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ABSTRACT 
 

The purpose of this study is to obtain a proper set of input variables for replicated response measured data set by applying dual 
response strategy in robust framework with multi-objective perspective. The replicated response measures were transformed to 
dual response by using robust statistics, median (MED) and median absolute deviation (MAD), instead of mean-standard 
deviation statistics which were very commonly used in many existing studies. A compromise solution of proposed robust dual 
response model was obtained via a multi-criteria decision making approach since the optimization was achieved in multi-
objective point of view. In this study, well-known two methods, NSGA-II and TOPSIS, were preferred for optimization and 
decision making stages, respectively. Quality of printing ink data set was used an application from the literature. It is seen from 
the analysis results that the performance of the proposed robust dual response model was encouraging with the most satisfactory 
input settings. 

 
Keywords: Replicated response measures, Dual response problem, Robust statistics, Multiobjective optimization, Multi-

criteria decision making 
 

 

1. INTRODUCTION 
 

Most of the product or process problems need a proper experimental design which is commonly 
composed of replicated response measures. One of the popular approach to model replicated response 

measured data set is dual response strategy. In the dual response strategy, central tendency and spread 

of replicates are considered as dual responses. The idea of dual response approach (DRA) was firstly 
introduced by [1] and popularized by [2]. Basically, the DRA builds two empirical response models 

and then optimizes these predicted dual response functions. 
  
Mean and standard deviation statistics of replicates have been preferred to use as dual responses so far 

in various studies, e.g. [3–12]. The detailed literature studies can be found in the study of [13]. 
However, sometimes, mean and standard deviation of replicated response values may not be proper to 

consider as dual responses. In case of the replicated values have extreme values, robust statistics should 

be preferred to use. It is seen from the literature survey that even there have been many researches 

about modeling of the mean and the standard deviation as dual responses, the modeling studies about 
median (MED) and median absolute deviation (MAD) are fewer. Recently, the MED and the MAD 

statistics have been used to transform the replicated response measures to robust responses by [14, 15]. 

 
The main aim of this study is to focus that the mean and standard deviation may not always applicable 

for analysis of the replicated response measured data set as dual response problem. For this purpose, 

the MED and the MAD of replicated response measures were used as dual responses in robust 
framework. In this study, analysis of replicated response measured data set was achieved in two basic 

stages: (i) modeling, and (ii) optimization. In the modeling stage, second order polynomial 

probabilistic response functions were used for fitting observed the MED and the MAD responses with 

considering that the errors were independent with constant variance and zero mean. The dual response 
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model parameters were estimated by using least squares method. However, if the errors are not 

normally distributed the parameter estimation should be done according to the distribution of errors by 

using maximum likelihood (ML) method. The model parameter estimation methods in dual response 
studies are summarized in the study of [13]. In the optimization stage, robust responses were 

optimized simultaneously in multi-objective framework by using a multi-objective optimization 

(MOO) method, called NSGA-II (Non-dominated Sorting Genetic Algorithm-II). The NSGA-II, 
developed by [16], is one of the well-known multi-objective algorithm. The application of NSGA-II 

for response surface studies can be seen in the recent studies of [17] and [18]. By using NSGA-II as a 

MOO tool, it is possible to obtain Pareto solution set in a single run. And also, the NSGA-II gives 

many non-dominated solution in a short time. A compromise solution is obtained by using a well-
known multi-criteria decision making approach, called TOPSIS (Technique for Order Preference by 

Similarity to an Ideal Solution) which is presented in [19] with reference to [20]. 
 

The paper was organized as follows. In Section 2, detailed description about modeling of replicated 
response measures as dual response problem through robust statistics was given and performance 

metrics of predicted responses were presented briefly. Section 3, contains evaluation of the robust dual 

response problem as MOO problem. The NSGA-II and TOPSIS methods were also shortly explained 
in Section 3. In Section 4, a real data set from the literature was used to illustrate the proposed analysis 

approach of replicated response measures as robust dual responses in multi-objective framework. 

Finally, conclusion was given in Section 5. 
 

