New Theory

ISSN: 2149-1402

29 (2019) 32-41 Journal of New Theory http://www.newtheory.org Open Access

A Note on Rhotrices Ring

Betül Coşgun¹, Emre Çiftlikli², Ummahan Acar³

Article History Received: 29.03.2019 Accepted: 02.11.2019 Published: 30.12.2019 Original Article Abstract — In this paper, we define algebraic operations on 3-dimensional rhotrices over an arbitrary ring R and show that the set of 3-dimensional rhotrices over an arbitrary ring R is a ring according to these operations. We investigate the properties of a rhotrices ring. Furthermore, we characterize the ideals of a rhotrices ring. Also, maximal ideals and prime ideals of a rhotrices ring are investigated. An example of these concepts is presented.

Keywords – Rhotrix, rhotrices ring, ideals of a rhotrices ring

1. Introduction

The concept of the rhotrix is a mathematical structure in the rhombodial form of real numbers defined by Atanasov and Shannon [1], inspired by the concepts of matrix tertion and matrix netrion. In 2003, Ajibade [2] defined an object that lies between 2×2 dimensional matrices and 3×3 dimensional matrices called rhotrix as follows:

Definition 1.1. [2] Let a, b, c, d, e be real numbers. Then a mathematical rhombodial form

$$R = \left\langle \begin{array}{cc} a \\ b & c \\ e \end{array} \right\rangle$$

is called 3 - dimensional rhotrix over real numbers. The entry c in rhotrix R is called the heart of R denoted by h(R).

The set of all 3 - dimensional rhotrices is denoted by \mathcal{R} .

$$\mathcal{R} = \left\{ \left\langle \begin{array}{cc} a & a \\ b & c & d \\ & e \end{array} \right\rangle \middle| a, b, c, d, e \in \mathbb{R} \right\}$$

On operations over \mathcal{R} are as follows:

Let
$$R = \left\langle \begin{array}{cc} a \\ b & c \\ e \end{array} \right\rangle$$
 and $Q = \left\langle \begin{array}{cc} f \\ g & h \\ k \end{array} \right\rangle$ be in \mathcal{R} . Then,
$$R = Q \Leftrightarrow a = f, b = g, c = h, d = j, e = k$$

¹betulcosgun93@gmail.com; ²emreciftlikli7@gmail.com; ³uacar@mu.edu.tr (Corresponding Author)

^{1,3}Department of Mathematics, Muğla Sıtkı Koçman University, Muğla, Turkey

²Department of Mathematics, Mimar Sinan Fine Arts University, Istanbul, Turkey

The addition of two rhotrices R and Q was defined as

$$R + Q = \left\langle \begin{array}{cc} a + f \\ b + g & c + h & d + j \\ e + k \end{array} \right\rangle$$

It is reported in [3] that the set of all 3-dimensional rhotrices is a commutative group w.r.t '+'. This group is denoted by $\langle \mathcal{R}, + \rangle$. The notion (-R) was given as additional inverse of rhotrix R and was defined as follows:

$$-R = \left\langle \begin{array}{cc} -a \\ -b & -c \\ -e \end{array} \right\rangle$$

 $e_{\mathcal{R}} = \left\langle \begin{array}{cc} 0_R & 0_R \\ 0_R & 0_R & 0_R \end{array} \right\rangle$ was given identity element of rhotrices group \mathcal{R}_3 . Let $\alpha \in R$ and $R \in \mathcal{R}$. The 0_R

scalar multiplication of α and R was defined by

$$\alpha R = \left\langle \begin{array}{cc} \alpha a \\ \alpha b & \alpha c & \alpha d \\ \alpha e \end{array} \right\rangle$$

Definition 1.2. Let $R = \left\langle \begin{array}{cc} a \\ b & h(R) \\ e \end{array} \right\rangle$ and $Q = \left\langle \begin{array}{cc} f \\ g & h(Q) \\ k \end{array} \right\rangle$ be in \mathcal{R} . The multiplication of R and Q is as follows:

$$\operatorname{Ro}Q = \left\langle \begin{array}{cc} ah(Q) + fh(R) \\ bh(Q) + gh(R) & h(R)h(Q) \\ eh(Q) + kh(R) \end{array} \right\rangle$$

In [3] it has been shown that the set of all three-dimensional real rhotrices together with the operations addition (+) and multiplication (o) is a commutative ring with identity $I = \left\langle \begin{array}{cc} 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 \end{array} \right\rangle$.

