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Abstract. DKP equation describes spin-0 and spin-1 relativistic particles.

Many researchers have been interested in the DKP equation. In this work, we
give an explicit relation between the DKP and the KG equations for both the

spin-0 particle in (1 + 3) dimensions and spin-1 particle in (1 + 1) dimensions.

From the DKP equation in its explicit form, we get another system generated
by the KG equation, which gives us the equivalence between the DKP equation

and the KG equation. Using this equivalence, the Volkov-like solution of the

DKP equation for the spin-0 particle in the field of an electromagnetic plane
wave, is calculated.

1. Introduction

Relativistic quantum mechanics is the branch of quantum mechanics that deals
with the motion of relativistic particles. Among the most known equations in the
relativistic quantum mechanics are: the Klein-Gordon equation (KG equation),
which describes spinless particles, i.e. the spin-0 particles (e.g. the Higgs boson
. . .), the Dirac equation, which describes the spin- 12 particles (e.g. electron, positron
and neutrinos . . .) and the Proca equation, which describes the spin-1 particles (e.g.
the photon . . .). Petiau [1], Duffin [2] and Kemmer [3] were motivated by Dirac’s
work for the spin- 12 relativistic particle; they gave an equation (DKP equation)
that describes spin-0 and spin-1 relativistic particles, which is an equation similar
to the Dirac equation and in which the gamma matrices (γ) are replaced by the
beta matrices (β), where the (β) matrices are 5× 5 matrices for the spin-0 particle
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and 10× 10 matrices for the spin-1 particle, which satisfies a different algebra from
the algebra of the (γ) matrices for the Dirac equation.

In recent decades, many researchers have been interested in the DKP equation.
Fischbach et al. [4], Krajcik et al. [5] have been interested in the equivalence of the
DKP equation with the KG and the Proca equations. Nedjadi et al. [6] have stud-
ied some properties of the DKP equation and have also addressed the unresolved
problem of the spinless DKP boson in a central field. Fainberg et al. [7] provided an
equivalence between DKP and KG theories. They established this equivalence via
the matrix S and the reduction formula LSZ (Lehmann-Symanzik-Zimmermann).
They used the in and out asymptotic solutions and different diagrams generated by
the generating function. Lunardi et al. [8] have discussed two problems relative to
the electromagnetic coupling of DKP theory: the presence of an anomalous term
in the Hamiltonian form of the theory and the apparent difference between the
interaction terms in DKP and KG Lagrangians. Chetouani et al. [9] have solved
the DKP equation in the presence of step potential. Merad [10] solved the DKP
equation for spin-0 and spin-1 with smooth potential and position dependent-mass
where the solution is given in terms of the Heun function. Boutabia-Chéraitia et al.
[11] presented a calculation of the Green’s function of the DKP equation in the case
of scalar and vectorial particles interacting with a square barrier potential and its
relation to the KG equation. Recently, Lunardi [12] has shown that the supposed
spin-1 sector of the theory restricted to (1 + 1) space-time dimensions actually is
unitarily equivalent to its spin-0 sectors.

This work is organized as follows: In Section 2, we give the DKP equation for
the spin-0 with 5 × 5 beta matrices and 10 × 10 beta matrices for the spin-1. In
Section 3, we give an explicit relation, which is a direct equivalence, between the
DKP and the KG equations for the spin-0 particle in (1 + 3) dimensions and for
the spin-1 particle in (1 + 1) dimensions. The equivalence for the spin-0 particle
is established not only in the free case but even in the presence of any interaction.
In Section 4, using this relation, we calculate the Volkov-like solution of the DKP
equation for the spin-0 particle, i.e. in the same form as the Volkov solution of the
KG equation [13], in the field of an electromagnetic plane wave.

This paper is the full length paper of the AIP extended abstract [14].

2. The DKP equation

The DKP equation (for ~ = 1, c = 1) interacting with an electromagnetic field
Aµ is given by

[iβµ(∂µ + ieAµ)−m]ψ = 01, (2.1)

where m is the particle’s mass and βµ are square matrices satisfying the following
algebra

βµβνβλ + βλβνβµ = gµνβλ + gνλβµ, (2.2)

1We use the following notations ∂µ = (∂0,∇), Aµ = (A0,−A) with the convention∑
µ

aµbµ = aµbµ.
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gµν is the metric tensor of Minkowski as gµν = diag (1,−1,−1,−1). The βµ are
5× 5 matrices for the spin-0 particle and 10× 10 matrices for the spin-1 particle.

