A Note on Rhotrices Ring

Betül Cosgenn ${ }^{1}$, Emre Çiftlikli ${ }^{2}$, Ummahan Acar ${ }^{3}$

Article History

Received: 29.03.2019
Accepted: 02.11.2019
Published: 30.12.2019
Original Article

Abstract

In this paper, we define algebraic operations on 3-dimensional rhotrices over an arbitrary ring R and show that the set of 3 -dimensional rhotrices over an arbitrary ring R is a ring according to these operations. We investigate the properties of a rhotrices ring. Furthermore, we characterize the ideals of a rhotrices ring. Also, maximal ideals and prime ideals of a rhotrices ring are investigated. An example of these concepts is presented.

Keywords - Rhotrix, rhotrices ring, ideals of a rhotrices ring

1. Introduction

The concept of the rhotrix is a mathematical structure in the rhombodial form of real numbers defined by Atanasov and Shannon [1], inspired by the concepts of matrix tertion and matrix netrion. In 2003, Ajibade [2] defined an object that lies between 2×2 dimensional matrices and 3×3 dimensional matrices called rhotrix as follows:

Definition 1.1. [2] Let a, b, c, d, e be real numbers. Then a mathematical rhombodial form

$$
R=\left\langle\begin{array}{lll}
& a & \\
b & c & d \\
& e &
\end{array}\right\rangle
$$

is called 3 - dimensional rhotrix over real numbers. The entry c in rhotrix R is called the heart of R denoted by $h(R)$.

The set of all 3 -dimensional rhotrices is denoted by \mathcal{R}.

$$
\mathcal{R}=\left\{\left.\left\langle\begin{array}{lll}
& a & \\
b & c & d \\
& e &
\end{array}\right\rangle \right\rvert\, a, b, c, d, e \in \mathbb{R}\right\}
$$

On operations over \mathcal{R} are as follows:
Let $R=\left\langle\begin{array}{lll}a & c & d \\ & e & \end{array}\right\rangle$ and $Q=\left\langle\begin{array}{lll}g & f & \\ g & h & j \\ & k\end{array}\right\rangle$ be in \mathcal{R}. Then,

$$
R=Q \Leftrightarrow a=f, b=g, c=h, d=j, e=k
$$

[^0]The addition of two rhotrices R and Q was defined as

$$
R+Q=\left\langle\begin{array}{lll}
& a+f \\
b+g & c+h \\
& e+k & d+j
\end{array}\right\rangle
$$

It is reported in [3] that the set of all 3-dimensional rhotrices is a commutative group w.r.t ${ }^{\prime}+{ }^{\prime}$. This group is denoted by $\langle\mathcal{R},+\rangle$. The notion $(-R)$ was given as additional inverse of rhotrix R and was defined as follows:

$$
-R=\left\langle\begin{array}{ccc}
& -a & \\
-b & -c & -d \\
-e &
\end{array}\right\rangle
$$

$e_{\mathcal{R}}=\left\langle\begin{array}{ccc} & 0_{R} & \\ 0_{R} & 0_{R} & 0_{R} \\ & 0_{R} & \end{array}\right\rangle$ was given identity element of rhotrices group \mathcal{R}_{3}. Let $\alpha \in R$ and $R \in \mathcal{R}$. The scalar multiplication of α and R was defined by

$$
\alpha R=\left\langle\begin{array}{lll}
& \alpha a & \\
\alpha b & \alpha c & \alpha d \\
& \alpha e &
\end{array}\right\rangle
$$

Definition 1.2. Let $R=\left\langle\begin{array}{ccc}a \\ b & h(R) & d \\ e\end{array}\right\rangle$ and $Q=\left\langle\begin{array}{cc}f \\ g & h(Q) \\ k & k\end{array}\right\rangle$ be in \mathcal{R}. The multiplication of R and Q is as follows:

$$
R \mathrm{o} Q=\left\langle\begin{array}{ccc}
& a h(Q)+f h(R) & \\
b h(Q)+g h(R) & h(R) h(Q) & d h(Q)+j h(R) \\
& e h(Q)+k h(R) &
\end{array}\right.
$$

In [3] it has been shown that the set of all three-dimensional real rhotrices together with the operations addition $(+)$ and multiplication (0) is a commutative ring with identity $I=\left\langle\begin{array}{lll} & 0 \\ 0 & 1 & 0 \\ & 0\end{array}\right\rangle$.

Definition 1.3. Let $R=\left\langle\begin{array}{ccc}a \\ b & h(R) & d \\ e\end{array}\right\rangle$ be in \mathcal{R}. If $R o Q=I$ such that there exists $Q \in \mathcal{R}$ then Q is called the inverse of R, denoted by R^{-1}, and

$$
Q=R^{-1}=\frac{-1}{h(R)^{2}}\left\langle\begin{array}{cc}
a \\
b & -h(R) \\
e & d
\end{array}\right\rangle \text { where } h(R) \neq 0
$$

Other multiplication of rhotrices called row-column multiplication was proposed by Sani [4]. This multiplication is as follows:

Definition 1.4. Let $R=\left\langle\begin{array}{ccc}a \\ b & h(R) & d \\ e\end{array}\right\rangle$ and $Q=\left\langle\begin{array}{cc}f \\ g & h(Q) \\ & k\end{array}\right\rangle$ be in \mathcal{R}.

$$
R \bullet Q=\left\langle\begin{array}{ccc}
& a f+d g \\
b f+e g & h(R) h(Q) & a j+d k \\
& b f+e k
\end{array}\right\rangle
$$

Studies on this subject has progressed quickly after the rhotrix definition. Several authors have obtained interesting results on 3-dimensional rhotrices. See [5] for a comprehensive survey of the literature on these developments.