Definition 1.3. Let $R = \left\langle \begin{array}{cc} a \\ b & h(R) \end{array} \right\rangle$ be in \mathcal{R} . If RoQ = I such that there exists $Q \in \mathcal{R}$ then Q is called the inverse of R, denoted by R^{-1} , and

$$Q = R^{-1} = \frac{-1}{h(R)^2} \left\langle \begin{array}{cc} a \\ b & -h(R) \\ e \end{array} \right\rangle \text{ where } h(R) \neq 0.$$

Other multiplication of rhotrices called row-column multiplication was proposed by Sani [4]. This multiplication is as follows:

Definition 1.4. Let
$$R = \left\langle \begin{array}{cc} a \\ b & h(R) \\ e \end{array} \right\rangle$$
 and $Q = \left\langle \begin{array}{cc} f \\ g & h(Q) \\ k \end{array} \right\rangle$ be in \mathcal{R} .

$$R \bullet Q = \left\langle \begin{array}{cc} af + dg \\ bf + eg & h(R)h(Q) \\ bf + ek \end{array} \right\rangle$$

Studies on this subject has progressed quickly after the rhotrix definition. Several authors have obtained interesting results on 3-dimensional rhotrices. See [5] for a comprehensive survey of the literature on these developments.

2. Rhotrices Ring on Arbitrary Ring R

The definition of n-dimensional rhotrix over an arbitrary ring was firstly given by Mohammed in [6] and he gave the set of all rhotrices over an arbitrary ring is a ring together with the operations of rhotrix addition and row-cloum rhotrix multiplication.

In this section, it has been shown that the set of 3-dimensional rhotrices over an arbitrary ring is a ring with the operations rhotrix addition and **"hearty multiplication"** as different from multiplication in Mohammed's work [6]. Also we investigate the basic properties of the rhotrices ring.

Definition 2.1. Let (R, +, .) be a ring with identity. By a 3 - dimensional rhotrix over the ring R, we mean a rhomboidal array defined by

$$A = \left\langle \begin{array}{cc} a \\ b & c \\ e \end{array} \right\rangle$$

where a, b, c, d, e are in the ring R. The entry c of A is called heart of A denoted by h(A).

The set of all 3-dimensional rhotrices over the ring R denoted by $\mathcal{R}_3(R)$,

$$\mathcal{R}_{3}(R) = \left\{ \left\langle \begin{array}{cc} a \\ b & c \\ e \end{array} \right\rangle \middle| a, b, c, d, e \in R \right\}$$

We define two binary operations addition $(\widehat{+})$ and multiplication (\odot) on $\mathcal{R}_3(R)$ by

$$\left\langle \begin{array}{cc} a \\ b \\ e \end{array} \right\rangle \widehat{+} \left\langle \begin{array}{cc} a' \\ b' \\ e' \end{array} \right\rangle = \left\langle \begin{array}{cc} a + a' \\ b + b' \\ e + e' \end{array} \right\rangle = \left\langle \begin{array}{cc} a + a' \\ c + c' \\ e + e' \end{array} \right\rangle$$
(1)

$$\left\langle \begin{array}{cc} a \\ b \\ c \\ e \end{array} \right\rangle \odot \left\langle \begin{array}{cc} b' \\ c' \\ e' \end{array} \right\rangle = \left\langle \begin{array}{cc} a.c' + c.a' \\ b.c' + c.b' \\ e.c' + c.e' \end{array} \right\rangle \left\langle \begin{array}{cc} a.c' + c.a' \\ d.c' + c.d' \end{array} \right\rangle$$
(2)

for all $\begin{pmatrix} a \\ b \\ e \end{pmatrix}$, $\begin{pmatrix} b' \\ b' \\ e' \end{pmatrix} \in \mathcal{R}_3(R)$. It is easy to check that these operations are well defined, since " + " and "." in R are well-defined.

Theorem 2.2. The set of all 3 – dimensional rhotrices $\mathcal{R}_3(R)$ over the ring R is a ring with respect to operations " $\hat{+}$ " and " \odot ".

PROOF. It's easy to see that $(\mathcal{R}_3(R), \widehat{+})$ is a commutative group. Now let's show that the triple $(\mathcal{R}_3(R), \widehat{+}, \odot)$ is a ring.

For all
$$P = \left\langle \begin{array}{cc} b & \begin{array}{c} a \\ c \\ e \end{array} \right\rangle, Q = \left\langle \begin{array}{cc} b' & \begin{array}{c} a' \\ c \\ e' \end{array} \right\rangle, S = \left\langle \begin{array}{c} y & \begin{array}{c} x \\ z \\ u \end{array} \right\rangle \right\rangle \in \mathcal{R}_{3}(R)$$

$$(P \odot Q) \odot S = \left\langle \begin{array}{c} b.c' + c.b' & \begin{array}{c} a.c' + c.a' \\ c.c' \\ e.c' + c.e' \end{array} \right\rangle \left\langle \begin{array}{c} d.c' + c.d' \\ e.c' + c.e' \end{array} \right\rangle \odot \left\langle \begin{array}{c} y & \begin{array}{c} x \\ z \\ u \end{array} \right\rangle$$

$$= \left\langle \begin{array}{c} b.c' . z + c.b' . z + c.c' . y \\ e.c' . z + c.e' . z + c.c' . u \end{array} \right\rangle \left\langle \begin{array}{c} d.c' - c.c' . z \\ d.c' . z + c.c' . u \end{array} \right\rangle$$

$$= P \odot (Q \odot S)$$

The operation " \odot " is an associative in $\mathcal{R}_3(R)$.