2. MODELING OF DUAL RESPONSE PROBLEM IN ROBUST FRAMEWORK 
 

2.1. Modeling of Replicated Response Measures as Dual Response Problem 
 

Let consider a system involving a response Y that depends on the level of k control factors or input 

variables,  1 2, ,..., kX X X  with the assumption that the levels of iX , 1,2,...,i k  are quantitative 

and continuous, and also can be controlled by the experimenter. Suppose that m replicates are taken at 

each of the design points. The experimental format is illustrated in Table 1. Here, ijY  represent the jth 

replicates at the ith design point where 1,2,...,i n  and 1,2,...,j m . 

 

Table 1. Experimental design with replicated response values 

 

  

Unit 

numbers 

              Control Factors        Replicates of Response 

1X  2X  … 
kX  1Y  2Y  … 

mY  

1 
11x  12x  … 

1kx  11y  12y  … 
1my  

2 
21x  22x  … 

2kx  21y  22y  … 
2my  

. 

. 

. 

. 

. 

. 

  . 

. 

. 

. 

. 

. 

  . 

. 

. 

n 
1nx  2nx  … 

nkx  1ny  2ny   
nmy  

 

Generally, in order to apply dual response strategy to the experimental design, given in Table 1, two 

most popular statistics which are mean and standard deviation have been used as center and spread 

estimators of replicates so far. At the ith design point, the sample mean and sample standard deviation 
of replicates are calculated as follows: 

1

1



 
m

i ij

j

Y Y
m

  and   
1 2

2

1

1

1 

 
    


m

i ij i

j

S Y Y
m

  ,   1,2,...,i n ,   1,2,...,j m          (1) 
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However, these estimators are inappropriate for small sized non-normal data. And also, iY  and iS , 

1,2,...,i n , are very sensitive to outliers of replicates that may present unexpected values in the 

experiment. In this case, it will be better to use robust statistics, e.g. the MED and the MAD as alternatives 

to the mean and standard deviation. The MED and the MAD of the experimental design can be defined as 
 

 1 2, ,..., , 1,2,..., i i i imMED median Y Y Y i n ,                    (2) 

and  

 
1

, 1,2,...,i ij i
j m

MAD median Y MED i n
 

   .                               (3) 

 

The Table 1 is adapted to apply the dual response strategy through the robust statistics as given in Table 2. 
 

Table 2. Replicated response measured experimental design with robust dual responses 

 

 

Unit 

number 

      Control Factors  Replicates of Response  Robust Dual Responses 

1X  2X  … 
kX  1Y  2Y  … 

mY              MED MAD 

1 
11x  12x  … 

1kx  11y  12y  … 
1my  MED1 MAD1 

2 
21x  22x  … 

2kx  21y  22y  … 
2my  MED2 MAD2 

. 

. 

. 

. 

. 

. 

  . 

. 

. 

. 

. 

. 

  . 

. 

. 

. 

. 

. 

. 

. 

. 

n 
1nx  2nx  … 

nkx  1ny  2ny   
nmy  MEDn MADn 

 

In Table 2, the MED and the MAD columns are considered as dual responses. One of the main purpose 

in dual response problem is to define the functional relationship between input variables 

 1 2, ,..., kX X X  and the dual responses, MED and MAD, with minimum error. It should be noted 

here that the MED and the MAD are uncorrelated. 
 

In many of the response surface studies, second order polynomial regression functions are used for 
fitting the data. The detailed information can be seen in the study of [21]. The response functions for 

the MED and the MAD can be given as 
 

 , MED MEDηY β X ε            (4) 

and 

 , MAD MADηY γ X ε                             (5)  

in which  

  0 1 1 1
, , 1, 2,...,

  
     

k k k

t ti tw ti wit t w
η β β X β X X i nβ X ,          (6) 

and 

  0 1 1 1
, , 1, 2,...,

  
     

k k k

t ti tw ti wit t w
η γ γ X γ X X i nγ X .                 (7) 

To obtain predicted response functions, the least squares estimates of unknown model parameters can 
be given as 

 
1ˆ 

  MEDβ XX XY               (8) 

and 

 
1

ˆ


  MADγ XX XY .        (9) 
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In order to apply the statistical test to the model parameters, β  and γ , the errors must be normally 

distributed. Otherwise, the statistical inference for the model parameters will be invalid. In the event of 

non-normal distributed errors, the model parameters of the MED and the MAD responses should be 
estimated by taking into consideration the distribution of errors through ML method. 
 

