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1. Introduction

The Kirchhoff equation is the famous wave equations model which describe the small-amplitude vi-
brations of elastic strings introduced by Kirchhoff [1]. In one dimensional space it take th following

form )
d%u ou Eh (L /6u d%u
- I - - = >
ph8t2+58t {po+2L/0 <8x> d:ﬂ}axQ 0, O<xz<L,t>0)

where u (z,t) is the vertical displacement, E the Young modulus, p the mass density, h the cross-
section area, L the length, pg the initial axial tension, ¢ the resistance modulus, and f and g the

external forces.
In this work, we consider the following nonlinear wave equations of Kirchhoff type

1 2 1
(e

2) Au + f(fg(t — s)Au(s)ds + |ug|P " ug = f1, (2, 1) € Q x [0,00)

2 2
vy + M (Hz‘léuu + HA%U > Av + fg h(t — s)Av(s)ds + |v| T oy = fo, (@,1) € 2 x [0, 00)

u(z,0) = up(x), u(z,0) = u(x), r €

v(z,0) = vo(z), vi(z,0) = vi(z), x €}
gu—00—0,i=0,1,2,...,m—1, x € 90 x (0,00)
v (%

where  is a bounded domain in R" (n = 1,2,3) with a smooth boundary 99, and g,h : Rt —
RT, fi(.,.) : R* = R (i = 1,2) are given functions which will be specified later. Also, A = (—A)™,
m > 1 is a positive integer and p,q > 1 are real numbers.
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When m = 1, the system

= M (|9l + [ F0l2) At [ ot - 5)Au(s)ds + Jusl ™ vs = fiuv)
vy — M (HVuH2 + |Vo|?) Av+ fot h(t — s)Av(s)ds + v T vp = fo(u,v)

was investigated by Wu [2], here the author proved a decay and blow-up of solutions.
When M (s) =1, (2) become the following system

(3)

uy — Au+ f(fg(t — 5)Au(s)ds + |Ut|pi1 up = fi(u,v)
vy — Av + f(f h(t — s)Av(s)ds + |7 vy = fo(u,v)

Many authors studied the existence, blow up, lower bound for the blow up time and decay of solutions
of (3) (see [3-7]).
Ye [8] considered the following system

{ wie — M|Vl + [Vol*) A+ [Py = f1 (u,0)
v — M{|Vull? + [[V0[2) A0+ o7 v = fo (u,0)

with initial-boundary conditions. The author proved the global existence and energy decay results.
Primarily, many authors studied the higher-order wave equation (m > 1) (see [9-18]).

Motivated by the above paper, in this work, we prove the global existence and energy decay of
solutions of the system (1). This work generalises earlier results in the literature which about the
higher order wave equation (m > 1).

The present work is organised as follows: In the next section, we give some assumptions and
lemmas. Section 3 is devoted to proving the global existence and energy decay of solutions.

2. Preliminaries

We use the standard Lebesque space LP(€2) and Sobolev space Hy*(€2). Also we will use the embedding

Hﬁ%LWQ),fOI‘QﬁpS%(n>2m)0r2§p(n§2m),

[[ull, < Cs

1
A2uH

(see [19,20], for details about Sobolev spaces).
Now, we make the following assumptions:
(A1) M(s) is a non-negative function for s > 0 satisfying

mo, >0, v>0 (4)
M(s) =mgy+ as?

(A2) If g and h are defined in C*, for s > 0

{ 9(s) 20, mo — [;" g(s)ds = £> 0,9 (s) <0
h(s) >0, mg— [;°h(s)ds =k > 0,h'(s) <0

concerning the function fi(u,v) and fo(u,v) with a,b > 0,V(u,v) € R?,
r—3 r+1
fulw,v) = (r+ D(afut o~ (w+ov) + bl o]
— r—=3 r+1
folu,v) = (r+)(alutof ™ (w+o) +blo| = [u] = v

We can easily verify that
ufi (u,v) +vfo(u,v) = (r+ 1)F(u,v)

where o
F(u,v) :a\u—i—v\rﬂ +2b |uv| 2 (6)

(A3) r satisfies the following requirements:

If r>1thenn=1,2 (7)
Ifl1<r<3thenn=3
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Lemma 1.1 [4]. There exist two positive constants ¢y and ¢; such that

