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ABSTRACT 
 
In this paper, some tests are introduced and compared for testing the equality of inverse-coefficients of variation. Monte-
Carlo simulation method is used for comparisons. In this simulation study, various simulation scenarios were designed with 

different population numbers (𝑘 = 3, 6),  sample sizes,  parameter values and type I error rates (𝛼 = 0.01, 0.05). The tests 

were compared in terms of type I error rate and power in these scenarios. When the sample sizes are small, the D and WT 
tests showed good results in terms of type I error, but the LR and ST tests did not give good results. As the sample sizes 
increased, the experimental type I error rates of the LR and ST tests converged to nominal type I error and all tests showed 
good results in general. While the sample sizes were equal, it was found that the LR test was the most powerful test and the 
ST test sometimes yielded good results. For these sample sizes, the D test yielded the worst results. When the sample sizes 
are different, the LR and D tests are powerful than the other tests, and the ST test is the worst test in terms of power. As 
expected, as the sample sizes and nominal type I error rate increased, the powers of the tests also increased. In addition, an 
application for the tests was made on real data. It was seen that the results of this application and simulation study coincide. 
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1. INTRODUCTION 
 

The mean value per unit standard deviation is called the inverse-coefficient of variation. In other 
words, the inverse-coefficient of variation indicates how much the mean changes according to the 

standard deviation, so it is a measure of relative variability. Even if the means and variances of the 

examined groups are different, they may have the same relative variability. Therefore, the inverse-
coefficient of variation is an important parameter in many areas such as engineering, psychiatry, 

biology, physics, finance and health. Because of this importance, hypothesis testing is needed. 
 

The test statistic of the equality of the inverse-coefficients of variation were first performed by Bowman 
and Shenton [2]. In normal distributions, the hypothesis of the equality of the inverse-coefficients of 

variation is proposed by Doornbos and Dijkstra [5] and Bennett [1]. They compared the Likelihood ratio 

test and Non-Central 𝑡 test by using the simulation method and made recommendations. However, for 

the Likelihood ratio test
 
(𝑘 > 2), it contains equations that are not solved algebraically. Nairy and Rao 

[10], using the theorem of Lehmann and Casella [9] proposed the two-step maximum likelihood 

estimators to solve these equations. Singh [14] conducted a similar study in Bowman and Shenton [2]. 

Sharma and Krishnan [12], using sample inverse-coefficients of variation, made inferences about 
population inverse-coefficients of variation [10]. Singh [14] has determined that the test of the equality 

of the inverse-coefficients of variation in  k -normal distribution populations is easy and understandable 

because it contains less numerical terms than the test of the equality of the coefficients of variation. 

Chaturvedi and Rani [3] for the inverse-coefficients of variation in normal distribution have developed a 
sequential procedure to establish a fixed-width confidence interval. Nairy and Rao [10] have proposed 

three new tests of inverse-coefficients of variation. These suggested tests are equivalent to other tests 

that test the equality of coefficients of variation. Kalkur and Rao [7] obtained the Bayesian estimator 
of the inverse-coefficient of variation of the normal distribution using five different objective priors. 
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In this study, it is emphasized that the test statistics of equality of inverse-coefficients of variation in 

normal distributions as in other studies are examined. A simulation comparison was made to determine 

the strengths and weaknesses of these test statistics. It is aimed to reinforce the findings by applying the 
survival data. 
 

In the second section of the study, the non-central 𝑡 test, the wald test, the likelihood ratio test and the 

score test were introduced for the test of the hypothesis of the inverse-coefficient of variation. 
 

In the third section, a simulation study was performed to compare the tests in the study. In the 

simulation study, there are comparisons of the type I error and power of the tests. These comparisons 

are made for different sample sizes, type I error and population number and the results are given in the 
figures and tables. Thus, a wide comparison was made in many aspects of the tests in the study. 
 

In the fourth section, the survival data of 188 patients who underwent bone marrow transplantation in 

bone marrow transplantation units were used as real data. According to the previous determination of 
the disease groups, whether there is any difference among the variations of survival times was 

investigated with inverse-coefficient of variation. 
 

In the last section, the results of the study were evaluated. Suggestions were made based on the results 
which obtained from the study. 
 