2.2. Performance Metrics for Predicted Dual Response Models 
 

The predicted performance of the dual response models are calculated by using the coefficient of 

determination (
2R ), the adjusted coefficient of determination (

2
adjR ), the root mean square error 

(RMSE), the mean absolute error (MAE) and the prediction error sum of squares (PRESS) are defined 

as, respectively, 
2

2

2

ˆ   


 

nY
R

nY

β X Y

Y Y
,                    (10) 

 

 2 2 1
1 1

 
    

 
adj

n
R R

n p
,                   (11) 

 

ˆ  



RMSE

n p

Y Y β X Y
,                             (12) 

 

1

1 ˆ


 
n

i ii
MAE Y Y

n
,           (13) 

and 

2

1

ˆ

1

 
    


n i i

i
ii

Y Y
PRESS

h
         (14) 

 

in which p is the number of model parameters, ˆ
iY  is the ith predicted response value, iih  is the ith 

diagonal element of the hat matrix, defined by  
1

 H X X X X . Generally, the predicted dual 

response models with large 
2R  and 

2
adjR  are preferred. The RMSE, MAE and PRESS are useful in 

assessing the prediction ability of the models. The lower values of these metrics indicate that the 

predicted dual response models have high prediction ability. 
 

3. OPTIMIZATION OF DUAL RESPONSE PROBLEM WITH MULTI-OBJECTIVE    

    PERSPECTIVE 
 

The main goal of the dual response optimization (DRO) stage is to identify appropriate values of input 

variables. It is possible to obtain the appropriate settings of input variables by minimizing the 
deviations and remaining the central tendency at the preferred value. There have been many approaches 

in the statistics literature for DRO problems. A simple and straight forward approach for DRO is 

converting the dual responses into a single response function without constraints [3, 22] and with 

constraints [2, 6, 8, 23–29]. In multi-objective perspective, [30] studied mean-standard deviation DRO 

by using multi-objective Genetic Algorithm. In the field of DRO, most of these recent works have only 

focused on the mean-standard deviation dual response. In this study, robust dual response problem, 

composed with the MED and the MAD statistics, was considered. There have been too few studies about 
the optimization of robust dual responses, e.g. [14, 15, 31]. For optimization stage, the main contribution 
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of the study is optimizing the robust dual response problem with multi-objective perspective. For this 

purpose, the robust dual response problem is considered as MOO problem, given below: 
 

    
    

1

2

ˆmin

ˆmin

 





MED

MAD

f Y T

f Y

S

X X

X X

X

                    (15) 

 

where T is the target value of central tendency and S is the domain of input variables. To optimize the 

Equation (15), a well-known population based multi-objective optimization algorithm, the NSGA-II was 
used. The optimization result was a set of non-dominated input values, called as Pareto solution set. The 

solutions in the Pareto set can be considered as alternative solutions. In this case, it is necessary to apply 

a decision making approach to define a compromise solution among the many alternative solutions. The 
TOPSIS method was preferred to use as multi-criteria decision making approach in the scope of this 

study. Some brief descriptions about the NSGA-II and the TOPSIS are given in the following sections. 
 

3.1. NSGA-II 
 

The NSGA-II finds a set of non-dominated solutions in a single run without requiring any preference 
information. The main working principle of the algorithm is based on a fast non-dominated sorting 

mechanism and a crowding distance to construct the Pareto front in a non-dominated order. In order to 

implement the NSGA-II to the robust dual response problem, firstly a random initial population is created 

in the search space with the size popn  and called parent population. Then offspring population is generated 

from the parent population by using genetic operators e.g. a selection operator, a crossover operator with a 

proper crossover probability ( Prcross ), a mutation operator with a proper mutation probability ( Prmut ). By 

combining current and offspring populations, the next population is constructed and the non-dominated 

fronts are generated according to the non-dominated sorting and crowding distance operators. The search 

process of the algorithm continuous until the number of generations, genn , is reached. 