$$\begin{split} (P\widehat{+}Q) \odot S &= \left\langle \begin{array}{c} b+b' & \begin{array}{c} a+a' \\ c+c' \\ e+e' \end{array} d+d' \right\rangle \odot \left\langle \begin{array}{c} x \\ y \\ z \\ u \end{array} \right\rangle \\ &= \left\langle \begin{array}{c} (b+b').z + (c+c').y \\ (b+b').z + (c+c').y \\ (c+c').z \\ (e+e').z + (c+c').u \end{array} d+d' \right\rangle z + (c+c').t \right\rangle \\ &= \left\langle \begin{array}{c} b.z + b'.z + c.y + c'.y \\ e.z + c'.z \\ e.z + e'.z + c.u + c'.u \end{array} d.z + d'.z + c.t + c'.t \right\rangle \\ &= \left\langle \begin{array}{c} b.z + c.y \\ e.z + c.u \\ e.z + c.u \end{array} d.z + c.t \right\rangle \widehat{+} \left\langle \begin{array}{c} b'.z + c'.y \\ c'.z \\ e'.z + c'.u \\ e'.z + c'.u \end{array} d'.z + c'.t \right\rangle \\ &= \left(P \odot S \right) \widehat{+} (Q \odot S) \end{split}$$

and similarly it is easy to check that $P \odot (S + Q) = (P \odot S) + (P \odot Q)$ Thus $\langle \mathcal{R}_3(R), +, \odot \rangle$ is a ring.

Furthermore if R is a commutative ring, then $\mathcal{R}_3(R)$ is a commutative ring and if R is a ring with

identity 1_R , then $\mathcal{R}_3(R)$ to be a ring with identity $1_{\mathcal{R}_3(R)} = \left\langle \begin{array}{cc} 0_R & \\ 0_R & 1_R & 0_R \\ & 0_R \end{array} \right\rangle$.

Example 2.3. Let $R = \mathbb{Z}_2$. $\mathcal{R}_3(R)$ is a rhotrix ring and since \mathbb{Z}_2 is a commutative ring, $\mathcal{R}_3(\mathbb{Z}_2)$ is a commutative ring.

The following theorem give us the characteristic of the ring $\mathcal{R}_3(R)$ depends on the characteristic of the ring R.

Theorem 2.4. The characteristic of the ring $\mathcal{R}_3(R)$ is equal to characteristic of the ring R.

PROOF. Let R be a ring with CharR = k. Then the characteristic of the ring $\mathcal{R}_3(R)$ is k. Let $Char\mathcal{R}_3(R) = t$, we show that k = t.

$$Char \mathcal{R}_{3}(R) = t \quad \Rightarrow \quad t. \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right\rangle = 0_{\mathcal{R}_{3}(R)}, \ for \ all \quad \left\langle \begin{array}{c} a \\ b \\ e \end{array} \right\rangle \in \mathcal{R}_{3}(R)$$
$$\Rightarrow \quad t.a = t.b = t.c = t.d = t.e = 0_{R}, \ for \ all \quad a,b,c,d,e \in R$$
$$\Rightarrow \quad k|t$$

$$\begin{aligned} CharR &= k \Rightarrow k.a = 0_R, \text{ for all } a \in R \\ &\Rightarrow \left\langle \begin{array}{cc} k.a \\ k.b \\ k.c \\ k.e \end{array} \right\rangle = \left\langle \begin{array}{cc} 0_R \\ 0_R \\ 0_R \end{array} \right\rangle_R \left\langle \begin{array}{cc} a \\ 0_R \\ 0_R \end{array} \right\rangle, \text{ for all } \left\langle \begin{array}{cc} a \\ b \\ c \\ e \end{array} \right\rangle \in \mathcal{R}_3(R) \\ &\Rightarrow k.\left\langle \begin{array}{cc} b \\ c \\ e \end{array} \right\rangle = 0_{\mathcal{R}_3(R)}, \text{ for all } \left\langle \begin{array}{cc} b \\ c \\ e \end{array} \right\rangle \in \mathcal{R}_3(R) \\ &\Rightarrow t|k \end{aligned}$$

thus k = t.

Note: In the ring $\mathcal{R}_3(R)$, the multiplication of nonzero rhotrices A and B is equal to zero. Hence $\mathcal{R}_3(R)$ has zero divisors and $\mathcal{R}_3(R)$ is not integral domain.