For the spin-0, the βµ matrices are given by

β0 =

(
θ 0̄

0̄T 0

)
, βi =

(
0̃ ρi
−ρTi 0

)
, i = 1, 2, 3 (2.3)

where

θ =

(
0 1
1 0

)
, ρ1 =

(
−1 0 0
0 0 0

)
, (2.4)

ρ2 =

(
0 −1 0
0 0 0

)
, ρ3 =

(
0 0 −1
0 0 0

)
. (2.5)

0̄, 0̃ and 0 are 2× 3, 2× 2 and 3× 3 zero matrices, respectively, and ρT denotes the
transpose of matrix ρ.

For the spin-1, the βµ matrices are given by

β0 =


0 0̄ 0̄ 0̄

0̄T 0 1 0
0̄T 1 0 0
0̄T 0 0 0

 , βi =


0 0̄ ei 0̄

0̄T 0 0 −isi
−eTi 0 0 0
0̄T −isi 0 0

 , i = 1, 2, 3 (2.6)

where ei and 0̄ are given by

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), 0̄ = (0, 0, 0). (2.7)

1 denoting the 3× 3 unity matrix. The si being the standard non-relativistic 3× 3
spin-1 matrices

s1 =

 0 0 0
0 0 −i
0 i 0

 , s2 =

 0 0 i
0 0 0
−i 0 0

 , s3 =

 0 −i 0
i 0 0
0 0 0

 . (2.8)
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3. The explicit relation between the DKP equation and the KG
equation

3.1. Spin-0 particle. As described above, the DKP equation for the spin-0 parti-
cle in (1 + 3) dimensions is given by equation (2.1) where the βµ are 5× 5 matrices
given by the relation (2.3).

For ψ = (ψ1, ψ2, ψ3, ψ4, ψ5)T , which is a solution of the equation (2.1). Then the
equation (2.1) can be written in its compact form as

(I)

{
iDµψµ+2 −mψ1 = 0, (3.1)

iDµψ1 −mψµ+2 = 0, µ = 0, 1, 2, 3, (3.2)

where Dµ = (∂µ + ieAµ).

From the equations (3.2), it’s easy to see that each component ψ2, ψ3, ψ4 andψ5

depends on ψ1 as

(II) ψµ+2 =
i

m
Dµψ1, µ = 0, 1, 2, 3.

Replacing each component ψ2, ψ3, ψ4 andψ5 of the system (II) in the equation
(3.1), of the system (I), we obtain

(DµDµ +m2)ψ1 = 0, (3.3)

which is KG equation for ψ1.

In other words, the DKP equation (2.1) (i.e. system (I)) and the KG equation
(3.3), for the spin-0 particle, are equivalent in the sense that if ψ1 is a solution of
the KG equation (3.3) , the solution of the DKP equation (2.1) is given by ψ where
ψ2, ψ3, ψ4 and ψ5 are given by the system (II), and conversely, if ψ is a solution of
the DKP equation (2.1) (i.e. solution of the system (I)), then ψ1 is the solution of
the KG equation (3.3).

Remark. This equivalence, i.e. the relation between the DKP equation and the
KG equation is established in the same manner for both (1 + 2) dimensions and
(1 + 1) dimensions.

3.2. Spin-1 particle. In the same way, as in the previous part, we can find an
explicit relation between the DKP equation and the KG equation for the spin-1
particle in (1 + 1) dimensions. The DKP equation for the spin-1 particle in (1 + 1)
dimensions is given by

[iβ0(∂0 + ieA0) + iβ1(∂1 − ieA1)−m]ψ = 0, (3.4)

where the β0 and β1 are 10× 10 matrices given by the relation (2.6). Then if ψ is
written as

ψ = (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7, ψ8, ψ9, ψ10)T , (3.5)

the equation (3.4), written in its explicit form, takes the following form
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(III)



(i∂1 + eA1)ψ5 −mψ1 = 0, (3.6)

(i∂0 − eA0)ψ5 −mψ2 = 0, (3.7)

(i∂0 − eA0)ψ6 − (i∂1 + eA1)ψ10 −mψ3 = 0, (3.8)

(i∂0 − eA0)ψ7 + (i∂1 + eA1)ψ9 −mψ4 = 0, (3.9)

(i∂0 − eA0)ψ2 − (i∂1 + eA1)ψ1 −mψ5 = 0, (3.10)

(i∂0 − eA0)ψ3 −mψ6 = 0, (3.11)

(i∂0 − eA0)ψ4 −mψ7 = 0, (3.12)

−mψ8 = 0, (3.13)

−(i∂1 + eA1)ψ4 −mψ9 = 0, (3.14)

(i∂1 + eA1)ψ3 −mψ10 = 0. (3.15)

From equations (3.6), (3.7), (3.11), (3.12), (3.13), (3.14) and (3.15), we can easily
see that each component depends on ψ3, ψ4 and ψ5, and we get the following system

(IV )



ψ1 =
1

m
(i∂1 + eA1)ψ5, (3.16)