Co(lul™" +[o™*1) < F(u,0) < Ci(Jul ™ + o]

Lemma 1.2 [4]. Assume that (7) holds. Then there exists 7 > 0 such that

r+1
‘2> 2

1 r+l 1|2 1
o+ ol + 2 |uw]] 2, <7 <€HA2uH +k:”A§v
2

Lemma 1.3 [4]. For g € C! and ¢ € H}(0,T), we have

t p . |
_2/0 /Qg(t — 8)pprdrds = %((QOQS)(t) _/0 g(s)ds ||¢||2) +g(t) ||¢||2 (g o 8)(B)

(go¢xo::/’ (t—s) /ﬁ¢ () duds

Lemma 1.4 [21] (Nakao inequality). Let ¢ (¢) be nonincreasing and nonnegative function defined on
[0,T], T > 1, satisfying

where

¢ () <wo (o (1) — o (t+1)), t€[0,T]
for wy > 0 and a > 0. Then we have, for each t € [0,7],

wg<mwwﬁ, =0
) <

1

(6 (0™ +wylat—1") =, a>0

where [t — 1]7 = max {t — 1,0} and w; = ln< — )

wo—1

3. Global Existence and Energy Decay

In this part, we state and prove the existence and energy decay of the solution for the problem (1).
We define the following functionals

b ©

IN)Ehmenﬂm—Aﬂwﬁ
¢ 112 1
+(mo —/O h(s)ds) HAEU + (g o AZu)(t)

(h<>A2v r—l—l/Fuv

]

L(t) = Lu(t),v(t)) = (mo— /Otg(s)ds)
st [ i i (e i)

+(goAzu)(t) + (ho Azv)(t) — (r + 1)/QF(u,v) dz (9)

1
’AQU

J6) = 000 = 3o~ [ o(s)is) b

/ s)ds)
y+1
2(y+1) )

S
(g<>A2 u)(t) + (h<>A2v)( ) — /QF(u,v) dx (10)

‘A2v

\ —

l\')
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and
E(t) = E(u(t),v(t)) = %(HutH2 + [lvell?) + I (2) (11)

Lemma 2.1. Suppose that (A1), (A2) and (A3) hold. For V¢ > 0
E'(t) = —uw®)|Pt — o)) +/ / (t — s)A2u(s) Azudwds

+/0 /Qh(t—s)Av(s)2Avfd:cd8 <0 (12)

Proof. Multiplying the first equation (1) by w; and the second equation (1) by v, respectively,
integrating over 2, summing up and then using integration by parts, we obtain (12).

Lemma 2.2. Suppose that (A1), (A2) and (A3) hold. Assume further that I;(0) > 0 and

2(r+11)E(0)> T (13)

a1 = (r+ 1o

then
Li(t) >0 (14)

Proof. Since I;(0) > 0, then by continuity there exists a maximal time tax > 0,(possible tyax = T)
such that I;(0) > 0, for ¢ € [0, tyax], which implies that, for ¢ € [0, tmax]
ﬂ

1
’AH}

0 2 iy o= Lo A" - [

[[1)(<<g<>A W)(©) + (ho L)1) + — (1)
N LT X oy Ty
T (((g <>A§u><t> +(ho Abu)()
> =1 <eHAéuHQ+kHA%v‘2> (15)

2(r+1)

where

{ {=mgy— fgg(s)ds

k=mo— fg h(s)ds
Using (15), (11), and (12), we have

1|2 1
bl + 1]t

2
R

2T (o) (16)

r+1
‘2> 2

By (4), (16), (13), and from the (A2), we get

12 1
(r—i—l)/F(u,v) dx < (r+1)n <€HA2UH +kHA§U

< (r+1)n< :_+11 ) < ‘A%L‘ +/<;HA21)‘>
= aefabal s xade])
< [(mo—/otg(s)ds> HAEUH + <mo—/0th(s)ds> HA%U 2] (17)
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Thus,
L = <m0—/0tg(s)ds> Az + <m0—/0th(s)ds> 4zl

H(go Azu)(t) + (ho A2v)(t) — (r + 1) /Q F(u,v) d

> 0

By repeating these steps and using the fact that

m—1

lim (r+1)n (2(7" i 1)E(t)>T <ap <1

t—tmax r—1

This implies that we can take t.c = T.