The following theorem characterize idempotent elements and nilpotent elements in a ring $\mathcal{R}_3(R)$. Firstly we recall that definitions of idempotent and nilpotent elements in any ring. Let (R, +, .) be a ring. An element $a \in R$ is called idempotent if $a^2 = a$ and nilpotent if $a^n = 0$ for some positive integer n. **Theorem 2.5.** Let R be a ring with identity 1_R and c be an idempotent element in R. Then $\left\langle \begin{array}{cc} 0_R \\ 0_R & c \\ 0_R \end{array} \right\rangle \text{ is an idempotent element in } \mathcal{R}_3(R).$

PROOF. $\left\langle \begin{array}{cc} 0_R \\ 0_R \\ 0_R \end{array} \right\rangle^2 = \left\langle \begin{array}{cc} 0_R \\ 0_R \\ 0_R \end{array} \right\rangle = \left\langle \begin{array}{cc} 0_R \\ 0_R \\ 0_R \end{array} \right\rangle = \left\langle \begin{array}{cc} 0_R \\ 0_R \\ 0_R \end{array} \right\rangle$. But all idempotents elements

in the ring $\mathcal{R}_3(R)$ is not this form. For example; let R be a ring $L_K(E)$, where $L_K(E)$ is a Leavitt Path Algebra [7] and

E: $e_1 \subset v_1$ Let $A = \left\langle \begin{array}{cc} e_2 \\ 0 & v_1 & 0 \\ 0 & 0 \end{array} \right\rangle$ be in $\mathcal{R}_3(L_K(E))$. Since in a ring $L_K(E)$, $v_1.v_1 = v_1$, $v_1.v_2 = v_2.v_1 = 0$, $e_2 \cdot v_1 = v_2 \cdot e_2 = 0, v_1 \cdot e_2 = e_2 \cdot v_2 = e_2, v_1 \cdot e_1 = e_1 \cdot v_1 = e_1, v_2 \cdot e_1 = e_1 \cdot v_2 = 0$. Therefore,

$$A^{2} = \left\langle \begin{array}{cc} e_{2}.v_{1} + v_{1}.e_{2} \\ 0 & v_{1}.v_{1} & 0 \\ 0 & 0 \end{array} \right\rangle = \left\langle \begin{array}{cc} e_{2} \\ 0 & v_{1} & 0 \\ 0 & 0 \end{array} \right\rangle = A$$

Theorem 2.6. Let R be a ring with identity 1_R and c be a nilpotent element in the ring R. Then $\left\langle \begin{array}{cc} b & c \\ \end{array} \right\rangle$ is a nilpotent element in a ring $\mathcal{R}_3(R)$.

PROOF. We give any $A = \left\langle \begin{array}{c} a \\ b \\ c \\ c \end{array} \right\rangle \in \mathcal{R}_3(R)$ and let be c a nilpotent element in a ring R. Since c is a nilpotent element, there exits $n \in \mathbb{Z}^+$ such that $c^n = 0_R$. Then, $h(A^n) = c^n = 0_R$ and $A^{2n} = A^n \cdot A^n = 0_{\mathcal{R}_3(R)}.$

In particularly; If R is a commutative ring. Then $c^n = 0_R$ implies that $A^{n+1} = 0_{\mathcal{R}_3(R)}$.

3. Ideal of Rhotrix Ring

In this section, ideals of rhotrices ring have been investigated. Furthermore characterizations of maximal ideals and prime ideals have been given.

Theorem 3.1. Let *R* be a ring and *I* be an ideal of *R*. Then, $M = \left\{ \left\langle \begin{array}{c} a \\ b \\ c \\ c \end{array} \right\rangle : c \in I \right\}$ is an ideal in $\mathcal{R}_3(R)$.

PROOF. Since I is an ideal of R, M is a subset of $\mathcal{R}_3(R)$ and $M \neq \emptyset$. We give any $A = \left\langle \begin{array}{cc} a \\ b \\ c \\ d \end{array} \right\rangle$,

 $B = \left\langle \begin{array}{cc} a_1 \\ b_1 & c_1 \\ e_1 \end{array} \right\rangle \in M, \text{ and } C = \left\langle \begin{array}{cc} x \\ y & z \\ u \end{array} \right\rangle \in \mathcal{R}_3(R). \text{ Then } c, \ c_1 \in I \text{ and } z \in R,$ $c + (-c_1), \ z.c, \ c.z \in I$. Hence $A + (-B) \in M$ and $A \odot C, \ C \odot A \in M$. Thus, M is an ideal in $\mathcal{R}_3(R)$.

Theorem 3.2. Let R be a ring and $\mathcal{R}_3(R)$ be a ring of rhotrices.

I is an ideal of
$$R \Leftrightarrow \mathcal{R}_3(I)$$
 is an ideal of $\mathcal{R}_3(R)$

PROOF. (\Rightarrow) Let I be an ideal of R. Then $I \subseteq R$ and $I \neq \emptyset$. Thus $\mathcal{R}_3(I) \subseteq \mathcal{R}_3(R)$ and $\mathcal{R}_3(I) \neq \emptyset$. For any $A \in \mathcal{R}_3(I)$, since $h(A) \in I$, $\mathcal{R}_3(I)$ is an ideal in $\mathcal{R}_3(R)$ from Theorem 3.1.