 

3.2. TOPSIS 
 

The TOPSIS method selects the most preferred alternative solution which is closest to the positive 
ideal solution (PIS) and farthest from the negative ideal solution (NIS). In order to apply the TOPSIS 

to the Pareto solution set of the problem, given in Equation (15), decision matrix (D) was constructed 

and the weight vector of criteria (W) was determined. The normalized decision matrix (N) was 
calculated since the criteria may have different units. Then, weighted normalized decision matrix was 

calculated. Provided that the sum of weights was equal to 1. The PIS and NIS were identified. The PIS 

is the solution that maximizes the benefit criteria and minimizes the cost criteria whereas the NIS 
maximizes the cost criteria and minimizes the benefit criteria. Afterwards, the separation measures 

from the PIS and the NIS are calculated by using the Euclidean distance. It should be noted here that a 

number of distance metric can be applied in the TOPSIS method. The relative closeness of the 

alternative solutions to the PIS were calculated and denoted as , 1, 2,...,i popR i n  where popn  is the 

number of Pareto solutions. Finally, a set of alternatives were ranked by the descending order of the 

value of , 1, 2,...,i popR i n . Generally, the first order , 1, 2,...,i popR i n , value was considered as 

the most compromise solution among the many alternatives. However, it is possible to use the decision 

rules defined by [32]. The decision rules are given in Table 3 for the , 1, 2,...,i popR i n , values. 
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Table 3. Approval status of decision rules for relative closeness , Ri [32] 
 

Relative closeness (𝑹𝒊) Assessment status 

 0, 0.2iR  Do not recommend  

    0.2, 0.4iR  Recommend with high risk 

    0.4, 0.6iR  Recommend with low risk 

    0.6, 0.8iR  Approved 

                                       0.8, 1iR  Approved and preferred 

 

4. APPLICATION    
 

In this section, a real data set application is given in order to illustrate the modeling and optimization 
stages of replicated response measures as robust dual response via robust statistics with multi-

objective perspective. The data set is, called printing process data, firstly described in the study of [33]. 

The purpose of the printing process data set is to determine the effects of three input variables, called speed 

( 1X ), pressure ( 2X ) and distance ( 3X ) on the quality of a printing process, which is the response of 

experiment. The experiment was conducted in 33 factorial design with three replications in each ith 

experimental unit, 1,2,..., 27i . The experimental data set can be seen in Table 4 with the coded values of 

input variables. 
 

Before transforming the replicated response values to dual response, it is necessary to analyze the 
replicated values of responses statistically for each run of the experiment. For this purpose, box-plots 

of replicates were obtained. The box plots of replicates were presented in Figure 1. 
 

It can be easily seen from Figure 1 that the most of the experimental units of replicates have skewed 

distribution. In this case, it was suggested to use robust statistics to compose the dual responses. The 
replicated response values were transformed to dual responses by using the MED and the MAD 

statistics. The experimental data set with robust dual response values are given in Table 5. 
 

Table 4. The printing process data set [33] 
 

        Unit 

     Number 

Input variables  Response 

X1 X2 X3  Rep1 Rep2 Rep3 

1 -1 -1 -1  34 10 28 
2 0 -1 -1  115 116 130 
3 1 -1 -1  192 186 263 
4 -1 0 -1  82 88 88 
5 0 0 -1  44 178 188 
6 1 0 -1  322 350 350 
7 -1 1 -1  141 110 86 
8 0 1 -1  259 251 259 
9 1 1 -1  290 280 245 
10 -1 -1 0  81 81 81 
11 0 -1 0  90 122 93 
12 1 -1 0  319 376 376 
13 -1 0 0  180 180 154 
14 0 0 0  372 372 372 
15 1 0 0  541 568 396 
16 -1 1 0  288 192 312 
17 0 1 0  432 336 513 
18 1 1 0  713 725 754 
19 -1 -1 1  364 99 199 
20 0 -1 1  232 221 266 
21 1 -1 1  408 415 443 
22 -1 0 1  182 233 182 
23 0 0 1  507 515 434 
24 1 0 1  846 535 640 
25 -1 1 1  236 126 168 
26 0 1 1  660 440 403 
27 1 1 1  878 991 1161 
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Figure 1. Box-plots of replicated response values for each experimental units 
 