Lemma 2.3. Under the conditions of Lemma 2.2. Then there exists 0 < n; < 1 such that

(r—l—l)/gF(u,v) dv < (1—-m) [(mo—/otg(s)ds> e

+ <m0 - /Ot h(s)ds> HA%U

] (18)

where n1 =1 — ;.
Proof. Thanks to (17), we obtain

2 2
(7“—{—1)/ F(u,v) dr < o [ZHA%UH —|—kHA%v ]
Q
Let iy = 1 —n; and using (A2), we obtain (18).

We are now ready to state and prove our main result.
Teorem 2.1. Assume that (A1), (A2) and (A3) hold. Let ug,vo € HJ*(2) N H>™(Q) and uy, v, €
H{' () be given which satisfy I;(0) > 0 and (13). Then the solution of problem (1) is global and

bounded. Also, if

2 o0 o0

mo > Dt 2m max {/ g(s)ds,/ h(s)ds} (19)
2m 0 0

then we have the following decay estimates for V¢ > 0,
() ifp=qg=1

E(t) < E(0)e @t
(ii) if max {p,q} > 1

B(t) < |BO) "5 1 gy max (2 Iy - )

2
] max{p,q)—1

where 91-01(mo, a,7y) and 92— 02(mg, v, 7y, E(0)) are positive constants.
Proof. (Global existence) Firstly, we prove T" = oo, it is sufficient to show that

2 2
el + ol * + € [ A3u]| "+ k|| ko

is bounded independently of ¢. We use (11) and (15), we obtain

B(0) > B(t) = g(ul? + o) + T(0)
r—1
2(r+1)

1 2 2
> 5(”“:5” + [|lvel|?) +

1 2 1 2
<e HAauH +k HAav >
Therefore

2 2 1|2 12
el + el + ]| A%u]|” + k | %o " < a2B(0)
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where as = {2, 2(7,7:1-11) } Therefore, we have the global existence result.
(Energy decay) We will derive the energy decay of the problem (1), by the Lemma 2.1, we get
d p+1 / 1 12
CB() = a5 + 505 0 Ab)(t) — L(r) [ 41
1 1 1 12
~ 5+ (0 ABu)(r) — Sh) || A%
< 0
By integrating over [¢, ¢t + 1], we obtain
t+1 . 1o
EO)-E0+Y) = [ Ju@llids—5 [ (o Atus)ds
t t
1 [t L2 t+1 ™
+§/t g(s) || 4] ds+/t loe(8) |7 ds
1 t+1 , 1 1 t+1 1 2
——/ (h <>A2v)(s)ds—|——/ h(s) ‘A2v ds
2 i 2 Ji
= DI (1) + D (1) (20)
where
DY) = [ u @ ds = 3 /7 0 ARu)(s)ds + 5 [ g(s HAwH I
DY E) = [ )T ds — § [ (o Abu)(s)ds + 3 [ h(s) || b as
By virtue of (21) and Hélder inequality, we observe that
t+1 t+1
/ / Jug|? dxdt—i—/ / lug|? dadt < e (Q) D1 ()% + c2(Q2) Da(t)? (22)
Q

—1 —1
where ¢1(Q2) = vol(Q)ﬁ and () = vol(Q)gﬁ. By the mean value theorem, there exist ¢; €
[t, t+ ﬂ and g € [t—i— %, t+ 1] such that

()| + [loe(t)[|* < 4er (Q)Dr () + e2(2) Da(t)? (23)
Now, multiplying the first equation (1) by w and the second equation (1) by wv,respectively, and

integrating over ) X [t1,to],using integration by parts, Holder inequality and adding them together,
we have

to
/t Znut e |+Z||vt ot + / (el + lor]?)d
1 1
to
—/ /(|ut|p1 wpu + o)1 vpw)dadt
t1 Q
t2 1 1
+/ (g0 A2u)(t) + (ho A2v)(t)dt
t1

+ /tt /Q /0 "ol — ) AR (O[Abu(s) — Abu(t)dsdrdt

+ /t /Q /0 h(t — s)Abo)(1)[Abu(s) — Adv(t)|dsdadt (24)



Journal of New Theory 29 (2019) 89-100 / Energy decay of solutions for a system of higher-order Kirchhoff ... 95