(⇐) Let $\mathcal{R}_3(I)$ be an ideal of $\mathcal{R}_3(R)$. It is easy check that $I \neq \emptyset$, $I \subseteq R$. We give any $a, b \in I$ and $r \in R$.

i.
$$a \in I \Rightarrow A = \left\langle \begin{array}{c} 0_R \\ 0_R \\ 0_R \end{array} \right\rangle \in \mathcal{R}_3(I) \text{ and } b \in I \Rightarrow B = \left\langle \begin{array}{c} 0_R \\ 0_R \\ 0_R \end{array} \right\rangle \in \mathcal{R}_3(I).$$
 Since $\mathcal{R}_3(I)$ is an ideal of $\mathcal{R}_3(R), A + (-B) = \left\langle \begin{array}{c} 0_R \\ 0_R \\ 0_R \end{array} \right\rangle \in \mathcal{R}_3(I) \text{ and } a - b \in I$

ii.
$$r \in R \Rightarrow C = \left\langle \begin{array}{cc} r \\ 0_R \\ 0_R \end{array} \right\rangle \in \mathcal{R}_3(R)$$
. Since $\mathcal{R}_3(I)$ is a ideal of $\mathcal{R}_3(R)$,
 $A \odot C = \left\langle \begin{array}{cc} a.r \\ 0_R \\ 0_R \end{array} \right\rangle \in \mathcal{R}_3(I)$ and $a.r \in I$

Similarly,

$$C \odot A = \left\langle \begin{array}{cc} r.a \\ 0_R & 0_R \\ 0_R \end{array} \right\rangle \in \mathcal{R}_3(I) \text{ and } r.a \in I$$

Consequently, I is an ideal of R.

Corollary 3.3. Let K be a subset of $\mathcal{R}_3(R)$. K is an ideal in $\mathcal{R}_3(R)$ if and only if there exists an ideal I in R such that $h(A) \in I$, for all $A \in K$.

PROOF. Let $I = \{a \in R : a = h(A) \text{ for all } A \in K\} \subseteq R$.

Since
$$0 \in I$$
 for $0_{\mathcal{R}_3(R)} \in K$, $I \neq \emptyset$. We will show that $a - b$, $a.r$, $r.a \in I$ for all $a, b \in I$ and $r \in R$.
 $a \in I \Rightarrow A = \left\langle \begin{array}{c} 0_R \\ 0_R \\ 0_R \end{array} \right\rangle \in K$, $b \in I \Rightarrow B = \left\langle \begin{array}{c} 0_R \\ 0_R \\ 0_R \end{array} \right\rangle \in K$, and $A + (-B) \in K$.
 K because K is an ideal in $\mathcal{R}_3(R)$ and so $h(A + (-B)) = a - b \in I$.

because $\mathbf{\Lambda}$ is an ideal in $\mathcal{R}_3(R)$ and so $h(A + (-B)) = a - b \in I$. $C = \left\langle \begin{array}{c} 0_R \\ 0_R \\ 0_R \end{array} \right\rangle \in \mathcal{R}_3(R) \text{ for } r \in R \text{ and since } K \text{ is an ideal in } \mathcal{R}_3(R), A \odot C, \ C \odot A \in K$

and so $h(A \odot C) = a.r$, $h(C \odot A) = r.a \in I$. Thus I is an ideal in R. Conversely, let $K = \{A \in \mathcal{R}_3(R) : h(A) \in I\} \subseteq \mathcal{R}_3(R)$.

 $I \neq \emptyset$ then there exists $a \in I$ and so $A \in K$ such that h(A) = a and $K \neq \emptyset$. We give any $A, B \in K$ and $C \in R$. Then $h(A), h(B) \in I$ and since I is an ideal in $R, h(A)-h(B) = h(A\hat{+}(-B)), h(A).h(C) = h(A \odot C), h(C).h(A) = h(C \odot A) \in I$ and so $A\hat{+}(-B), A \odot C, C \odot A \in K$. Thus K is an ideal in $\mathcal{R}_3(R)$.

Theorem 3.4. Let R be a commutative ring with identity and I be an ideal of R. Then

I is a principal ideal of $R \Leftrightarrow \mathcal{R}_3(I)$ is a principal ideal of $\mathcal{R}_3(R)$

PROOF. Let I be a principal ideal of R. Then there exists $a \in R$ such that I = (a).