In the next section, some test statistics are used to test the hypothesis of the equality of the inverse-

coefficients of variation. These test methods are the non-central 𝑡 test, the wald test, the likelihood 

ratio test and the score test. The decision rules for testing the test statistics and hypotheses are given 
for each test method. 
 

2. SOME TESTS FOR THE EQUALITY OF INVERSE-COEFFICIENTS OF VARIATION 
 

Let, 𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑛𝑖 , 𝑖 = 1,2, … , 𝑘,  be i.i.d normal random variables with 𝜇𝑖 means and 𝜎𝑖
2 variance. 

Let show that, 𝐸(𝑋𝑖𝑗) = 𝜇𝑖 and 𝑉𝑎𝑟(𝑋𝑖𝑗) = 𝜎𝑖
2, 𝑖 = 1,2, … , 𝑘 and 𝑗 = 1,2, … , 𝑛𝑖. 𝛾𝑖 = 𝜇𝑖  𝜎𝑖  ⁄   is the 

population inverse-coefficient of variation for  the 𝑖-th population. The inverse-coefficient of variation 

for the sample is defined as 𝛾𝑖 = 𝑋𝑖  𝑆𝑖  ⁄  where 𝑋𝑖  and  𝑆𝑖
2 are the sample mean and variance for the 𝑖-

th sample. The equality of inverse-coefficients of variation hypothesis, 
 

𝐻0: 𝛾𝑖 = 𝛾, 𝑖 = 1,2, … , 𝑘, 𝛾 is known
 

(1) 

against  
 

𝐻1: 𝛾𝑖 ≠ 𝛾𝑗∗ , 𝑖 ≠ 𝑗
∗ 𝑖, 𝑗∗ = 1,2,… , 𝑘 for at least one pair of (𝑖, 𝑗∗)

 
hypothesis, it is desired to be tested. In the following section, some of the test statistics proposed for 

the test of the hypothesis of the equality of inverse-coefficients of variation are introduced. 

 

2.1. Non-Central 𝒕 Test 
 

Doornbos and Dijkstra [5] developed the Non-Central 𝑡-test by using the distribution of the sample 

inverse-coefficient of variation. The sample inverse-coefficient of variation is defined as 𝛾𝑖 =

𝑋𝑖  𝑆𝑖  ⁄ , 𝑖 = 1,2, … , 𝑘 and 𝑛 = ∑ 𝑛𝑖
𝑘
𝑖=1 . 𝛾̃𝑛 is the weighted mean of the inverse-coefficients of 

variation, is defined as 𝛾̃𝑛 = ∑ 𝑛𝑖
𝑘
𝑖=1 𝛾𝑖 𝑛⁄  and 𝑇 = ∑ 𝑛𝑖(𝛾𝑖 − 𝛾̃𝑛)

2𝑘
𝑖=1 . The expected value of 𝛾𝑖 is 
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𝐸(𝛾𝑖) = (
𝑛𝑖 − 1

2
)

1
2 Γ [

1
2
(𝑛𝑖 − 2)] 𝛾

Γ [
1
2
(𝑛𝑖 − 1)]

= 𝑒𝑖𝛾, 𝑖 = 1,2, … , 𝑘.   (2) 

From Eqs. (2), Doornbos and Dijkstra [5] showed that the variance was  
 

𝑉𝑎𝑟(𝛾𝑖) =
1

𝑛𝑖
(1 +

𝛾2

2
)

 

(3) 

by using Stirling's formula. The 𝛾 parameter in the given hypothesis Eqs. (1), is one of the status of  

𝛾2
 
and the unbiased estimator  for 𝛾2 is given as 

 

𝛾2 =
∑ 𝑛𝑖𝛾𝑖

2𝑘
𝑖=1 −∑

𝑛𝑖 − 1
𝑛𝑖 − 3

𝑘
𝑖=1

∑
𝑛𝑖(𝑛𝑖 − 1)
𝑛𝑖 − 3

𝑘
𝑖=1

. (4) 

The expected value of 𝑇 is 
 

       𝐸(𝑇) = 𝐸 [∑𝑛𝑖𝛾𝑖
2 −𝑁𝛾̃𝑛

2

𝑘

𝑖=1

] 

          = ∑
(𝑁 − 𝑛𝑖)(𝑛𝑖 − 1)

𝑁(𝑛𝑖 − 3)

𝑘

𝑖=1

+ 𝛾2 {∑
(𝑁 − 𝑛𝑖)(𝑛𝑖 − 1)

𝑁(𝑛𝑖 − 3)

𝑘

𝑖=1

+
1

𝑁
[∑𝑛𝑖

2𝑒𝑖
2 − (∑𝑛𝑖

2𝑒𝑖
2

𝑘

𝑖=1

)

2
𝑘

𝑖=1

]} . 