Since

/Q/otg(t — 8)AZu(t)[ATu(s) — AZu(t)ldsdz = %/Otg (t—s) (HA%u(t)HQ + HA%U(S)H2> ds
1

and

hence (24) takes the form

[2)
2 2
| Zuut e H+ZH% et + [ Gl + el
1 t1

to
—/ /(quel”‘lutqu |ve|9™ vpv)dadt
t1 Q

+1/2(90A2u)() (ho A2v)(t)dt

w5 [ ot |atuo dsar
+§/:2/0 h(t —s)

Let’s estimate for the first two terms on the right side of the equation (25). By Young inequality, (23)
and (16)

‘Aiv(t)H dsdt. (25)

Jue(t) | u(t:)| < Co/Aer Dy + 4ezDa(6)? sup || A3u(s)|

t1<s<t2

N[

C, <§(: i 1)> V4c1 Dy ()2 4 4e3 Do (t)2 sup  E(s)

(r—1) t1<s<t
2(r+1)
“ (m 0

> VA1 D1 (6)2 + dea Dy (1)2E(t)2 (26)

and

o) Ilv(t)] < C. (;i%g) * A D10 + dea Da(02E(t)} 27)
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where 8 = min {/, k}. Also from the Holder inequality (16)

to t2
[ ol s < [ o lul
t1 Q t1

< o : Jue(t) 2, | 4%
<o *3) s B [l
< C(?E +3> E(t)3 Dy (1) (28)
and similarly
/: / (| vpvdadt| < C, ( 6((7;2))) E(t)% Da(t)" (29)

Employing Young’s inequality for convolution (||¢ x|, < ||, [|¥[[; with % = %—i—%—l, 1<q,rs),
(25) the last two terms of inequality

to 1 9 t2 t2 2
/ /g(t—s)HAﬁu(s)H dsdt < / g(t)dt/ 2 (t)H dt
t1 0 t1 t1
12 1 2
< (mo—e)/ Aau(t)H dt
t1
to 1 2
< mo—p) [ [[atue) e (30)
t1
and
to t 1 2 to to 1 2
/ /h(t—s)HAw(t)H dsdt < / h(t)dt/ Aiv(t)H dt
t1 0 t1 t1
to 2
< (mo-9) [ | (31)
t1
Adding (29) and (30) together and nothing that, we see
12 12 1
ol|atul” + k||ato < D) (32)
1

From (9) and the definition of I5(¢) and also by (18), we have

to to
/ / (t—s)( HA2u H dsdt + — / / (t—s) HAM) H dsdt
t1 t1

e A R A B

We use (30)-(32) to estimate the last two terms on the right-hand side of (25), we get

%/tQ(goA%u)(t)+(h<>A%u)(t)dt = %/: /Otg(t_s)HA%U(S)—A%u(t)szsdt

+%/t:2/0th(t—s)
[ [ ate=or|atute] + [t yasa
e[ e o atef + ko Praa

S R R

2(mo — ) [*2
ot /tl L(t)dt. (34)

)dt <

I(t)dt (33)

Azo(t) — A2o(t)|| dsdt
| abu(t) — Ado)|

IN

IN

IN
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By (25) and the above inequalities

/t2 L(t)dt < c1(Q)D1(t)? + c2(Q)Dy(t)?

t1

IOI»—‘

—|—403\/401(Q)D1() —|—4CQ( )Dg(t

2
+esE(8)2(Dy (t)P + Da(t)?) + ¢4 / Lt (35)
t1
where c3 = C*(é((:f?))% and ¢4 = 5(72n6()7£5). Then, rewriting (35)

Bs / tQIQ(t)dt < (D1 ()? + c2(Q)Dy(t)?

t1

+4c3y/4e1 () D1 (D)2 + 42 (Q) Do (1) E (1) 2
+e3 E(t)7 (Dy(1)? + Da(t)7)

where 2 =1 — 5(;n5()77:6) and mg > 5;3?1 -max { [, g(s)ds, [y h(s)ds}. So B2 > 0, thus

/t2 Ig(t)dt < 05[\/401 (Q)Dl(t)Q + 4CQ(Q)D2(t)2E(t)%

+D1(8)2 + Dy(t)? + E(t)2 (D1 (t)” + Do(t)7)] (36)

where ¢5 = max{cl(g%;”(m"lc?’}. On the other hand, by E(t) function in the definition of the equation
(11), (8) and (9), we obtain