Let
$$P \in \mathcal{R}_{3}(R)$$
. Since $I = (a), P = \left\langle \begin{array}{cc} a.r_{1} \\ a.r_{2} \\ a.r_{3} \\ a.r_{3} \\ a.r_{4} \end{array} \right\rangle$. Then,

$$P = \left\langle \begin{array}{cc} 0_{R} \\ 0_{R} \\ 0_{R} \end{array} \right\rangle \odot \left\langle \begin{array}{cc} r_{1} \\ r_{2} \\ r_{3} \\ r_{5} \end{array} \right\rangle \in (A)$$
where $A = \left\langle \begin{array}{cc} 0_{R} \\ 0_{R} \\ 0_{R} \end{array} \right\rangle$.

Conversely, let $\mathcal{R}_3(I)$ be a principal ideal in $\mathcal{R}_3(R)$. Then there exist $P \in \mathcal{R}_3(R)$ such that $\mathcal{R}_3(I) = (P)$. We will show that I = (h(P)).

$$a \in I \Rightarrow \left\langle \begin{array}{cc} 0_R \\ 0_R \\ 0_R \end{array} \right\rangle \in \mathcal{R}_3(I) = (P)$$

$$\Rightarrow a = h(P).x , x \in R \Rightarrow a \in (h(P)). \text{ Thus } I \subseteq (h(P)). \text{ Since } \mathcal{R}_3(I) = (P) , h(P) \in I. \text{ Then}$$

$$(h(P)) \subseteq I. \text{ Thus } I = (h(P)).$$

Theorem 3.5. Let R be a ring and I be an ideal of R. Then,

$$\mathcal{R}_3(R/I) = \left\{ \left\langle \begin{array}{cc} a+I \\ b+I & c+I \\ e+I \end{array} \right\rangle : a+I, b+I, c+I, d+I, e+I \in R/I \right\}$$

is a ring with as known operations " $\hat{+}$ " and " \odot " and $\mathcal{R}_3(R)/\mathcal{R}_3(I)$ isomorphic to ring $\mathcal{R}_3(R/I)$.

PROOF. Since R/I is a ring, $\mathcal{R}_3(R/I)$ is a ring. We will show that $\mathcal{R}_3(R/I) \cong \mathcal{R}_3(R)/\mathcal{R}_3(I)$. We define $f : \mathcal{R}_3(R) \to \mathcal{R}_3(R/I)$ by

$$f\left(\left\langle\begin{array}{c}a\\b&c\\e\end{array}\right\rangle\right) = \left\langle\begin{array}{c}a+I\\b+I&c+I\\e+I\end{array}\right\rangle, \text{for any}\left\langle\begin{array}{c}a\\b&c\\e\end{array}\right\rangle \in \mathcal{R}_{3}(R)$$

It is easy to see that f is a well-defined. We give any $A = \left\langle\begin{array}{c}a\\b&c\\e\end{array}\right\rangle \text{ and } B = \left\langle\begin{array}{c}x\\y&z\\u\end{array}\right\rangle \in \mathcal{R}_{3}(R)$

 $\mathcal{R}_3(R)$

$$\begin{split} f(A\widehat{+}B) &= \left\langle \begin{array}{cc} (a+x)+I \\ (b+y)+I & (c+z)+I \\ (e+u)+I \end{array} \right\rangle \\ &= \left\langle \begin{array}{cc} a+I \\ b+I & c+I \\ e+I \end{array} \right\rangle \widehat{+} \left\langle \begin{array}{cc} x+I \\ y+I & z+I \\ u+I \end{array} \right\rangle \\ &= f(A)\widehat{+}f(B) \end{split} \end{split}$$

and

$$f(A \odot B) = f\left(\left\langle \begin{array}{ccc} a.z + c.x \\ b.z + c.y & c.z & d.z + c.t \\ e.z + c.u \end{array}\right\rangle\right)$$
$$= \left\langle \begin{array}{ccc} (b.z + c.y) + I \\ (b.z + c.y) + I \\ (e.z + c.u) + I \end{array} (d.z + c.t) + I \\ e.z + c.u + I \\ (e.z + c.u) + I \end{array}\right\rangle$$
$$= f(A) \odot f(B)$$

Thus, f is a ring homomorphism.

ii.

$$\begin{aligned} Kerf &= \left\{ \left\langle \begin{array}{cc} a \\ b & c \\ e \end{array} \right\rangle \in \mathcal{R}_{3}(R) : f\left(\left\langle \begin{array}{cc} a \\ b & c \\ e \end{array} \right\rangle \right) = 0_{\mathcal{R}_{3}(R/I)} \right\} \\ &= \left\{ \left\langle \left\langle \begin{array}{cc} a \\ b & c \\ e \end{array} \right\rangle : a, b, c, d, e \in I \right\} \\ &= \mathcal{R}_{3}(I) \end{aligned} \end{aligned}$$

iii.

$$Imf = \left\{ f\left(\left\langle \begin{array}{c} a \\ b & c & d \\ e \end{array}\right\rangle\right) : \left\langle \begin{array}{c} a \\ b & c & d \\ e \end{array}\right\rangle \in \mathcal{R}_{3}(R) \right\}$$
$$= \left\{ \left\langle \begin{array}{c} a+I \\ b+I & c+I & d+I \\ e+I \end{array}\right\rangle : a, b, c, d, e \in R \right\}$$
$$= \mathcal{R}_{3}(R/I)$$

Thus, f is a surjective.