 

When 𝛾2 is placed instead of 𝛾2, 𝐸(𝑇) becomes 𝐸̂(𝑇). However, when the sample size is large 

enough, the expected value of 𝑇 is become 𝐸̂(𝑇) ≈ (1 + 1 2⁄ 𝛾2)(𝑘 − 1). According to this Non-

Central 𝑡-test statistic is 
 

𝐷 = (𝑘 − 1)
𝑇

𝐸̂(𝑇)
 (5) 

[5]. The 𝐷 statistic shows asymptotically 𝜒2 distribution with (𝑘 − 1) degree of freedom. 
 

2.2. Wald Test 
 

𝛾 = [𝛾1 , 𝛾2 , … , 𝛾𝑘]
𝑇vector is the unknown parameters for the inverse-coefficients of variation of 𝑘 

population and the 𝛾 = [𝛾1 , 𝛾2, … , 𝛾𝑘]
𝑇vector is also the maximum likelihood estimator of these parameters. 

For inverse-coefficient of variation, the Wald Test is solved by similar methods. Here the null hypothesis is 

 

𝐻0: ℎ1 = [𝛾1 − 𝛾2 , 𝛾2 − 𝛾3 , … , 𝛾𝑘−1 − 𝛾𝑘]
𝑇 = 0. (6) 

Let ℎ̂1 = [𝛾1 − 𝛾2 , 𝛾2 − 𝛾3, … , 𝛾𝑘−1 − 𝛾𝑘]
𝑇be the estimator of ℎ1 and the 𝐻 matrix is defined as 

 

𝐻(𝛾) = ‖
𝛿ℎ(𝛾)

𝛿𝛾
‖. 
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The variance of the estimator of 𝛾 parameter is  
 

𝑉̂1 = 𝑑𝑖𝑎𝑔 [(1 +
𝛾1
2

2
⁄ ) 𝑛1⁄ , (1 +

𝛾2
2

2
⁄ ) 𝑛2⁄ ,… , (1 +

𝛾𝑘
2

2
⁄ ) 𝑛𝑘⁄ ] (7) 

[8], and the Wald test statistic is 

𝑊𝑇 = ℎ̂1
𝑇[𝐻𝑉̂1𝐻

𝑇]
−1
ℎ̂1 (8) 

[11]. The Wald Test statistic for the inverse-coefficients of variation has a chi-square distribution with  
(𝑘 − 1) degrees of freedom. 
 

2.3. Likelihood Ratio Test 
 

Under the null hypothesis 𝐻0, the likelihood function is 
 

𝐿0 =∏(
1

𝜎𝑖√2𝜋
)

𝑛𝑖

exp [−
1

2
∑∑(

𝑥𝑖𝑗 − 𝛾𝜎𝑖

𝜎𝑖
)
2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

]

𝑘

𝑖=1

. (9) 

Nairy and Rao [10] have shown that their derivatives 
 

∑

[
 
 
 

2𝑛𝑖𝛾𝑖

−𝛾(𝛾𝑖) + √(𝛾2)(𝛾𝑖
2) + 4(1 + 𝛾𝑖

2)

− 𝑛𝑖𝛾

]
 
 
 

= 0

𝑘

𝑖=1

 (10) 

and  
 

𝜎𝑖 = −
1

2
[𝛾𝑋𝑖 −√(𝛾

2) (𝑋𝑖
2
) + 4 (𝑆𝑖

2 + 𝑋𝑖
2
)]  𝑖 = 1,2, … , 𝑘 (11) 

by using 𝛾 and 𝜎𝑖 parameters by utilizing the Eqs. (9). It is known that these equations do not have a 

numerical solution for 𝑘 > 2. Therefore, Nairy and Rao [10] used two-step estimators instead of one-step 
estimators. They made a different recommendation based on two-step estimators for the test statistics. 
 