2. Rhotrices Ring on Arbitrary Ring R

The definition of n -dimensional rhotrix over an arbitrary ring was firstly given by Mohammed in [6] and he gave the set of all rhotrices over an arbitrary ring is a ring together with the operations of rhotrix addition and row-cloum rhotrix multiplication.

In this section, it has been shown that the set of 3-dimensional rhotrices over an arbitrary ring is a ring with the operations rhotrix addition and "hearty multiplication" as different from multiplication in Mohammed's work [6]. Also we investigate the basic properties of the rhotrices ring.

Definition 2.1. Let $(R,+,$.$) be a ring with identity. By a 3$ - dimensional rhotrix over the ring R, we mean a rhomboidal array defined by

$$
A=\left\langle\begin{array}{lll}
& a & \\
b & c & d \\
& e &
\end{array}\right\rangle
$$

where a, b, c, d, e are in the ring R. The entry c of A is called heart of A denoted by $h(A)$.
The set of all 3 -dimensional rhotrices over the ring R denoted by $\mathcal{R}_{3}(R)$,

$$
\mathcal{R}_{3}(R)=\left\{\left.\left\langle\begin{array}{ccc}
& a & \\
b & c & d \\
& e &
\end{array}\right\rangle \right\rvert\, a, b, c, d, e \in R\right\}
$$

We define two binary operations addition $(\widehat{+})$ and multiplication (\odot) on $\mathcal{R}_{3}(R)$ by

$$
\begin{align*}
& \left\langle\begin{array}{ll}
a \\
b & c \\
& d
\end{array}\right\rangle \hat{+}\left\langle\begin{array}{ll}
a^{\prime} \\
b^{\prime} & c^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right\rangle=\left\langle\begin{array}{ll}
a+a^{\prime} \\
e^{\prime}
\end{array} \quad \begin{array}{ll}
& c+c^{\prime} \\
e+e^{\prime}
\end{array} d+d^{\prime}\right\rangle \tag{1}\\
& \left\langle\begin{array}{lll}
a & a \\
b & c & d \\
& e
\end{array}\right\rangle \odot\left\langle\begin{array}{cc}
a^{\prime} & \\
b^{\prime} & c^{\prime} \\
& e^{\prime} \\
& e^{\prime}
\end{array}\right\rangle=\left\langle\begin{array}{cc}
a . c^{\prime}+c . a^{\prime} \\
b . c^{\prime}+c . b^{\prime} & c . c^{\prime} \\
e . c^{\prime}+c . e^{\prime}
\end{array} \quad d . c^{\prime}+c . d^{\prime}\right\rangle \tag{2}
\end{align*}
$$

 since " + " and "." in R are well-defined.

Theorem 2.2. The set of all 3 -dimensional rhotrices $\mathcal{R}_{3}(R)$ over the ring R is a ring with respect to operations "干" and " \odot ".

Proof. It's easy to see that $\left(\mathcal{R}_{3}(R), \widehat{+}\right)$ is a commutative group. Now let's show that the triple $\left(\mathcal{R}_{3}(R), \widehat{+}, \odot\right)$ is a ring.

$$
\begin{aligned}
& \text { For all } P=\left\langle\begin{array}{lll}
a & \\
b & c & d \\
& e &
\end{array}\right\rangle, Q=\left\langle\begin{array}{lll}
a r & \\
b r & c_{r} & d r \\
& e_{r} &
\end{array}\right\rangle, S=\left\langle\begin{array}{lll}
x & x \\
y & z & t \\
u &
\end{array}\right\rangle \in \mathcal{R}_{3}(R)
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle\begin{array}{cc}
& a . c^{\prime} . z+c . a^{\prime} . z+c . c^{\prime} . x \\
b . c^{\prime} . z+c . b^{\prime} . z+c . c^{c^{\prime}} . y & c . c^{\prime} . z \\
& e . c^{\prime} . z+c . e^{\prime} . z+c . c^{\prime} . u
\end{array} d . c^{\prime} . z+c . d^{\prime} . z+c . c^{\prime} . t\right\rangle \\
& =P \odot(Q \odot S)
\end{aligned}
$$

The operation " \odot " is an associative in $\mathcal{R}_{3}(R)$.

