0,0) = {S} and S is (0, 0)-regular.
Case (ii): m = 0 and n 6= 0. Therefore, (3) implies
S is (0, n)-regular⇐⇒ ∀A ∈ A(0,n), A = (S ◦ An]. This follows by Theorem 2.4(ii).
Case (iii): m 6= 0 and n = 0. This can be proved applying Theorem 2.4(i).
Case (iv): m 6= 0 and n 6= 0. Suppose S is (m, n)-regular. Therefore,

∀s ∈ S, s ∈ (sm ◦ S ◦ sn] (4)

Let A ∈ A(m,n). As Am ◦ S ◦ An ⊆ A and A = (A], we obtain (Am ◦ S ◦ An] ⊆ A. Suppose s ∈ A.
Applying (4), s ∈ (sm◦S ◦sn] ⊆ (Am◦S ◦An]. Therefore, A ⊆ (Am◦S ◦An]. Hence, A = (Am◦S ◦An].
Conversely, suppose A = (Am ◦S ◦An] for all A ∈ A(m,n). Suppose s ∈ S. As [s]m,n ∈ A(m,n), we have

[s]m,n = (([s]m,n)
m ◦ S ◦ ([s]m,n)

n]

Applying Lemma 2.3(iii), we obtain [s]m,n ⊆ (sm ◦ S ◦ sn], therefore, s ∈ (sm ◦ S ◦ sn]. Hence, S is
(m,n)-regular.

Theorem 2.6. Suppose (S, ◦,≤) is an ordered semihypergroup and m,n are nonnegative integers.
Suppose R(m,0) and L(0,n) is the set of all (m, 0)-hyperideals and (0, n)-hyperideals of S, respectively.
Then,

S is (m,n)−regular ordered semihypergroup ⇐⇒ ∀R ∈ R(m,0)∀L ∈ L(0,n),

R ∩ L = (Rm ◦ L ∩R ◦ Ln]
(5)

Proof. Consider the following four cases:
Case (i): m = 0 and n = 0. Therefore, (5) implies
S is (0, 0)-regular ⇐⇒ ∀R ∈ R(0,0)∀L ∈ L(0,0), R ∩ L = (L ∩R] because R(0,0) = L(0,0) = {S} and S

is (0, 0)-regular.
Case (ii): m = 0 and n 6= 0. Therefore, (5) implies S is (0, n)-regular ⇐⇒ ∀R ∈ R(0,n)∀L ∈
L(0,n), R ∩ L = (L ∩ R ◦ Ln]. Suppose S is (0, n)-regular. Suppose R ∈ R(0,0) and L ∈ L(0,n). By
Theorem 2.4(ii), L = (S ◦ Ln]. As R ∈ R(0,0), we have R = S, therefore, R ∩ L = L. Therefore,

(L ∩R ◦ Ln] = (L ∩ S ◦ Ln] = ((S ◦ Ln] ∩ S ◦ Ln] = (S ◦ Ln] = L = R ∩ L



Journal of New Theory 29 (2019) 42-48 / On Some Hyperideals in Ordered Semihypergroups 47

Conversely, suppose
∀R ∈ R(0,0)∀L ∈ L(0,n), R ∩ L = (L ∩R ◦ Ln]. (6)

If R ∈ R(0,0), then R = S. If L ∈ L(0,n), S ◦ Ln ⊆ L and L = (L]. Therefore, (6) implies

∀L ∈ L(0,n), L = (S ◦ Ln]

Applying Theorem 2.4(ii), S is (0, n)-regular.
Case (iii): m 6= 0 and n = 0. This can be proved as before.
Case (iv): m 6= 0 and n 6= 0. Suppose that S is (m,n)-regular. Suppose R ∈ R(m,0) and L ∈ L(0,n).
To prove that R ∩ L ⊆ (Rm ◦ L] ∩ (R ◦ Ln], suppose s ∈ R ∩ L. We have

s ∈ (sm ◦ S ◦ sn] ⊆ (sm ◦ L] ⊆ (Rm ◦ L]

and
s ∈ (sm ◦ S ◦ sn] ⊆ (R ◦ sn] ⊆ (R ◦ Ln]

Hence, R ∩ L ⊆ (Rm ◦ L] ∩ (R ◦ Ln]. As

(Rm ◦ L] ⊆ (Rm ◦ S] ⊆ (R] = R

and
(R ◦ Ln] ⊆ (S ◦ Ln] ⊆ (L] = L

This implies that (Rm ◦ L] ∩ (R ◦ Ln] ⊆ R ∩ L, therefore, R ∩ L = (Rm ◦ L] ∩ (R ◦ Ln].
Conversely, suppose

∀R ∈ R(m,0)∀L ∈ L(0,n), R ∩ L = (Rm ◦ L ∩R ◦ Ln] (7)

Suppose R = [s]m,0 and L = S. Applying (7), we obtain [s]m,0 ⊆ (([s]m,0)
m ◦ S]. Applying Lemma

2.3, we obtain
[s]m,0 ⊆ (sm ◦ S] (8)

In a similar fashion, we obtain
[s]0,n ⊆ (S ◦ sn] (9)

As Rm ⊆ R and Ln ⊆ L, by (7), we have

∀R ∈ R(m,0)∀L ∈ L(0,n), R ∩ L ⊆ (R ◦ L]

As (sm ◦ S] ∈ R(m,0) and (S ◦ sn] ∈ L(0,n), we obtain

(sm ◦ S] ∩ (S ◦ sn] ⊆ ((sm ◦ S] ◦ (S ◦ sn]] ⊆ (sm ◦ S ◦ sn]

Applying (8) and (9), we obtain

[s]m,0 ∩ [s]0,n ⊆ (sm ◦ S ◦ sn]

Hence, S is (m,n)-regular.

3. Conclusion

In this article, we investigated ordered hyperideals in ordered semihypergroups. Also, we studied
(m,n)-regular ordered semihypergroups in terms of ordered (m,n)-hyperideals. Moreover, we charac-
terized ordered semihypergroups by some results based on ideal theory.
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