When the estimator 𝛾𝑖 of the inverse-coefficient of variation is asymptotically normal distributed, 𝛾̃ =
∑𝑛𝑖𝛾𝑖 𝑛𝑖⁄  is the √𝑛-consistent estimator of  𝛾. According to that, in the Eqs. (10) 𝑓(𝛾) is placed on 

the left side. In order to find the two-step estimator, if the first-order derivative of 𝑓(𝛾) is taken,  

 

𝛿𝑓

𝛿𝛾
=∑2𝑛𝑖

𝑘

𝑖=1
{
 

 

𝛾𝑖𝛾 −
𝛾2𝛾𝑖

2 + 2(1 + 𝛾𝑖
3)

√(𝛾2)(𝛾̂𝑖
2) + 4(1 + 𝛾𝑖

2)
}
 

 

 

 

 

equality occurs. Here, instead of the 𝛾 parameter, the estimator 𝛾̃ 
 
is placed. Then, the two-step 

estimator  is 𝛾 = 𝛾̃ − 𝑓(𝛾̃) 𝑓′(𝛾̃)⁄ . In Eqs. (11), 𝛾
 
is replaced by 𝛾, 𝜎̂̂𝑖 is obtained. For the inverse-

coefficients of variation, the Likelihood Ratio test statistic is 
 

−2 ln 𝜆 =∑𝑛𝑖 ln (
𝜎̂̂𝑖
2

𝑆𝑖
2)

𝑘

𝑖=1

 (12) 
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[9]. The test statistic is also known as the LR test. This test statistic has asymptotically a 

𝜒2 distribution with  (𝑘 − 1) degree of freedom [4, 13]. 
 

2.4. Score Test 
 

Under 𝐻0 hypothesis, the likelihood function is 

 

ln 𝐿0 = −
1

2
∑ln 𝜎𝑖

2

𝑘

𝑖=1

−
1

2
∑∑(

𝑥𝑖𝑗 − 𝛾𝜎𝑖

𝜎𝑖
)
2

.

𝑛𝑖

𝑗=1

𝑘

𝑖=1

 
 

Using the Fisher information matrix indicated by Ι(𝛾) and making the necessary simplifications, Nairy 

and Rao [10] proposed the Score Test statistic for the equality of the inverse-coefficients of variation. 

The Score Test statistic was proposed as  
 

𝑆𝑇 =
(2 + 𝛾2)

2
∑

𝑎𝑖
2

𝑛𝑖

𝑘

𝑖=1

 (13) 

[10]. Here, 𝑎𝑖 = ∑ (𝑋𝑖𝑗 − 𝛾𝜎̂̂𝑖) 𝜎̂̂𝑖⁄𝑛𝑖
𝑗=1  where 𝛾 and 𝜎̂̂𝑖 are two-step estimators given in the Likelihood Ratio 

Test in Eqs. (10) and Eqs. (11). Score Test statistic shows 𝜒2 distribution with (𝑘 − 1) degree of freedom. 
 

3. SIMULATION STUDY 
 

This section covers comparisons of the tests in terms of type I error rate and power. In this simulation 

study, data generated from normal distributions were used, and 0.01 and 0.05 values were used for 

nominal type I error rate. This simulation study consists of two parts. In the first part, four tests in the 

study were compared in terms of type I error rate. Under 𝐻0, sample sizes for the comparisons for type 

I error rate were taken as 10, 20, 30, 40 and 50, and population numbers were taken as 3 and 6. The 

results of power comparisons for the tests were given in the second part. In power comparisons, data 

generated from normal distributions were used under 𝐻1. Population number was taken as 3, and 

different sample sizes were used. In the simulation study, the number of iterations for each simulation 

scenario is 10000 and R 3.5.1 program code was prepared for each test method. The results were 

presented in Figures and Tables. The algorithm steps for the simulation study are as follows: 
 

Step 1. Select the sample sizes (𝑛𝑖), type I error rates (𝛼), the number of iterations (𝑀) and population 

number (𝑘). 
 

Step 2. Generate a random sample sequence of the probability density function of the normal 
distribution with the selected scenarios under the hypothesis using R 3.5.1 program. 
 