$$
\begin{aligned}
& (P \widehat{+} Q) \odot S=\left\langle\begin{array}{ll}
a+a^{\prime} \\
b+b^{\prime} & \\
c+c^{\prime} \\
e+e^{\prime}
\end{array} d+d^{\prime}\right\rangle \odot\left\langle\begin{array}{lll}
x & x \\
y & z & t \\
& u
\end{array}\right\rangle \\
& =\left\langle\begin{array}{lc}
\left(b+b^{\prime}\right) \cdot z+\left(c+c^{\prime}\right) \cdot y & \begin{array}{c}
\left(a+a^{\prime}\right) \cdot z+\left(c+c^{\prime}\right) \cdot x \\
\left(c+c^{\prime}\right) \cdot z \\
\left(e+e^{\prime}\right) \cdot z+\left(c+c^{\prime}\right) \cdot u
\end{array} \\
& \left(d+d^{\prime}\right) \cdot z+\left(c+c^{\prime}\right) \cdot t
\end{array}\right\rangle \\
& =\left\langle\begin{array}{lcl}
& & \\
& a . z+a^{\prime} . z+c . x+c^{\prime} . x \\
& c . z+c . c^{\prime} . z & \\
& e . z+e^{\prime} . z+c . u+c^{\prime} . u
\end{array} d . z+d^{\prime} . z+c . t+c^{\prime} . t\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =(P \odot S) \widehat{+}(Q \odot S)
\end{aligned}
$$

and similarly it is easy to check that $P \odot(S \widehat{+} Q)=(P \odot S) \widehat{+}(P \odot Q)$
Thus $<\mathcal{R}_{3}(R), \widehat{+}, \odot>$ is a ring.
Furthermore if R is a commutative ring, then $\mathcal{R}_{3}(R)$ is a commutative ring and if R is a ring with identity 1_{R}, then $\mathcal{R}_{3}(R)$ to be a ring with identity $1_{\mathcal{R}_{3}(R)}=\left\langle\begin{array}{ccc} & 0_{R} & \\ 0_{R} & 1_{R} & 0_{R} \\ & 0_{R} & \end{array}\right\rangle$.
Example 2.3. Let $R=\mathbb{Z}_{2} . \mathcal{R}_{3}(R)$ is a rhotrix ring and since \mathbb{Z}_{2} is a commutative ring, $\mathcal{R}_{3}\left(\mathbb{Z}_{2}\right)$ is a commutative ring.

The following theorem give us the characteristic of the ring $\mathcal{R}_{3}(R)$ depends on the characteristic of the ring R.

Theorem 2.4. The characteristic of the ring $\mathcal{R}_{3}(R)$ is equal to characteristic of the ring R.
Proof. Let R be a ring with $\operatorname{Char} R=k$. Then the characteristic of the ring $\mathcal{R}_{3}(R)$ is k. Let $\operatorname{Char}_{\mathrm{R}}^{3}(R)=t$, we show that $k=t$.

$$
\begin{aligned}
\operatorname{Char} \mathcal{R}_{3}(R)=t & \Rightarrow t .\left\langle\begin{array}{lll}
b & c & d \\
& e
\end{array}\right\rangle=0_{\mathcal{R}_{3}(R)}, \text { for all }\left\langle\begin{array}{ccc}
a \\
b & c & d \\
& e
\end{array}\right\rangle \in \mathcal{R}_{3}(R) \\
& \Rightarrow t . a=t . b=t . c=t . d=t . e=0_{R}, \text { for all } a, b, c, d, e \in R \\
& \Rightarrow k \mid t
\end{aligned}
$$

$$
\begin{aligned}
\text { Char } R=k & \Rightarrow \quad k . a=0_{R}, \text { for all } a \in R \\
& \Rightarrow\left\langle\begin{array}{lll}
\text { k.a } \\
k . b & \text { k.c } & k . d \\
\text { k.e }
\end{array}\right\rangle=\left\langle\begin{array}{lll}
0_{R} & 0_{R} & 0_{R} \\
& 0_{R}
\end{array}\right\rangle \text {, for all }\left\langle\begin{array}{lll}
& a \\
b & c & d \\
e
\end{array}\right\rangle \in \mathcal{R}_{3}(R) \\
& \Rightarrow k \cdot\left\langle\begin{array}{lll}
b & c & d \\
& e
\end{array}\right\rangle=0_{\mathcal{R}_{3}(R)}, \text { for all }\left\langle\begin{array}{lll}
a & c & \\
e & e
\end{array}\right\rangle \in \mathcal{R}_{3}(R) \\
& \Rightarrow t \mid k
\end{aligned}
$$

thus $k=t$.
Note: In the ring $\mathcal{R}_{3}(R)$, the multiplication of nonzero rhotrices A and B is equal to zero. Hence $\mathcal{R}_{3}(R)$ has zero divisors and $\mathcal{R}_{3}(R)$ is not integral domain.

The following theorem characterize idempotent elements and nilpotent elements in a ring $\mathcal{R}_{3}(R)$. Firstly we recall that definitions of idempotent and nilpotent elements in any ring. Let $(R,+,$.$) be a$ ring. An element $a \in R$ is called idempotent if $a^{2}=a$ and nilpotent if $a^{n}=0$ for some positive integer n.

Theorem 2.5. Let R be a ring with identity 1_{R} and c be an idempotent element in R. Then $\left\langle\begin{array}{ccc} & 0_{R} & \\ 0_{R} & c & 0_{R} \\ & 0_{R} & \end{array}\right\rangle$ is an idempotent element in $\mathcal{R}_{3}(R)$.