Consequently $\mathcal{R}_3(R)/\mathcal{R}_3(I)$ is isomorphic to $\mathcal{R}_3(R/I)$ by the first isomorphism theorem.

Theorem 3.6. Let R be any ring, $\mathcal{R}_3(R)$ be a ring of 3-dimensional rhotrices over R. If $\mathcal{R}_3(M)$ is a maximal ideal of $\mathcal{R}_3(R)$, then M is a maximal ideal of R.

PROOF. By Theorem 3.2, M is an ideal of R. Let J be an ideal of R such that $M \subseteq J \subseteq R$. We will show that M = J or J = R. $M \subseteq J \subseteq R$ implies that $\mathcal{R}_3(M) \subseteq \mathcal{R}_3(J) \subseteq \mathcal{R}_3(R)$. Since $\mathcal{R}_3(M)$ is a maximal ideal in $\mathcal{R}_3(R)$, $\mathcal{R}_3(M) = \mathcal{R}_3(J)$ or $\mathcal{R}_3(J) = \mathcal{R}_3(R)$. Hence M = J or J = R. Thus M is a maximal ideal in R.

The converse of the above theorem is not true, as shown by the following example.

Example 3.7. Let R be a ring and M be an maximal ideal of R and

$$K = \left\{ \left\langle \begin{array}{cc} a \\ b & c \\ e \end{array} \right\rangle \middle| a, b, d, e \in R \text{ and } c \in M \right\}$$

K is an ideal of $\mathcal{R}_3(R)$ and $\mathcal{R}_3(M) \subseteq K \subseteq \mathcal{R}_3(R)$. Thus M is a maximal ideal in R but $\mathcal{R}_3(M)$ is not a maximal ideal in $\mathcal{R}_3(R)$.

Theorem 3.8. Let K be an ideal in $\mathcal{R}_3(R)$ and $M = \{a \in R : a = h(A), A \in K\}$ be a subset of R. If M is a maximal ideal in R then K is a maximal ideal in $\mathcal{R}_3(R)$.

PROOF. Suppose that K is not a maximal ideal in $\mathcal{R}_3(R)$. Then there exists an ideal J in $\mathcal{R}_3(R)$ such that $K \subseteq J \subseteq \mathcal{R}_3(R)$.

Since J is an ideal, there exists an ideal I in R such that $h(A) \in I$ for arbitrary $A \in J$ and since $K \subseteq J, M \subseteq I$ but $I \subsetneq M$ because for every $A \in J, h(A) \notin M$. Therefore there exists an ideal I in R. However, this gives a contradiction since M is a maximal ideal of R.

Theorem 3.9. Let R be a ring and $\mathcal{R}_3(P)$ be a prime ideal of ring $\mathcal{R}_3(R)$. Then P is a prime ideal of R.

PROOF. Since $\mathcal{R}_3(P)$ is an ideal in $\mathcal{R}_3(R)$, *P* is an ideal in *R* by Theorem 3.2.

We give any
$$a, b \in R$$
 and let $aRb \subseteq P$. Then for any $x \in R$, $axb \in P$. Hence,
 $\begin{pmatrix} axb\\ 0_R & 0_R \\ 0_R \end{pmatrix} = A \odot X \odot B \in \mathcal{R}_3(P)$, where $A = \begin{pmatrix} a\\ 0_R & 0_R \\ 0_R \end{pmatrix}$, $X = \begin{pmatrix} 0_R & x\\ 0_R & x\\ 0_R \end{pmatrix}$
and $B = \begin{pmatrix} b\\ 0_R & 0_R \\ 0_R \end{pmatrix}$. Since, $\mathcal{R}_3(P)$ is a prime ideal, either $\begin{pmatrix} a\\ 0_R & 0_R \\ 0_R \end{pmatrix} \in \mathcal{R}_3(P)$ or $\begin{pmatrix} b\\ 0_R & 0_R \\ 0_R \end{pmatrix} \in \mathcal{R}_3(P)$. Hence either $a \in P$ or $b \in P$. Therefore P is a prime ideal in R .

The converse of the above theorem is not true, as shown by the following example.

Example 3.10. Although $3\mathbb{Z}$ is a prime ideal in the ring \mathbb{Z} , $\mathcal{R}_3(3\mathbb{Z})$ is not a prime ideal in the ring $\mathcal{R}_3(\mathbb{Z})$. Indeed,

$$A \odot B = \left\langle \begin{array}{cc} -2 \\ 5 & 3 & 1 \\ 2 \end{array} \right\rangle \odot \left\langle \begin{array}{cc} 4 \\ 1 & 6 & -1 \\ 2 \end{array} \right\rangle$$
$$= \left\langle \begin{array}{cc} 0 \\ 33 & 18 & 3 \\ 18 \end{array} \right\rangle \in \mathcal{R}_{3}(3\mathbb{Z})$$

but $A \notin \mathcal{R}_3(3\mathbb{Z})$ and $B \notin \mathcal{R}_3(3\mathbb{Z})$.