ψ2 =
1

m
(i∂0 − eA0)ψ5, (3.17)

ψ6 =
1

m
(i∂0 − eA0)ψ3, (3.18)

ψ7 =
1

m
(i∂0 − eA0)ψ4, (3.19)

ψ8 = 0, (3.20)

ψ9 =
−1

m
(i∂1 + eA1)ψ4, (3.21)

ψ10 =
1

m
(i∂1 + eA1)ψ3. (3.22)

If we replace each component ψ1, ψ2, ψ6, ψ7, ψ9 and ψ10 of the system (IV ) in equa-
tions (3.8), (3.9) and (3.10) we get

(V )


(DµDµ +m2)ψ3 = 0, (3.23)

(DµDµ +m2)ψ4 = 0, (µ = 0, 1) (3.24)

(DµDµ +m2)ψ5 = 0. (3.25)

Equations (3.23), (3.24) and (3.25) are the KG equations interacting with an elec-
tromagnetic field Aµ for each component ψ3, ψ4 and ψ5 respectively.

More precisely, the DKP equation (3.4) and the KG equations (3.23), (3.24) and
(3.25) for ψ3, ψ4 and ψ5 respectively are equivalent. Indeed, if ψ3, ψ4 and ψ5 are
solutions of the KG equations (i.e. system (V)) so ψ is a solution of the system
(III) i.e. DKP equation (3.4), where ψ1, ψ2, ψ6, ψ7, ψ8, ψ9 and ψ10 are given by
the system (IV ), and conversely, if ψ is the solution of the DKP equation (3.4),
ψ3, ψ4 and ψ5 are solutions of the KG equations in the system (V ).
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Remark. This equivalence, i.e. the relation between DKP equation and KG equa-
tion for the spin-1 particle in (1 + 1) dimensions, can be established in the same
way if we use β2 or β3 instead of β1.

4. Application

4.1. Volkov-like solution for the spin-0 particle. Now, we are interested in
using this equivalence between the DKP equation and the KG equation (i.e. equiv-
alence between system (I) and equation (3.3)) to calculate the Volkov-like solution
of the DKP equation (2.1) for the spin-0 particle in the field of an electromagnetic
plane wave.

So if the solution of the DKP equation (2.1) is

ψ = (ψ1, ψ2, ψ3, ψ4, ψ5)T , (4.1)

then by this equivalence, ψ1 is the solution of the KG equation (3.3), ψ2, ψ3, ψ4 and ψ5

are given by the system (II).

We know that the Volkov solution ψ1, solution of KG equation (3.3), in the field
of an electromagnetic plane wave is given by

ψ1 = Ce−ipxF1(φ), for φ = kx, (4.2)

where C is a normalisation constant, and F1 is a solution of the differential equation

2i(kp)F ′1(φ) + [−2e(pA) + e2A2]F1(φ) = 0, (4.3)

then, we find

F ′1(φ) = −i
[

e

(kp)
(pA)− e2

2(kp)
A2

]
F1(φ), (4.4)

i.e.

F1(φ) = exp

−i kx∫
0

[
e

(kp)
(pA)− e2

2(kp)
A2

]
dφ

 . (4.5)

Then from the system (II), ψ = (ψ1, ψ2, ψ3, ψ4, ψ5)T is a Volkov-like solution of
the DKP equation (2.1) for the spin-0 particle in the field of an electromagnetic
plane wave, i.e.

(V I)


ψ1 = C exp{−iS}, (4.6)

ψµ+2 =
1

m

[
kµ

(
e

(kp)
(pA)− e2

2(kp)
A2

)
+ pµ − eAµ

]
ψ1, µ = 0, 1, 2, 3, (4.7)

where S = px+
kx∫
0

[
e

(kp) (pA)− e2

2(kp)A
2
]
dφ, is the classical action of the system.
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5. Conclusion

In relativistic quantum mechanics, the DKP equation occupies an important
place in the description of the spin-0 and the spin-1 particles. The DKP equation
is a very interesting equation in relativistic quantum mechanics. In the last decades,
the DKP equation has attracted the attention of many researchers and has been
studied in its various aspects.

In this paper, we discussed two points relating to the explicit relation between
the DKP equation and the KG equation for the description of particles, one for the
spin-0 particles in (1+3) dimensions and the other for the spin-1 particles in (1+1)
dimensions. The results of this work are important and interesting, where we have
shown that the equivalence of these equations is established for any wave function,
not only in the free case, but even in the presence of any interaction for both the
spin-0 particle in (1 + 3) dimensions and spin-1 particle in (1 + 1) dimensions.
Moreover, we found a Volkov-like solution to the DKP equation for spin-0 particles
in the presence of an electromagnetic field.
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