Proof. $\left\langle\begin{array}{ccc} & 0_{R} \\ 0_{R} & c & 0_{R} \\ & 0_{R} & 0^{2}\end{array}\right\rangle^{2}=\left\langle\begin{array}{ccc} & 0_{R} & \\ 0_{R} & c^{2} & 0_{R} \\ & 0_{R} & \end{array}\right\rangle=\left\langle\begin{array}{ccc} & 0_{R} & \\ 0_{R} & c & 0_{R} \\ & 0_{R} & \end{array}\right\rangle$. But all idempotents elements in the ring $\mathcal{R}_{3}(R)$ is not this form. For example; let R be a ring $L_{K}(E)$, where $L_{K}(E)$ is a Leavitt Path Algebra [7] and

Let $A=\left\langle\begin{array}{cc}e_{2} & \\ 0 & v_{1} \\ & 0\end{array}\right\rangle$ be in $\mathcal{R}_{3}\left(L_{K}(E)\right)$. Since in a ring $L_{K}(E), v_{1} \cdot v_{1}=v_{1}, v_{1} \cdot v_{2}=v_{2} \cdot v_{1}=0$, $e_{2} \cdot v_{1}=v_{2} \cdot e_{2}=0, v_{1} \cdot e_{2}=e_{2} \cdot v_{2}=e_{2}, v_{1} \cdot e_{1}=e_{1} \cdot v_{1}=e_{1}, v_{2} \cdot e_{1}=e_{1} \cdot v_{2}=0$. Therefore,

$$
A^{2}=\left\langle\begin{array}{ccc}
e_{2} \cdot v_{1}+v_{1} \cdot e_{2} \\
0 & v_{1} \cdot v_{1} & 0 \\
0 & 0 &
\end{array}\right\rangle=\left\langle\begin{array}{ccc}
& e_{2} & \\
0 & v_{1} & 0 \\
& 0 &
\end{array}\right\rangle=A
$$

Theorem 2.6. Let R be a ring with identity 1_{R} and c be a nilpotent element in the ring R. Then $\left\langle\begin{array}{lll}a & \\ b & c & d \\ & e & \end{array}\right\rangle$ is a nilpotent element in a $\operatorname{ring} \mathcal{R}_{3}(R)$.

Proof. We give any $A=\left\langle\begin{array}{lll}a & \\ b & c & d \\ & e & \end{array}\right\rangle \in \mathcal{R}_{3}(R)$ and let be c a nilpotent element in a ring R. Since c is a nilpotent element, there exits $n \in \mathbb{Z}^{+}$such that $c^{n}=0_{R}$. Then, $h\left(A^{n}\right)=c^{n}=0_{R}$ and $A^{2 n}=A^{n} \cdot A^{n}=0_{\mathcal{R}_{3}(R)}$.

In particularly; If R is a commutative ring. Then $c^{n}=0_{R}$ implies that $A^{n+1}=0_{\mathcal{R}_{3}(R)}$.

3. Ideal of Rhotrix Ring

In this section, ideals of rhotrices ring have been investigated. Furthermore characterizations of maximal ideals and prime ideals have been given.
Theorem 3.1. Let R be a ring and I be an ideal of R. Then, $M=\left\{\left\langle\begin{array}{lll}a & \\ b & c & d \\ & e\end{array}\right\rangle: c \in I\right\}$ is an ideal in $\mathcal{R}_{3}(R)$.

Proof. Since I is an ideal of R, M is a subset of $\mathcal{R}_{3}(R)$ and $M \neq \emptyset$. We give any $A=\left\langle\begin{array}{lll} & a & \\ b & c & d \\ & e\end{array}\right\rangle$, $B=\left\langle\begin{array}{lll} & a_{1} & \\ b_{1} & c_{1} & d_{1} \\ & e_{1} & \end{array}\right\rangle \in M$, and $C=\left\langle\begin{array}{lll}x & x \\ y & z & t\end{array}\right\rangle \in \mathcal{R}_{3}(R)$. Then $c, c_{1} \in I$ and $z \in R$, $c+\left(-c_{1}\right)$, $z . c, c . z \in I$. Hence $A \widehat{+}(-B) \in M$ and $A \odot C, C \odot A \in M$. Thus, M is an ideal in $\mathcal{R}_{3}(R)$.

Theorem 3.2. Let R be a ring and $\mathcal{R}_{3}(R)$ be a ring of rhotrices.

$$
I \text { is an ideal of } R \Leftrightarrow \mathcal{R}_{3}(I) \text { is an ideal of } \mathcal{R}_{3}(R)
$$

