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Abstract − In this study, after given some basic definitions of soft sets and fuzzy soft
sets we firstly define convex-concave soft sets. Then, we investigate their properties
and give some relations between convex and concave soft sets. Furthermore, we define
fuzzy convex-concave soft sets and give some properties for the sets.
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1. Introduction

In 1999, Molodtsov [1] proposed a completely new approach so-called soft set theory for modeling
vagueness and uncertainty which may not be successfully modeled by the classical mathematics, prob-
ability theory, fuzzy sets [2], rough sets [3], and other mathematical tools. In the last decade, properties
and applications on the soft set theory solidly enriched (e.g. [4–12]), including the extension of soft
set theory (e.g. [13–25]). Along with them, many interesting applications of soft set theory have
been expanded by embedding the ideas of fuzzy sets, rough sets, intuitionistic fuzzy sets, vague sets,
interval-valued fuzzy sets (e.g. [26–32]). Then, A method with unknown data in soft sets and in fuzzy
soft sets is introduced by Deng and Wang [33], Gong et al. [34] gave two parameters reduction algo-
rithms, Yang et al. [35] proposed the concept of multi-fuzzy soft sets with a few operations, Mao et
al. [36] gave multi-experts group decision making problems by using intuitionistic fuzzy soft matrices,
Feng and Lie [37] studied subsets and various relations deal with soft set theory, Wang et al. [38] built
a new decision-making method by introducing the concept of fuzzy soft sets for the virtual machine
startup problems, Agarwal et al. [39] introduced a new score function, similarity measure, relations
with applications for generalized intuitionistic fuzzy sets.

Different definitions of convex fuzzy and concave fuzzy sets have defined but the first definition of
convex fuzzy sets introduced by Zadeh [2] and then concave fuzzy sets introduced by Chaudhuri [40].
After Zadeh [2], concavoconvex fuzzy sets proposed by Sarkar [41], with some properties. Moreover,
works on convex (concave )fuzzy sets in theories and applications has been progressing rapidly by
many autor, for example, [42–47].

Convex and concave fuzzy sets play important roles in optimization theory. A significant definition
of convex fuzzy sets introduced by Zadeh [2] and concave fuzzy sets introduced by Chaudhuri [40].
The concavoconvex fuzzy sets proposed by Sarkar [41] which is convex and concave fuzzy sets together
conceived by combining. The works on convex and concave fuzzy sets, in theories and applications,
have been progressing rapidly (e.g. [42, 46,47]).

1irfandeli@kilis.edu.tr (Corresponding Author)
1Muallim Rıfat Faculty of Education, 7 Aralık University, Kilis, Turkey



Journal of New Theory 29 (2019) 101-110 / Convex and Concave Sets Based on Soft Sets and Fuzzy Soft Sets 102

The present expository paper is a condensation of part/extension of the dissertation [48]. In
this work, we introduce the soft and fuzzy soft version of fuzzy convex and concave sets and also
investigate their some properties. The plan of the paper is as follows. In Section 2, we give some
notations, definitions used throughout the paper In section 3, after we give convex soft sets, we define
strictly convex soft sets and strongly convex soft sets and then give desired some properties. In Section
4, we define fuzzy soft convex sets and fuzzy soft concave sets and then we show some properties.

2. Preliminary

In this section, we present the basic definitions and some operations of fuzzy sets [2], soft set theory
[1] and fuzzy soft set [26]. More detailed explanations related to this subsection may be found in
[1, 2, 7, 26,30].

Throughout this paper E will denote the n-dimensional Euclidean space Rn. U denotes the arbi-
trary set, I denotes the interval [0, 1], and I◦ denotes (0, 1).

Definition 2.1. [2] Let U be the universe. Then, a fuzzy set X over U is defined by a set of ordered
pair

X = {(µX(x)/x) : x ∈ U}

where
µX : U → [0, 1]

is called membership function of X. The value µX(x) is called the membership value or the grade of
membership of x ∈ U . The membership value represents the degree of x belonging to the fuzzy set X.

Definition 2.2. [41] A fuzzy set in Rn is defined to be convex if for all p, q ∈ Rn and all r on the
line segment pq the following condition with respect to its characteristic function µ is satisfied:

µ(r) ≥ min{µ(p), µ(q)}

Conversely, a fuzzy set in Rn is defined to be concave if for p, q ∈ Rn and all r on the line segment pq
the following condition with respect to its characteristic function µ is satisfied:

µ(r) ≤ max{µ(p), µ(q)}

Definition 2.3. [1] Let U be a universe, P (U) be the power set of U and E be a set of parameters
that are describe the elements of U . A soft set S over U is a set defined by a set valued function fS
representing a mapping

fS : E → P (U)

It is noting that the soft set is a parametrized family of subsets of the set U , and therefore it can
be written a set of ordered pairs

S = {(x, fS(x)) : x ∈ E}

Here, fS is called approximate function of the soft set S and fS(x) is called x-approximate value
of x ∈ E. The subscript S in the fS indicates that fS is the approximate function of S.