Corollary 3.11. Let K be an ideal in $\mathcal{R}_3(R)$. K is a prime ideal in $\mathcal{R}_3(R)$ if and only if there exists a prime ideal P in R such that $h(A) \in P$, for all $A \in K$.

PROOF. Let K be a prime ideal in $\mathcal{R}_3(R)$. Then by Corollary 3.3, P is an ideal in R. We will show that P is a prime.

 $a.R.b \subseteq P$, for all $a, b \in R$. Then $a.c.b \in P$, for all $c \in R$. By hypothesis, there exists $A \in K$ such that $h(A) = a.c.b \in P$. There exists X, Y, Z rhotrices such that $A = X \odot Y \odot Z$ and h(X) = a, h(Y) = b, h(Z) = c. Since K is a prime ideal in $\mathcal{R}_3(R)$ and $A \in K$, either $X \in K$ or $Z \in K$. Hence either $a \in P$ or $c \in P$. Thus P is a prime ideal in R.

Conversely, let P be a prime ideal in R. Then by Corollary 3.3, K is a ideal in $\mathcal{R}_3(R)$. Let $X \odot \mathcal{R}_3(R) \odot Y \subseteq K$, for any $X, Y \in \mathcal{R}_3(R)$. Then $X \odot C \odot Y \in K$, for all $C \in \mathcal{R}_3(R)$. Hence $h(X \odot C \odot Y) = h(X).h(C).h(Y) \in P$ and since P is a prime ideal in R, either $h(X) \in P$ or $h(Y) \in P$. Thus either $X \in K$ or $Y \in K$ and so K is a prime ideal in $\mathcal{R}_3(R)$.

Example 3.12. Let $R = \mathbb{Z}_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$. Then, $A = (\overline{0}), B = (\overline{2}), C = (\overline{3}), D = \mathbb{Z}_6$ are ideals in \mathbb{Z}_6 . Hence, $K = \mathcal{R}_3(R)$, $K_1 = 0_{\mathcal{R}_3(R)}$, $K_2 = \mathcal{R}_3(B)$, $K_3 = \mathcal{R}_3(C)$,

$$K_4 = \left\langle \begin{array}{cc} R \\ R \\ R \end{array} \right\rangle, \quad K_5 = \left\langle \begin{array}{cc} R \\ R \\ R \end{array} \right\rangle, \text{ and } K_6 = \left\langle \begin{array}{cc} R \\ R \\ R \end{array} \right\rangle$$

are ideals in $\mathcal{R}_3(\mathbb{Z}_6)$. Furthermore since *B* and *C* are prime ideals in \mathbb{Z}_6 , K_5 ve K_6 are prime ideals in $\mathcal{R}_3(\mathbb{Z}_6)$. It is easy to see that K_5 ve K_6 are prime ideals in $\mathcal{R}_3(\mathbb{Z}_6)$.

Furthermore since B and C are maximal ideals in \mathbb{Z}_6 , K_5 ve K_6 are maximal ideals in $\mathcal{R}_3(\mathbb{Z}_6)$. From above graphic, it is easy to see that K_5 ve K_6 are prime ideals in $\mathcal{R}_3(\mathbb{Z}_6)$.

Acknowledgement

This paper has been the granted by the Muğla Sıtkı Koçman University Research Projects Coordination Office through Project Grant Number: 17-223.

References

- K. T. Atanassov, A. G. Shannon, *Matrix-tertions and Matrix-noitrets: Exercises in Mathematical Enrichment*, International Journal of Mathematical Education in Science and Technology 29 (1998) 898–903.
- [2] A. O. Ajibade, The Concept of Rhotrix in Mathematical Enrichment, International Journal of Mathematical Education in Science and Technology 34 (2003) 175–179.
- [3] A. Mohammed, A Remark on The Classifications of Rhotrices as Abstract Structures, International Journal of Physical Sciences 4 (2009) 496–499.
- [4] B. Sani, An Alternative Method for Multiplication of Rhotrices, International Journal of Mathematical Education in Science and Technology 35 (2004) 777–781.
- [5] A. Mohammed, M. Balarabe, First Review of Articles on Rhotrix Theory Since Its Inception, Advances in Linear Algebra and Matrix Theory 4 (2014) 216–224.
- [6] A. Mohammed, The Non-Commutative Full Rhotrix Ring and Its Subring, Science World Journal 13 (2018) 24–36.
- [7] G. Abrams, P. Ara, M. S. Molina, *The Leavitt Path Algebra of a Graph*, Lecture Notes in Mathematics 2191, Springer, 2017.