Proof. (\Rightarrow) Let I be an ideal of R. Then $I \subseteq R$ and $I \neq \emptyset$. Thus $\mathcal{R}_{3}(I) \subseteq \mathcal{R}_{3}(R)$ and $\mathcal{R}_{3}(I) \neq \emptyset$.
For any $A \in \mathcal{R}_{3}(I)$, since $h(A) \in I, \mathcal{R}_{3}(I)$ is an ideal in $\mathcal{R}_{3}(R)$ from Theorem 3.1.
(\Leftrightarrow) Let $\mathcal{R}_{3}(I)$ be an ideal of $\mathcal{R}_{3}(R)$. It is easy check that $I \neq \emptyset, I \subseteq R$.
We give any $a, b \in I$ and $r \in R$.
i. $a \in I \Rightarrow A=\left\langle\begin{array}{ccc} & 0_{R} & \\ 0_{R} & a & 0_{R} \\ & 0_{R} & \end{array}\right\rangle \in \mathcal{R}_{3}(I)$ and $b \in I \Rightarrow B=\left\langle\begin{array}{ccc} & 0_{R} & \\ 0_{R} & b & 0_{R} \\ & 0_{R} & \end{array}\right\rangle \in \mathcal{R}_{3}(I)$. Since $\mathcal{R}_{3}(I)$ is an ideal of $\mathcal{R}_{3}(R), A \widehat{+}(-B)=\left\langle\begin{array}{ccc}0_{R} \\ 0_{R} & a-b & 0_{R} \\ & 0_{R}\end{array}\right\rangle \in \mathcal{R}_{3}(I)$ and $a-b \in I$
ii. $r \in R \Rightarrow C=\left\langle\begin{array}{ccc} & r & \\ 0_{R} & 0_{R} & 0_{R} \\ & 0_{R} & \end{array}\right\rangle \in \mathcal{R}_{3}(R)$. Since $\mathcal{R}_{3}(I)$ is a ideal of $\mathcal{R}_{3}(R)$,
$A \odot C=\left\langle\begin{array}{lll} & a . r & \\ 0_{R} & 0_{R} & 0_{R} \\ & 0_{R} & \end{array}\right\rangle \in \mathcal{R}_{3}(I)$ and a.r $\in I$
Similarly,

$$
C \odot A=\left\langle\begin{array}{lll}
& r . a & \\
0_{R} & 0_{R} & 0_{R} \\
& 0_{R} &
\end{array}\right\rangle \in \mathcal{R}_{3}(I) \text { and } r . a \in I
$$

Consequently, I is an ideal of R.
Corollary 3.3. Let K be a subset of $\mathcal{R}_{3}(R) . K$ is an ideal in $\mathcal{R}_{3}(R)$ if and only if there exists an ideal I in R such that $h(A) \in I$, for all $A \in K$.

Proof. Let $I=\{a \in R: a=h(A)$ for all $A \in K\} \subseteq R$.
Since $0 \in I$ for $0_{\mathcal{R}_{3}(R)} \in K, I \neq \emptyset$. We will show that $a-b$, a.r, r. $a \in I$ for all $a, b \in I$ and $r \in R$.
$a \in I \Rightarrow A=\left\langle\begin{array}{ccc} & 0_{R} & \\ 0_{R} & a & 0_{R} \\ & 0_{R} & \end{array}\right\rangle \in K, b \in I \Rightarrow B=\left\langle\begin{array}{ccc} & 0_{R} & \\ 0_{R} & b & 0_{R} \\ & 0_{R} & \end{array}\right\rangle \in K$, and $A \widehat{+}(-B) \in$
K because K is an ideal in $\mathcal{R}_{3}(R)$ and so $h(A \widehat{+}(-B))=a-b \in I$.
$C=\left\langle\begin{array}{ccc} & 0_{R} & \\ 0_{R} & r & 0_{R} \\ & 0_{R} & \end{array}\right\rangle \in \mathcal{R}_{3}(R)$ for $r \in R$ and since K is an ideal in $\mathcal{R}_{3}(R), A \odot C, C \odot A \in K$ and so $h(A \odot C)=a . r, h(C \odot A)=r . a \in I$. Thus I is an ideal in R.

Conversely, let $K=\left\{A \in \mathcal{R}_{3}(R): h(A) \in I\right\} \subseteq \mathcal{R}_{3}(R)$.
$I \neq \emptyset$ then there exists $a \in I$ and so $A \in K$ such that $h(A)=a$ and $K \neq \emptyset$. We give any $A, B \in K$ and $C \in R$. Then $h(A), h(B) \in I$ and since I is an ideal in $R, h(A)-h(B)=h(A \widehat{+}(-B)), h(A) \cdot h(C)=$ $h(A \odot C), h(C) . h(A)=h(C \odot A) \in I$ and so $A \widehat{+}(-B), A \odot C, C \odot A \in K$. Thus K is an ideal in $\mathcal{R}_{3}(R)$.

Theorem 3.4. Let R be a commutative ring with identity and I be an ideal of R. Then
I is a principal ideal of $R \Leftrightarrow \mathcal{R}_{3}(I)$ is a principal ideal of $\mathcal{R}_{3}(R)$
Proof. Let I be a principal ideal of R. Then there exists $a \in R$ such that $I=(a)$.
Let $P \in \mathcal{R}_{3}(R)$. Since $I=(a), P=\left\langle\begin{array}{lll} & a . r_{1} & \\ a . r_{2} & a . r_{3} & a . r_{4} \\ & a . r_{5}\end{array}\right\rangle$. Then,

$$
P=\left\langle\begin{array}{ccc}
& 0_{R} & \\
0_{R} & a & 0_{R} \\
& 0_{R} &
\end{array}\right\rangle \odot\left\langle\begin{array}{lll}
& r_{1} & \\
r_{2} & r_{3} & r_{4} \\
& r_{5} &
\end{array}\right\rangle \in(A)
$$

where $A=\left\langle\begin{array}{ccc} & 0_{R} & \\ 0_{R} & a & 0_{R} \\ & 0_{R} & \end{array}\right\rangle$.