Table 5. The printing process data set with robust dual response values 

 

  Unit 

Number 

Input variables  Observations   

  X1   X2           X3  Rep1 Rep2 Rep3 MED     MAD 

1 -1 -1 -1  34 10 28 28 6 
2 0 -1 -1  115 116 130 116 1 
3 1 -1 -1  192 186 263 192 6 

4 -1 0 -1  82 88 88 88 0 
5 0 0 -1  44 178 188 178 10 
6 1 0 -1  322 350 350 350 0 
7 -1 1 -1  141 110 86 110 24 
8 0 1 -1  259 251 259 259 0 
9 1 1 -1  290 280 245 280 10 
10 -1 -1 0  81 81 81 81 0 
11 0 -1 0  90 122 93 93 3 

12 1 -1 0  319 376 376 376 0 
13 -1 0 0  180 180 154 180 0 
14 0 0 0  372 372 372 372 0 
15 1 0 0  541 568 396 541 27 
16 -1 1 0  288 192 312 288 24 
17 0 1 0  432 336 513 432 81 
18 1 1 0  713 725 754 725 12 
19 -1 -1 1  364 99 199 199 100 
20 0 -1 1  232 221 266 232 11 

21 1 -1 1  408 415 443 415 7 
22 -1 0 1  182 233 182 182 0 
23 0 0 1  507 515 434 507 8 
24 1 0 1  846 535 640 640 105 
25 -1 1 1  236 126 168 168 42 
26 0 1 1  660 440 403 440 37 
27 1 1 1  878 991 1161 991 113 

 

In order to calculate the effects of and 1X , 2X  and 3X  on Y , the second order polynomial 

regression models, given in Equations (6)-(7) were used for fitting. The calculations were conducted in 
Minitab14 and Matlab7.9 programs. The analysis of variance (ANOVA) results for the predicted 

robust dual response models were given in Tables 6-7. 
 

From Table 6, it can be said that the predicted surface model for the MED is meaningful for 0.05α  

nominal significance level ( p α ) and can be written as 
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  2 2 2
1 2 3 1 2 3

1 2 1 3 2 3

ˆ 345.89 177 108.9 120.7 32 36.1 44.5

62.9 75.1 36.6 .

      

  

MEDY X X X X X X

X X X X X X

X
               (16) 

 
Table 6. ANOVA for the MED response 

 

 

    Predictor 

       Unstandardized Coef. Standardized Coef.  

t 

 

p 

β Std.Error β 

Constant 345.89 40.103  8.625 0 
X1 177 18.564 0.658 9.535 0 
X2 108.9 18.564 0.405 5.869 0 
X3 120.7 18.564 0.449 6.503 0 

X1^2 32 32.154 0.069 0.995 0.334 
X2^2 -36.1 32.154 -0.078 -1.125 0.276 
X3^2 -44.5 32.154 -0.096 -1.384 0.184 
X1X2 62.9 22.736 0.191 2.767 0.013 
X1X3 75.1 22.736 0.228 3.302 0.004 
X2X3 36.6 22.736 0.111 1.613 0.125 

Source Sum of Squares df Mean Square F p 
Regression 1197050.611 9 133005.623 21.442 0 
Residual 105454.056 17 6203.180   
Total 1302504.667 26    

 

In order to check the least squares assumptions of the predicted median model, residual analysis is 

done. The obtained results are presented in Figure 2. It can be said from Figure 2 that the least squares 
assumptions on the errors are satisfied. Besides, it is clear from Figure 3 that the normality assumption 

of errors is also satisfied for statistical inference of model parameters. 

 

 
 

Figure 2. Plots of residuals for the MED response 
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Figure 3. Normal probability plot of residuals for the MED response 

 

However, as can be seen from Table 7 that the predicted function for the MAD response is 

meaningless for 0.05α  nominal significance level ( 0.18 p α  ). The residual analysis for the 

MAD response is presented in Figures 4-5. It is possible to say from the Figures 4-5 that the least 

squares assumptions of errors are not satisfied and the errors are not normally distributed. 
 