Generally, fS, fT , fV , ... will be used as an approximate functions of S, T , V , ..., respectively.
Note that if fS(x) = ∅, then the element (x, fS(x)) is not appeared in S.

Definition 2.4. [7] Let S and T be two soft sets. Then,

1. If fS(x) = ∅ for all x ∈ E, then S is called a empty soft set, denoted by SΦ.

2. If fS(x) ⊆ fT (x) for all x ∈ E, then S is a soft subset of T , denoted by S⊆̃T .

3. Complement of S is denoted by S c̃. Its approximate function fSc̃ is defined by

fSc̃(x) = U \ fS(x) for all x ∈ E

4. Union of S and T is denoted by S∪̃T . Its approximate function fS∪̃T is defined by

fS∪̃T (x) = fS(x) ∪ fT (x) for all x ∈ E
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5. Intersection of S and T is denoted by S∩̃T . Its approximate function fS∩̃T is defined by

fS∩̃T (x) = fS(x) ∩ fT (x) for all x ∈ E

Definition 2.5. [8] Let S be a soft set over U and α be a subset of U. Then, α-inclusion of the soft
set S, denoted by Sα, is defined as

Sα = {x ∈ E : fS(x) ⊇ α}

Definition 2.6. [26] Let U be an initial universe, F (U) be all fuzzy sets over U . E be the set of all
parameters and A ⊆ E. An fuzzy soft set ΓA on the universe U is defined by the set of ordered pairs
as follows,

ΓA = {(x, γA(x)) : x ∈ E, γA(x) ∈ F (U)}

where γA : E → F (U) such that γA(x) = ∅ if x /∈ A, and for all x ∈ E

γA(x) = {µγA(x)
(u)/u : u ∈ U, µγA(x)

(u) ∈ [0, 1]}

is a fuzzy set over U .

The subscript A in the γA indicates that γA is the approximate function of ΓA.
Note that if γA(x) = ∅, then the element (x, γA(x)) is not appeared in ΓA.

Definition 2.7. [26] Let ΓA and ΓB be two fuzzy soft sets. Then,

1. If γA(x) = ∅ for all x ∈ E, then Γ is called a empty fuzzy soft set, denoted by ΓΦ.

2. Complement of ΓA is denoted by Γc̃
A. Its approximate function γAc̃ is defined by

γAc̃(x) = γcA(x), for all x ∈ E

3. Union of ΓA and ΓB is denoted by ΓA∪̃ΓB. Its fuzzy approximate function γA∪̃B is defined by

γA∪̃B(x) = γA(x) ∪ γB(x) for all x ∈ E

4. Intersection of ΓA and ΓB is denoted by ΓA∩̃ΓB. Its fuzzy approximate function γA∩̃B(x) is
defined by

γA∩̃B(x) = γA(x) ∩ γB(x) for all x ∈ E

5. ΓA is an fuzzy soft subset of ΓB, denoted by ΓA⊆̃ΓB , if γA(x) ⊆ γB(x) for all x ∈ E.

3. Convex Soft sets

In this section, after we give convex soft sets, we define strictly convex soft sets and strongly convex
soft sets and then give desired some properties. Some of it is quoted from [2,40–42,46–48].

Definition 3.1. The soft set S on E is called a convex soft set, is shown in Figure 1, if

fS(ax+ (1− a)y) ⊇ fS(x) ∩ fS(y)

for every x, y ∈ E and a ∈ I.

Definition 3.2. The soft set S on E is called a concave soft set if

fS(ax+ (1− a)y) ⊆ fS(x) ∪ fS(y)

for every x, y ∈ E and a ∈ I.

Definition 3.3. The soft set S on E is called a strongly convex soft set if

fS(ax+ (1− a)y) ⊃ fS(x) ∩ fS(y)

for every x, y ∈ E, x 6= y and a ∈ I◦.
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Fig. 1. The convex soft set

Definition 3.4. The soft set S on E is called a strictly convex soft set if

fS(ax+ (1− a)y) ⊃ fS(x) ∩ fS(y)

for every x, y ∈ E, fS(x) 6= fS(y) and a ∈ I◦.

Note 3.5. A convex soft set is not necessarily a strongly convex soft set and a strictly convex soft set
is not necessarily a strongly convex soft set.

Theorem 3.6. If {Si : i ∈ {1, 2, ...}} is any family of convex soft sets, then,

1. the intersection ∩̃i∈ISi is a convex soft set but union of any family {Si : i ∈ I = {1, 2, ...}} of
convex soft sets is not necessarily a convex soft set.