Conversely, let $\mathcal{R}_{3}(I)$ be a principal ideal in $\mathcal{R}_{3}(R)$. Then there exist $P \in \mathcal{R}_{3}(R)$ such that $\mathcal{R}_{3}(I)=(P)$. We will show that $I=(h(P))$.
$a \in I \Rightarrow\left\langle\begin{array}{ccc} & 0_{R} & \\ 0_{R} & a & 0_{R} \\ & 0_{R} & \end{array}\right\rangle \in \mathcal{R}_{3}(I)=(P)$
$\Rightarrow a=h(P) . x, x \in R \Rightarrow a \in(h(P))$. Thus $I \subseteq(h(P))$. Since $\mathcal{R}_{3}(I)=(P), h(P) \in I$. Then $(h(P)) \subseteq I$. Thus $I=(h(P))$.

Theorem 3.5. Let R be a ring and I be an ideal of R. Then,

$$
\mathcal{R}_{3}(R / I)=\left\{\left\langle\begin{array}{lll}
& a+I \\
b+I & c+I & d+I \\
& e+I &
\end{array}\right\rangle: a+I, b+I, c+I, d+I, e+I \in R / I\right\}
$$

is a ring with as known operations "个" and " \odot " and $\mathcal{R}_{3}(R) / \mathcal{R}_{3}(I)$ isomorphic to ring $\mathcal{R}_{3}(R / I)$.
Proof. Since R / I is a ring, $\mathcal{R}_{3}(R / I)$ is a ring. We will show that $\mathcal{R}_{3}(R / I) \cong \mathcal{R}_{3}(R) / \mathcal{R}_{3}(I)$. We define $f: \mathcal{R}_{3}(R) \rightarrow \mathcal{R}_{3}(R / I)$ by

$$
f\left(\left\langle\begin{array}{lll}
& a & \\
b & c & d \\
& e &
\end{array}\right\rangle\right)=\left\langle\begin{array}{lll}
& a+I & \\
b+I & c+I & d+I \\
& e+I &
\end{array}\right\rangle, \text { for any }\left\langle\begin{array}{lll}
& a \\
b & c & d \\
& e &
\end{array}\right\rangle \in \mathcal{R}_{3}(R)
$$

It is easy to see that f is a well-defined. We give any $A=\left\langle\begin{array}{lll}a & \\ b & c & d \\ & e & \end{array}\right\rangle$ and $B=\left\langle\begin{array}{lll} & x \\ y & z & t \\ & u\end{array}\right\rangle \in$ $\mathcal{R}_{3}(R)$
i.

$$
\begin{aligned}
& f(\hat{A+B})=\left\langle\begin{array}{lll}
& (a+x)+I \\
(b+y)+I & (c+z)+I & (d+t)+I \\
& (e+u)+I
\end{array}\right\rangle \\
& =\left\langle\begin{array}{lll}
& a+I \\
b+I & c+I & d+I \\
e+I &
\end{array}\right\rangle \hat{+}\left\langle\begin{array}{lll}
& x+I \\
y+I & z+I & t+I \\
& u+I &
\end{array}\right\rangle \\
& =f(A) \widehat{+} f(B)
\end{aligned}
$$

and

$$
\begin{aligned}
f(A \odot B) & =f\left(\left\langle\begin{array}{cc}
a . z+c . x \\
b . z+c . y & c . z \\
e . z+c . u & d . z+c . t
\end{array}\right\rangle\right) \\
& =\left\langle\begin{array}{cc}
(b . z+c . y)+I & \begin{array}{c}
(a . z+c . x)+I \\
(c . z)+I
\end{array} \\
(e . z+c . u)+I
\end{array}(d . z+c . t)+I\right\rangle \\
& =f(A) \odot f(B)
\end{aligned}
$$

Thus, f is a ring homomorphism.
ii.

$$
\begin{aligned}
\operatorname{Kerf} & =\left\{\left\langle\begin{array}{lll}
a & a \\
b & c & d \\
& e
\end{array}\right\rangle \in \mathcal{R}_{3}(R): f\left(\left\langle\begin{array}{lll}
a & \\
b & c & d \\
& e
\end{array}\right\rangle\right)=0_{\mathcal{R}_{3}(R / I)}\right\} \\
& =\left\{\left\langle\begin{array}{lll}
a & c & d \\
& e & d
\end{array}\right\rangle: a, b, c, d, e \in I\right\} \\
& =\mathcal{R}_{3}(I)
\end{aligned}
$$

iii.

$$
\left.\left.\begin{array}{rl}
\operatorname{Imf} & =\left\{f\left(\left\langle\begin{array}{lll}
a & \\
b & c & d \\
e
\end{array}\right\rangle\right):\left\langle\begin{array}{ll}
a \\
b & c
\end{array}\right]\right. \\
e & d
\end{array}\right\rangle \in \mathcal{R}_{3}(R)\right\}
$$

Thus, f is a surjective.
Consequently $\mathcal{R}_{3}(R) / \mathcal{R}_{3}(I)$ is isomorphic to $\mathcal{R}_{3}(R / I)$ by the first isomorphism theorem.
Theorem 3.6. Let R be any ring, $\mathcal{R}_{3}(R)$ be a ring of 3 -dimensional rhotrices over R. If $\mathcal{R}_{3}(M)$ is a maximal ideal of $\mathcal{R}_{3}(R)$, then M is a maximal ideal of R.