Table 7. ANOVA for the MAD response 
 

 

      Predictor 

Unstandardized Coef. Standardized Coef.  

t 

 

p γ Std.Error γ 

Constant 3.333 16.017  0.208 0.838 

X1 4.667 7.414 0.112 0.629 0.537 

X2 11.611 7.414 0.278 1.566 0.136 

X3 20.333 7.414 0.486 2.742 0.014 

X1^2 9.667 12.842 0.133 0.753 0.462 

X2^2 9.833 12.842 0.136 0.766 0.454 

X3^2 10.333 12.842 0.143 0.805 0.432 

X1X2 11.5 9.081 0.225 1.266 0.222 

X1X3 8.083 9.081 0.158 0.890 0.386 

X2X3 4.417 9.081 0.086 0.486 0.633 

Source Sum of Squares df Mean Square F p 

Regression 14647.389 9 1627.488 1.645 0.180 

Residual 16821.278 17 989.487   

Total 31468.667 26    

 

 
Figure 4. Plots of residuals for the MAD response 
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Figure 5. Normal probability plot of residuals for the MAD response 

 

To fit a model for the MAD response, it was aimed to determine the probability distribution of errors. 

By using EasyFit 5.6 program, the distribution of errors was defined as three parameterized log-
logistic distribution. The probability density function of the log-logistic distribution of errors can be 

written as 

 

 
1 1

2
1

3 31
1 2 3

2 2 2

; , , 1


      
     
     

θ θ

i i
i

ε θ ε θθ
f ε θ θ θ

θ θ θ
,    1 2 30, , 0, 0,    iε θ θ θ R      (17) 

where iε ’s, 1,2,..., 27i , are the errors of the MAD response, given in Equation (5). The goodness of 

fit result is presented in Figure 6 with the corresponding parameter values of log-logistic distribution 

obtained as 1 4.40θ , 2 57.06θ , and 3 61.47 θ . 

 

 
 

Figure 6. The plot for goodness of fit between residuals and log-logistic distribution 

 

It is possible to use ML method to estimate the unknown model parameters of the MAD response. 
According to the log-logistic distribution, the likelihood function can be written as 
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27

1

54
91.8 4.4027 27

1

;4.40,57.06, 61.47

61.47 61.474.40
1

57.06 57.06 57.06

i

i i

MAD

i

MAD MAD

i

L f ε

ε ε







 

      
              





γ

          (18) 

 

in which  ,
i iMAD MADε Y η  γ X , 1,2,...,27i  . The functional form of  ,η γ X  was considered as given 

in Equation (5). It is possible to calculate the ML estimates of model parameters, γ , by maximizing the 

likelihood function given as 
 

 
     

54
91.8 4.40

27 27

1

, 61.47 , 61.474.40
1

57.06 57.06 57.06





                           


i iMAD MAD

i

Y η Y η
L

γ X γ X
γ   (19) 

 

which seems hard since the  L γ  is nonlinear in model parameters. In this case, the GANMS hybrid 

algorithm, defined in the study of [34], is used as an optimization tool to maximize the likelihood 
function. The tunable parameters of the GANMS are given in Table 8. 
 

Table 8. Tunable parameters values of GANMS hybrid algorithm 
 

Methods Parameters Values 

GA 

Population size 100 

Maximum number of generation 100 

Probability of crossover 0.80 

Probability of mutation 0.01 

Selection operator Roulette wheel 

Crossover operator Single point  

Mutation operator Bit flip  

NMS 

Reflection 1 

Expansion 2 

Contraction  0.5 

Shrinkage 0.5 

Stopping Criteria 10-5 

 

The predicted MAD response is obtained as below:  
 

  2 2 2
1 2 3 1 2 3

1 2 1 3 2 3

ˆ 10.53 20.13 10.16 10.21 10.49 13.98 8.20

12.14 13.43 13.78 .