12 2
L) =1L+« HAﬁu‘ + HA§1) ‘ )+

BO) = J0ul? + )+ 5o [ (mo— [ o1t

‘2 + (mo — /Ot h(s)ds HA%v

)

gt A+ oAbt b+ Jab o
< gl + ll®) + 5 | (mo - / (5)ds) \Aw[ #mo— [ nioyas )]
—l—%((goAéu)() (ho A2u)(t + 7“+1 7Jr1)>1r2(,g)

The (37) is integrated over (t¢1,%2) and then using (22), (32), (34), (36), we obtain

[ Ewa < 3 [l e 7= [ (o= [ atas) b a
|ar

+2(T%+11)/: (mo—/oth(s)ds> HA% ’

+2(:;+11) /f ((g o Avu)(t) + (ho A%u)(t)) dt

+ <ri i 2(71+ 1)) /t:b(t)dt

Cl(Q)Dl (t)Q + 4CQ(Q)D2(t)2 + cg /t Ig(t)dt

t1
cr[v/4e1(Q)D1(1)? + 4e2(Q) D (1)2 E(t) 2
1
+D1()? +D2( ) + E(t)> (D1(t)” + D2(t)7)] (37)
where cg = 7’4%14'2(711) 2(,:11)771 +2(T(;}r)1()72%1_5 ) and ¢7 = max {¢1(R), ¢2(R), cges }. Moreover, integrating
(12) over (t1,t2), we obtain

IN

IN

to
E(t) <2 | E@®)dt,

t1
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due to to —t1 > %, we get
to 1 1 to ]
E(t) = E(t) —|—/ ||ut||£Jrl ds — 5 / (g o A2u)(s)ds
t

5/ ‘Azu’ d5+/ lodl| 252 ds
1 1 t+1 2

——/ <>A2v )ds+—/ h(s)HA%v
2 2/,

< 2/ E(t)dt + Dy(t)PT + Dy(t)1H!

ds

As a result, by (37) and (38), we obtain

B(t) < es\/2e1(Q)D1(0)2 + 4ca(Q) D3 (8)2E(t)2 + Dy (t)? + Do(t)?
+E(t)2 Dy (1) + E(t)2 Da(t)? + D ()P + Do(t)1+!

Hence, by Young inequality, we have
E(t) < cg [D1(t)* + Da(t)* + D1(t)* + Da(t)* + Dy (t)P™ + Dy (¢)7]

where cg and cg are positive constants.
(i) if p=¢ = 1. By (20) and (39), we have

E(t) <cio[E(t) — E(t+1) ]
where c¢1g > 1. Using Nakao’s inequality, we get

E(t) < E(0)e~ 2!

where g1 = ln(wz”ﬂl).
(ii) if max {p, ¢} > 1. From (39), we get

E(t) < cg [D1(t)*(1+ D1(t)* 72 + Di(t)"™") + Da(t)*(1 + Da(t)*~* + Da(t)17)]

Then since ) )
Dy (t) < E(t)r+T < E(0)r+T
Do(t) < E(t)7+1 < B(0)7+

IAIA

we see from (20)

BE®) < o [Dl(t)z <1 +B(0)r P4 E(0) 1 G ) + Dy (t)? <1 + E(O)% + E(0) qq;f)]

< oo (Di(t)* 4+ Do(t)?) (1+ E(o)’;% + E(O)szT_12 + E(0)#1 + B(0) e7t

= 0B (0) (Di(t)? + Da(t)?)

where lim 59—, c10(F(0)) = cg and p = max{Tl, qT} Then, we get

1+4p

B < e (Di(t)? + Da(t)?)]

VANVAN

|
)
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o
S|

IN
o
[y
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o

7N\
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+
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2p— _
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where

and

c11 (E(0)) = 2 (e10 (E(0))'+7

c12 (E(0)) = ¢11 (E(0)) max {E(O)W’E(O)%}

Thus, from (40) and Nakao inequality, we get

B(t) < (E(O) ™ + gaplt — 1]7) 77

where 02 = ¢ (E(0)) . Thus, the proof of theorem is completed.

4. Conclusion

In this work, we obtained the existence of global solutions and energy decay for a system of higher-order
Kirchhoff type equations. This improves and extends many results in the literature.
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