Proof. By Theorem 3.2, M is an ideal of R. Let J be an ideal of R such that $M \subseteq J \subseteq R$. We will show that $M=J$ or $J=R . M \subseteq J \subseteq R$ implies that $\mathcal{R}_{3}(M) \subseteq \mathcal{R}_{3}(J) \subseteq \mathcal{R}_{3}(R)$. Since $\mathcal{R}_{3}(M)$ is a maximal ideal in $\mathcal{R}_{3}(R), \mathcal{R}_{3}(M)=\mathcal{R}_{3}(J)$ or $\mathcal{R}_{3}(J)=\mathcal{R}_{3}(R)$. Hence $M=J$ or $J=R$. Thus M is a maximal ideal in R.

The converse of the above theorem is not true, as shown by the following example.
Example 3.7. Let R be a ring and M be an maximal ideal of R and

$$
K=\left\{\left.\left\langle\begin{array}{lll}
& a & \\
b & c & d \\
& e &
\end{array}\right\rangle \right\rvert\, a, b, d, e \in R \text { and } c \in M\right\}
$$

K is an ideal of $\mathcal{R}_{3}(R)$ and $\mathcal{R}_{3}(M) \subseteq K \subseteq \mathcal{R}_{3}(R)$. Thus M is a maximal ideal in R but $\mathcal{R}_{3}(M)$ is not a maximal ideal in $\mathcal{R}_{3}(R)$.

Theorem 3.8. Let K be an ideal in $\mathcal{R}_{3}(R)$ and $M=\{a \in R: a=h(A), A \in K\}$ be a subset of R. If M is a maximal ideal in R then K is a maximal ideal in $\mathcal{R}_{3}(R)$.

Proof. Suppose that K is not a maximal ideal in $\mathcal{R}_{3}(R)$. Then there exists an ideal J in $\mathcal{R}_{3}(R)$ such that $K \subseteq J \subseteq \mathcal{R}_{3}(R)$.

Since J is an ideal, there exists an ideal I in R such that $h(A) \in I$ for arbitrary $A \in J$ and since $K \subseteq J, M \subseteq I$ but $I \varsubsetneqq M$ because for every $A \in J, h(A) \notin M$. Therefore there exists an ideal I in R. However, this gives a contradiction since M is a maximal ideal of R.

Theorem 3.9. Let R be a ring and $\mathcal{R}_{3}(P)$ be a prime ideal of $\operatorname{ring} \mathcal{R}_{3}(R)$. Then P is a prime ideal of R.

Proof. Since $\mathcal{R}_{3}(P)$ is an ideal in $\mathcal{R}_{3}(R), P$ is an ideal in R by Theorem 3.2.
We give any $a, b \in R$ and let $a R b \subseteq P$. Then for any $x \in R, a x b \in P$. Hence,
$\left\langle\begin{array}{ccc} & a x b \\ 0_{R} & 0_{R} & 0_{R} \\ & 0_{R} & \end{array}\right\rangle=A \odot X \odot B \in \mathcal{R}_{3}(P)$, where $A=\left\langle\begin{array}{ccc} & a & \\ 0_{R} & 0_{R} & 0_{R} \\ & 0_{R} & \end{array}\right\rangle, X=\left\langle\begin{array}{ccc} & 0_{R} & \\ 0_{R} & x & 0_{R} \\ & 0_{R} & \end{array}\right\rangle$, and $B=\left\langle\begin{array}{ccc} & b & \\ 0_{R} & 0_{R} & 0_{R} \\ & 0_{R} & \end{array}\right\rangle$. Since, $\mathcal{R}_{3}(P)$ is a prime ideal, either $\left\langle\begin{array}{ccc}0_{R} & 0_{R} & 0_{R}\end{array}\right\rangle \in \mathcal{R}_{3}(P)$ or $\left\langle\begin{array}{ccc} & b & \\ 0_{R} & 0_{R} & 0_{R} \\ & 0_{R} & \end{array}\right\rangle \in \mathcal{R}_{3}(P)$. Hence either $a \in P$ or $b \in P$. Therefore P is a prime ideal in R.

The converse of the above theorem is not true, as shown by the following example.

Example 3.10. Although $3 \mathbb{Z}$ is a prime ideal in the ring $\mathbb{Z}, \mathcal{R}_{3}(3 \mathbb{Z})$ is not a prime ideal in the ring $\mathcal{R}_{3}(\mathbb{Z})$. Indeed,

$$
\begin{aligned}
A \odot B & =\left\langle\begin{array}{ccc}
-2 & \\
5 & 3 & 1 \\
& 2 &
\end{array}\right\rangle \odot\left\langle\begin{array}{lll}
4 & 4 \\
1 & 6 & -1 \\
& 2 &
\end{array}\right\rangle \\
& =\left\langle\begin{array}{ccc}
0 & 18 & 3 \\
33 & 18 &
\end{array}\right\rangle \in \mathcal{R}_{3}(3 \mathbb{Z})
\end{aligned}
$$

but $A \notin \mathcal{R}_{3}(3 \mathbb{Z})$ and $B \notin \mathcal{R}_{3}(3 \mathbb{Z})$.
Corollary 3.11. Let K be an ideal in $\mathcal{R}_{3}(R)$. K is a prime ideal in $\mathcal{R}_{3}(R)$ if and only if there exists a prime ideal P in R such that $h(A) \in P$, for all $A \in K$.