Step 3. Calculate the inverse-coefficient of variations test statistics values defined in section 2 by using 

the sequence of 𝑛𝑖 random samples (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛𝑖 , 𝑖 = 1,2, … , 𝑘). 

 

Step 4. Calculate the critical value for testing the null hypothesis and compare each simulated test 
statistics values with the critical value. 
 

Step 5. Repeat (Step 3 and Step 4) 𝑀 times, then compute rejection rates (the rejection number divides 

into 𝑀) according to (Step 4) comparisons. 
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3.1. Comparisons for type I error rate 
 

In the comparisons for Type I error rate, the data generated from normal distributions with an inverse-

coefficient of variation of 2.5 were used. Then, the tests given in the second section were used to test 
the hypothesis of the equality of the inverse-coefficients of variation. In this way, the rejection rates of 

the null hypothesis were calculated. These rates which are known as experimental type I error rates 

were calculated by dividing the rejection number of the hypothesis of equality of inverse-coefficients 

of variation to 10000. Nominal type I error rates for the tests were taken as 0.01 and 0.05. When the 
sample sizes are 10, 20, 30, 40, 50, and number of populations are 3 and 6, the experimental type I 

error rates for the tests were calculated, and given in Figure 1. 
 

 
Figure 1. The experimental type I error rates for 𝛾 = 2.5 in case of different 𝑘 and 𝑛 values (a-d). 

 

The results given in Figure 1 can be interpreted as follows. When the nominal I type error rate is 0.01 

and population number is 3, the D and WT tests for small sample sizes gave the experimental type I 

error rates very close to the nominal type I error rate, but the LR and ST tests yielded poor results. 
 

On the other hand, when the sample sizes increase, the experimental type I error rates for all tests are 
close to the nominal type I error rate. When the nominal I type error rate is 0.01 and population number 

is 6, the WT test for all sample sizes is the best test for the type I error rate, and the D test also gave good 

results. In this scenario, when the sample sizes increased, the experimental type I error rates for the ST 
test are close to nominal type I error rate, but these ratios for the LR test were quite different from 0.05. 
 

When the nominal I type error rate is 0.05 and population number is 3, the WT test for small sample 

sizes gave very good results in terms of type I error rate, and these rates for the other tests were not 
close to 0.05. As the sample size increased, it was found that the experimental type I error rates of the 

D, LR and ST tests approached to nominal I type error rate, and the error rates of these tests for 𝑛 = 50 
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were quite close to nominal type I error rate. Similar to the results in Figure 1 (c), when nominal type I 

error rate is 0.05 and population number is 6, the D and WT tests for small sample sizes showed good 

results in terms of type I error rate, but the LR and ST tests yielded poor results. On the other hand, 
although these ratios for the D and ST tests are very close to 0.05 for large sample sizes, these ratios 

for the LR and ST tests are about 0.06. 
 

Consequently, although the experimental type I error rates of the LR and ST tests for small sample 
sizes are not close to the nominal type I error, the experimental type I error rates of all tests for large 

sample sizes are generally close to nominal type I error rate. 
 

3.2. Power Comparisons 
 

In order to compare the tests in terms of power, simulation scenarios with various sample sizes from 
three normal distributions were used. The cases where the sample sizes are equal and not equal were 

considered. When the sample sizes are not equal, the cases where the differences between the sample 

sizes are both small and large, and only one of the sample sizes is different is taken into account. In 

this simulation study, 0.05 and 0.01 values were used for nominal type I error rate. The following 
three scenarios are used for normal distributions having various means and variances. 
 

𝐶1 = 𝑁(50,400), 𝑁(50,225), 𝑁(50,225)

𝐶2 = 𝑁(50,400), 𝑁(50,225), 𝑁(50,100)

𝐶3 = 𝑁(50,400), 𝑁(50,100), 𝑁(50,100).
 

 

 

As can be easily seen in the above scenarios, only one of the inverse-coefficients of variations is 

different in C1 and C3 scenarios, but all three of these coefficients are different in the C2 scenario. Under
 

𝐻1, the hypothesis of the equality of the inverse-coefficients of variation was tested for 10000 times with 
the data generated in each of these scenarios. These tests were performed according to the significance 

level of both 0.01 and 0.05. Then, the experimental power values for each of these tests were calculated 

by dividing the rejection number of the hypothesis of the equality of the inverse-coefficients of variation 

to 10000. As is known, the degree of difference of the distribution parameters, sample sizes and the type 
I error rate level are factors affecting the power of the test. For this reason, the above simulation 

scenarios have been created. The experimental power values of the tests were given in Tables 1-4. 
 