      

  

MADY X X X X X X

X X X X X X

X
      (20) 

 

For the purpose of fair comparison, the second order predicted dual response functions, ˆ
MEDY  and 

ˆ
MADY  were obtained as the same functional forms for mean-standard deviation dual responses given in 

the study of [8]. The comparison result of the MED-MAD robust dual responses and the mean-standard 

deviation dual responses were given in Table 9. 
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Table 9. Comparison of the predicted dual responses 

Predicted Model 2R  
2
adjR  

RMSE MAE PRESS 

ˆ
MEDY  0.92 0.87 78.76 51.08 338831.38 

ˆ
μY  0.92 0.88 76.74 50.57 337738.43 

ˆ
MADY  0.60 0.39 27.19 23.65 48534.09 

ˆ
σY  0.45 0.16 43.82 28.95 93075.31 

 

From Table 9, according to the performance metrics, it can be said that the ˆ
MEDY  and ˆ

MADY  give 

better model performance values than the ˆ
μY  and ˆ

σY  even the RMSE and the MAE values of  ˆ
μY  is 

slightly smaller than the ˆ
MEDY . The PRESS of ˆ

MEDY  slightly similar with PRESS of ˆ
μY . However, 

the PRESS value of ˆ
MADY  is quite smaller than PRESS value of ˆ

σY . It can be easily said from the 

performance metric results of ˆ
MADY  that modeling with considering the distribution of errors gives 

more realistic results in accordance with the nature of the data. After obtaining predicted robust dual 

response, it was aimed to optimize dual response problem as MOO problem given in Equation (15). 
Here, the target value of the MED response and the search domain of input variables are considered as 

T =500 and  1, 1 X , respectively. In order to obtain Pareto solution set, the NSGA-II is applied 

by using tunable parameters as in Table 10. 

 
Table 10. Tunable parameters values of the NSGA-II 

 

Algorithm Parameters  Values 

Number of variable (v)  3 

popn   100 

Selection operator  Tournament 

Crossover operator  SBX 

Mutation operator  Polynomial 

Prcross   0.90 

Prmut   0.01 

genn   100 

 

The obtained Pareto solution set is presented in Figure 7. From Figure 7, it can be easily said that all 
the non-dominated solutions, sized 100, have an importance in the Pareto set. However, a researcher 

may want to get a compromise solution among many non-dominated solutions. For this purpose, in 

this study, the TOPSIS method was applied to Pareto set with assuming that the objectives have equal 

importance. The obtained compromise solution is presented in Figure 8 with the value of objective 

function vector and input vector,  120.9 14.19f  and  0.0858 0.0185 0.1288X , 

respectively. 
 

It should be noted here that the relative closeness coefficient, R , is obtained as equal to 0.5778 during 

the TOPSIS application. This compromise solution is low risk value among the Pareto solutions 
according to the decision rules given in Table 3. 
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Figure 7. Pareto solution set for robust dual responses 

 

 
Figure 8. Pareto set with a compromise solution for robust dual responses 

 

For the purpose of comparison, if  ˆ 500μY X  and  ˆ
σY X  are considered as  1f X  and  2f X , 

respectively, the Pareto solution set can be obtained as in Figure 9 through the NSGA-II by using the 
tunable parameters as given in Table 10. The obtained compromise solution is presented in Figure 10 

with the value of objective function vector and input vector,  210.1 21.94f  and 

 0.8836 1 0.1809  X , respectively. It can be said from Figure 8 and Figure 10 that the 

compromise solution of robust dual response model is more preferable than the compromise solution 
of mean-standard deviation dual response model. 
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Figure 9. Pareto solution set for mean-standard deviation dual response 

 

 
Figure 10. Pareto set with a compromise solution for mean-standard deviation dual response 

 

5. CONCLUSION 
 

In this study, modeling and optimization stages of replicated response measured data set were 

presented in robust and multi-objective perspectives, respectively. In modeling stage, replicated 

response measures were presented as dual response by using robust statistics, the MED and the MAD. 
The fitting performance of the predicted second order polynomial robust dual responses were analyzed 

according to the several model performance metrics, e.g. RMSE, MAE, PRESS. To optimize robust 

dual response, a multi-objective optimization algorithm, called NSGA-II, was applied and many 

alternative input settings were obtained as Pareto front. A compromise solution was chosen among 
many non-dominated input settings by using TOPSIS method. A case example from literature, called 

printing ink data set, was carried out to present the performance of the proposed robust dual response 

model which is encouraging with the most satisfactory input settings. 
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