Proof. Let K be a prime ideal in $\mathcal{R}_{3}(R)$. Then by Corollary 3.3, P is an ideal in R. We will show that P is a prime.
a.R. $b \subseteq P$, for all $a, b \in R$. Then a.c. $b \in P$, for all $c \in R$. By hypothesis, there exists $A \in K$ such that $h(A)=a . c . b \in P$. There exists X, Y, Z rhotrices such that $A=X \odot Y \odot Z$ and $h(X)=a, h(Y)=b, h(Z)=c$. Since K is a prime ideal in $\mathcal{R}_{3}(R)$ and $A \in K$, either $X \in K$ or $Z \in K$. Hence either $a \in P$ or $c \in P$. Thus P is a prime ideal in R.

Conversely, let P be a prime ideal in R. Then by Corollary $3.3, K$ is a ideal in $\mathcal{R}_{3}(R)$. Let $X \odot \mathcal{R}_{3}(R) \odot Y \subseteq K$, for any $X, Y \in \mathcal{R}_{3}(R)$. Then $X \odot C \odot Y \in K$, for all $C \in \mathcal{R}_{3}(R)$. Hence $h(X \odot C \odot Y)=h(X) \cdot h(C) \cdot h(Y) \in P$ and since P is a prime ideal in R, either $h(X) \in P$ or $h(Y) \in P$. Thus either $X \in K$ or $Y \in K$ and so K is a prime ideal in $\mathcal{R}_{3}(R)$.

Example 3.12. Let $R=\mathbb{Z}_{6}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$. Then, $A=(\overline{0}), B=(\overline{2}), C=(\overline{3}), D=\mathbb{Z}_{6}$ are ideals in \mathbb{Z}_{6}. Hence, $K=\mathcal{R}_{3}(R), \quad K_{1}=0_{\mathcal{R}_{3}(R)}, \quad K_{2}=\mathcal{R}_{3}(B), \quad K_{3}=\mathcal{R}_{3}(C)$,

$$
K_{4}=\left\langle\begin{array}{lll}
& R & \\
R & A & R \\
& R &
\end{array}\right\rangle, K_{5}=\left\langle\begin{array}{ccc}
R & \\
R & B & R \\
R &
\end{array}\right\rangle \text {, and } K_{6}=\left\langle\begin{array}{lll}
& R & \\
R & C & R \\
& R &
\end{array}\right\rangle
$$

are ideals in $\mathcal{R}_{3}\left(\mathbb{Z}_{6}\right)$. Furthermore since B and C are prime ideals in \mathbb{Z}_{6}, K_{5} ve K_{6} are prime ideals in $\mathcal{R}_{3}\left(\mathbb{Z}_{6}\right)$. It is easy to see that K_{5} ve K_{6} are prime ideals in $\mathcal{R}_{3}\left(\mathbb{Z}_{6}\right)$.

Furthermore since B and C are maximal ideals in \mathbb{Z}_{6}, K_{5} ve K_{6} are maximal ideals in $\mathcal{R}_{3}\left(\mathbb{Z}_{6}\right)$. From above graphic, it is easy to see that K_{5} ve K_{6} are prime ideals in $\mathcal{R}_{3}\left(\mathbb{Z}_{6}\right)$.

Acknowledgement

This paper has been the granted by the Muğla Sıtkı Koçman University Research Projects Coordination Office through Project Grant Number: 17-223.

References

[1] K. T. Atanassov, A. G. Shannon, Matrix-tertions and Matrix-noitrets: Exercises in Mathematical Enrichment, International Journal of Mathematical Education in Science and Technology 29 (1998) 898-903.
[2] A. O. Ajibade, The Concept of Rhotrix in Mathematical Enrichment, International Journal of Mathematical Education in Science and Technology 34 (2003) 175-179.
[3] A. Mohammed, A Remark on The Classifications of Rhotrices as Abstract Structures, International Journal of Physical Sciences 4 (2009) 496-499.
[4] B. Sani, An Alternative Method for Multiplication of Rhotrices, International Journal of Mathematical Education in Science and Technology 35 (2004) 777-781.
[5] A. Mohammed, M. Balarabe, First Review of Articles on Rhotrix Theory Since Its Inception, Advances in Linear Algebra and Matrix Theory 4 (2014) 216-224.
[6] A. Mohammed, The Non-Commutative Full Rhotrix Ring and Its Subring, Science World Journal 13 (2018) 24-36.
[7] G. Abrams, P. Ara, M. S. Molina, The Leavitt Path Algebra of a Graph, Lecture Notes in Mathematics 2191, Springer, 2017.

[^0]: ${ }^{1}$ betulcosgun93@gmail.com; ${ }^{2}$ emreciftlikli7@gmail.com; ${ }^{3}$ uacar@mu.edu.tr (Corresponding Author)
 ${ }^{1,3}$ Department of Mathematics, Muğla Sıtkı Koçman University, Muğla, Turkey
 ${ }^{2}$ Department of Mathematics, Mimar Sinan Fine Arts University, Istanbul, Turkey