Table 1. While the sample sizes are equal, and 𝛼 = 0.01, 0.05, the experimental power values of the tests for the C1, C2 and 

C3 scenarios   

 

 C1 C2 C3 C1 C2 C3 

𝜶 Test 𝑛𝑖 =(10,10,10) 𝑛𝑖 =(15,15,15) 

0.01 D .0112 .0634 .0465 .0228 .1945 .1980 

 WT .0329 .1315 .2920 .0503 .2682 .4967 

 −𝟐 𝐥𝐧𝝀 .0338 .4577 .2883 .0960 .8017 .5897 

 ST .0894 .1911 .3256 .0965 .2678 .4732 

0.05 D .0550 .2196 .2233 .0995 .4539 .5168 

 WT .1288 .3597 .5291 .1660 .5340 .7183 

 −𝟐 𝐥𝐧𝝀 .1787 .7971 .6318 .2803 .9529 .8274 

 ST .1682 .3285 .4984 .1905 .4564 .6888 

𝜶 Test 𝑛𝑖 =(25,25,25) 𝑛𝑖 =(50,50,50) 

0.01 

 

D .0510 .5265
 

.5854 .1738 .9379 .9724 

WT .0967 .5610 .7912 .2493 .9342 .9895 

−𝟐 𝐥𝐧𝝀 .2338 .9876 .8936 .5354 .9999 .9974 

ST .1290 .4606 .7638 .2766 .8956 .9926 

0.05 D .1794 .7764 .8508 .4014 .9865 .9954 

WT .2503 .8003 .9240 .4709 .9879 .9976 

−𝟐 𝐥𝐧𝝀 .4527 .9968 .9674 .7083 .9999 .9997 

ST .2697 .7274 .9271 .4869 .9886 .9995 
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As seen above, the experimental power values in Table 1 are for equal sample sizes. In the C2 scenario 

where three of the inverse-coefficients of variation are different, the −2 ln 𝜆 test is the most powerful 

test for both levels of significance. Similar results were obtained in the C1 and C3 scenarios where 
only one of the inverse-coefficients of variation was different. Except in the case of equal sample sizes 

10 and 15, and 𝛼 = 0.01,  in all other cases it is seen that the −2 ln 𝜆 test is the most powerful test for 

both levels of significance. While each of the sample sizes was 10 and 𝛼 = 0.01, the ST test gave the 

largest power values in the C1 and C3 scenarios. On the other hand, while 𝛼 = 0.05, the ST test had 

the greatest power in the C1 scenario, while the −2 ln 𝜆 test gave the greatest power value in the C3 

scenario. As expected, the powers of the tests increased as the sample sizes increased. Similarly, when 

the nominal type I error rate increases, it seems that the power of the tests increases as expected. 

 
As seen in Table 1, whereas three of the inverse-coefficients of variation were different, the D test for 

small sample sizes and the ST test for large sample sizes gave the worst results in terms of power. On 
the other hand, when only one of the inverse-coefficients of variation is different, it was observed that 

the D test gave the worst results in terms of power in all the scenarios considered. 

 
Table 2. While the sample sizes are all different and 𝛼 = 0.01, 0.05, experimental power values of the tests for the C1, C2 

and C3 scenarios  

 

 C1 C2 C3 C1 C2 C3 

𝜶 Test 𝑛𝑖 =(9,10,11) 𝑛𝑖 =(14,15,16) 

0.01 D .0160 .0956 .0735 .0294 .2363 .2381 

 WT .0350 .1490 .2872 .0526 .2820 .4928 

 −𝟐 𝐥𝐧𝝀 .0396 .4884 .2900 .1044 .8182 .5920 

 ST .0667 .1782 .3037 .0843 .2602 .4615 

0.05 D .0809 .2812 .3016 .1199 .4927 .5651 

 WT .1326 .3781 .5195 .1679 .5450 .7140 

 −𝟐 𝐥𝐧𝝀 .1994 .8078 .6208 .2937 .9452 .8224 

 ST .1397 .3083 .4558 .1675 .4460 .6630 

𝜶 Test 𝑛𝑖 =(24,25,26) 𝑛𝑖 =(49,50,51) 