2. the union ∪̃i∈ISi is a concave soft set and the intersection of any family {Si : i ∈ I = {1, 2, ...}}
of concave soft sets is concave soft set.

Theorem 3.7. S is a convex soft set ⇔ S c̃ is a concave soft sets.

Proof. ⇒ Suppose that there exist x, y ∈ E, a ∈ I and S be a convex soft set.
Then, since S is convex,

fS(ax+ (1− a)y) ⊇ fS(x) ∩ fS(y) (1)

or
U \ fS(ax+ (1− a)y) ⊆ U \ {fS(x) ∩ fS(y)} (2)

we have
U \ fS(ax+ (1− a)y) ⊆ {U \ fS(x) ∪ U \ fS(y)} (3)

So, S c̃ is a concave fuzzy soft set.
⇐ S c̃ be a concave soft set.
Since S c̃ is concave, we have

U \ fS(ax+ (1− a)y) ⊆ {U \ fS(x) ∪ U \ fS(y)} (4)

Then,
U \ fS(ax+ (1− a)y) ⊆ U \ {fS(x) ∩ fS(y)} (5)

or

fS(ax+ (1− a)y) ⊇ fS(x) ∩ fS(y) (6)

So, S is a convex soft set.
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Theorem 3.8. S∩̃T is a strictly convex soft set when both S and T are strictly convex soft sets.

Proof. Suppose that there exist x, y ∈ E and a ∈ I◦ and W = S∩̃T . Then,

fW (ax+ (1− a)y) = fS(ax+ (1− a)y) ∩ fT (ax+ (1− a)y) (7)

Now, since S and T strictly convex sets,

fS(ax+ (1− a)y) ⊃ fS(x) ∩ fS(y) such that fS(x) 6= fS(y) (8)

fT (ax+ (1− a)y) ⊃ fT (x) ∩ fT (y) such that fS(x) 6= fS(y) (9)

and hence,

fW (ax+ (1− a)y) ⊃ (fS(x) ∩ fS(y)) ∩ (fT (x) ∩ fT (y))) such that fS(x) 6= fS(y) (10)

and thus
fW (ax+ (1− a)y) ⊃ fW (x) ∩ fW (y)) such that fS(x) 6= fS(y) (11)

Theorem 3.9. If {Si : i ∈ {1, 2, ...}} is any family of strictly convex soft sets, then the intersection
∩̃i∈ISi is a strictly convex soft set.

Remark 3.10. The union of any family {Si : i ∈ I = {1, 2, ...}} of strictly convex soft sets is not
necessarily a strictly convex soft set.

Theorem 3.11. Let S be a strictly convex soft set on E.

1. If there exists a ∈ I◦, for every x, y ∈ E such that

fS(ax+ (1− a)y) ⊇ fS(x) ∩ fS(y) (12)

Then S is a convex soft set on E.

2. If there exists a ∈ I, such that for every pair of distinct points x ∈ E, y ∈ E, we have

fS(ax+ (1− a)y) ⊃ fS(x) ∩ fS(y) (13)

Then S is a strongly convex soft set on E.

Proof. The proof is straightforward.

Theorem 3.12. Let S be a convex soft set on E.

1. If there exists a ∈ I, for every pair of distinct points x ∈ E, y ∈ E implies that

fS(ax+ (1− a)y) ⊃ fS(x) ∩ fS(y) (14)

Then S is a strongly convex soft set on E.

2. If there exists a ∈ I, for every x ∈ E, y ∈ E, fS(x) 6= fS(y) implies,

fS(ax+ (1− a)y) ⊃ fS(x) ∩ fS(y) (15)

Then S is a strictly convex soft set on E.

Definition 3.13. The fuzzy soft set ΓA on E is called a convex fuzzy soft set, is shown in Figure 2, if

γA(ax+ (1− a)y) ⊇ γA(x) ∩ γA(y)

for every x, y ∈ E and a ∈ I.

Theorem 3.14. ΓA∩̃ΓB is a fuzzy convex soft set when both ΓA and ΓB are fuzzy convex soft sets.
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Fig. 2. The fuzzy convex soft set

Proof. Suppose that there exist x, y ∈ E and a ∈ I and C = S ∩ T . Then,

γC(ax+ (1− a)y) = γS(ax+ (1− a)y) ∩ γT (ax+ (1− a)y) (16)

Now, since S and T convex,
γS(ax+ (1− a)y) ⊇ γS(x) ∩ γS(y) (17)

γT (ax+ (1− a)y) ⊇ γT (x) ∩ γT (y) (18)

and hence,
γC(ax+ (1− a)y) ⊇ (γS(x) ∩ γS(y)) ∩ (γT (x) ∩ γT (y)) (19)

and thus
γC(ax+ (1− a)y) ⊇ γC(x) ∩ γC(y) (20)

Definition 3.15. The soft set ΓA on E is called a concave fuzzy soft set if

γA(ax+ (1− a)y) ⊆ γA(x) ∪ γA(y)

for every x, y ∈ E and a ∈ I.

Theorem 3.16. ΓA∪̃ΓB is a concave fuzzy soft set when both ΓA and ΓB are concave fuzzy soft sets.

Proof. Suppose that there exist x, y ∈ E and a ∈ I and ΓC = ΓA∪̃ΓB . Then,

γC(ax+ (1− a)y) = γA(ax+ (1− a)y) ∪ γB(ax+ (1− a)y) (21)

Now, since S and T concave,

γA(ax+ (1− a)y) ⊆ γA(x) ∪ γA(y) (22)

γB(ax+ (1− a)y) ⊆ γB(x) ∪ γB(y) (23)

and hence,
γC(ax+ (1− a)y) ⊆ (γA(x) ∪ γA(y)) ∪ (γB(x) ∪ γB(y)) (24)

and thus
γC(ax+ (1− a)y) ⊆ γC(x) ∪ γC(y) (25)

Theorem 3.17. If {ΓAi
: i ∈ {1, 2, ...}} is any family of concave fuzzy soft sets, then the union

∪̃i∈IΓAi
is a concave fuzzy soft set.
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Theorem 3.18. ΓA is a convex fuzzy soft set when Γc̃
A is a concave fuzzy soft sets.

Proof. Suppose that there exist x, y ∈ E, a ∈ I and ΓA be a convex fuzzy soft set.
Then, since ΓA is convex,

γA(ax+ (1− a)y) ⊇ γA(x) ∩ γA(y) (26)

or
U \ γA(ax+ (1− a)y) ⊆ U \ {γA(x) ∩ γA(y)} (27)

we have
U \ γA(ax+ (1− a)y) ⊆ {U \ γA(x) ∪ U \ γA(y)} (28)

So, Γc̃
A is a concave fuzzy soft set.

Theorem 3.19. If {ΓAi
: i ∈ {1, 2, ...}} is any family of convex fuzzy soft sets, then the intersection

∩̃i∈IΓAi
is a convex fuzzy soft set.

Remark 3.20. The union of any family {ΓAi
: i ∈ I = {1, 2, ...}} of convex fuzzy soft sets is not

necessarily a convex fuzzy soft set.

Theorem 3.21. ΓA is a concave fuzzy soft set when Γc̃
A is a convex fuzzy soft sets. sets.

Proof. Suppose that there exist x, y ∈ E, a ∈ I and S be a concave fuzzy soft set.
Then, since S is concave,

γA(ax+ (1− a)y) ⊆ γA(x) ∪ γA(y) (29)

or
U \ γA(ax+ (1− a)y) ⊇ U \ {γA(x) ∪ γA(y)} (30)

we have
U \ γA(ax+ (1− a)y) ⊇ {U \ γA(x) ∩ U \ γA(y)} (31)

So, Γc̃
A is a convex fuzzy soft set.

Theorem 3.22. S is a concave fuzzy soft set on E iff for every β ∈ [0, 1] and α ∈ P (U), Sα is a
concave set on E.

Proof. ⇒ Assume that S is a concave fuzzy soft set. If x1, x2 ∈ E and α ∈ P (U), then γA(x1) ⊇ α
and γA(x2) ⊇ α. It follows from the concavity of S that

γA(βx1 + (1− β)x2) ⊆ γA(x1) ∪ γA(x2)

and thus Sα is a concave set.
⇐ Assume that Sα is a concave set for every β ∈ [0, 1]. Especially, for x1, x2 ∈ E, Sα is concave

for α = γA(x1) ∪ γA(x2).
Since γA(x1) ⊇ α and γA(x2) ⊇ α, we have x1 ∈ Sα and x2 ∈ Sα, whence βx1 + (1 − β)x2 ∈ Sα.

Therefore, γA(βx1 + (1 − β)x2) ⊆ α = γA(x1) ∪ γA(x2), which indicates S is a concave fuzzy soft set
on X.

4. Conclusion

In the literature, convex fuzzy sets has been introduced widely by many researchers. In this paper, we
defined convex soft sets, concave soft sets, convex fuzzy soft sets and concave fuzzy soft sets and give
some properties. Also we will try to explore characterizations of convex fuzzy soft sets to optimization
in the future. The theory may be applied to many fields and more comprehensive in the future to solve
the related problems, such as; pattern classification, operation research, decision making, optimization
problem, and so on.
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[7] N. Çağman, S. Enginoğlu, Soft Set Theory and uni–int Decision Making, European Journal of
Operational Research 207(2) (2010) 848–855.
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[21] İ. Deli, N. C. ağman, Relations on FP-Soft Sets Applied to Decision Making Problems, Journal of
New Theory 3 (2015) 98–107.
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