0.01 

 

D .0591
 

.5617
 

.6192 .1874 .9429 .9704 

WT .0987 .5695 .7859 .2478 .9402 .9874 

−𝟐 𝐥𝐧𝝀 .2450 .9858 .8999 .5395 .9999 .9968 

ST .1164 .4580 .7483 .2626 .9004 .9911 

0.05 D .1990 .7991 .8587 .4055 .9863 .9952 

WT .2507 .8068 .9127 .4563 .9863 .9980 

−𝟐 𝐥𝐧𝝀 .4455 .9980 .9581 .7013 .9998 .9989 

ST .2497 .7206 .9061 .4643 .9853 .9993 

 

Table 2 includes the experimental power values of the tests while the sample sizes are different. 

Similar to the results in Table 1, in the C2 scenario where all three inverse-coefficients of variation are 

different, the −2 ln 𝜆 test is clearly the most powerful test. Except the cases where the sample sizes are 

9,10,11 and 𝛼 = 0.01, the −2 ln 𝜆 test again gave the highest power values. However, it was seen that 

the ST test gave the greatest power values when the sample sizes are 9,10,11 and 𝛼 = 0.01. As 

expected, when the nominal type I error rate increases, it seems that the power of the tests increases. 
When the results in Table 2 are examined, it is seen that the power of the tests increases as the sample 

sizes increase. 

 
On the other hand, when all of the inverse-coefficients of variation are different, the ST and D tests 

generally gave lower power values. However, when only one of these coefficients is different, the D 

test gave the lowest power values. 
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Table 3. While the sample sizes are all different and 𝛼 = 0.01, 0.05, experimental power values of the tests for the C1, C2 

and C3 scenarios  
 

 C1 C2 C3 C1 C2 C3 

𝜶 Test 𝑛𝑖 =(3,13,14) 𝑛𝑖 =(4,20,21) 

0.01 D .1690 .2830 .2647 .1976 .4416 .4284 

 WT .0296 .1382 .1791 .0384 .2267 .2559 

 −𝟐 𝐥𝐧 𝝀 .1389 .5497 .1986 .1579 .6933 .2643 

 ST .1146 .1355 .1348 .0848 .1571 .1400 

0.05 D .3096 .4911 .4626 .3515 .6428 .6010 

 WT .1080 .3343 .3113 .1200 .4629 .4019 

 −𝟐 𝐥𝐧 𝝀 .3237 .7090 .4037 .3169 .8109 .4681 

 ST .1575 .2447 .2338 .1384 .3234 .2605 

𝜶 Test 𝑛𝑖 =(6,34,35) 𝑛𝑖 =(9,70,71) 

0.01 

 

D .2627
 

.6660
 

.6403 .4064 .9195 .8517 

WT .0564 .4244 .3868 .0756 .7907 .5701 

−𝟐 𝐥𝐧 𝝀 .2215 .8733 .4086 .3372 .9747 .5819 

ST .0606 .2393 .1659 .0566 .6370 .2089 

0.05 D .4142 .8240 .7500 .5479 .9673 .8942 

WT .1450 .6807 .5384 .1917 .9193 .7022 

−𝟐 𝐥𝐧 𝝀 .3600 .9274 .5657 .4377 .9840 .6706 

ST .1155 .5272 .3069 .1274 .8858 .3876 

 

As seen above, the differences between the sample sizes in Table 3. are generally larger than those of 
Table 2. In the C2 scenario where all of inverse-coefficients of variation are different, it is clear that the 

−2 ln 𝜆 test is the most powerful test. In the C1 and C3 scenarios where one of the inverse- coefficients 

of variation is different, the D test has the greatest power values. As expected, when both the nominal I-

type error rate and the sample sizes increase, it is seen that the power values of the tests increase. 
 

On the other hand, when all of the inverse-coefficients of variation were different, the ST test gave the 

lowest power values. In the C1 and C3 scenarios where one of the inverse-coefficients of variation 

were different, the WT test for small sample sizes gave lower power values than the other tests. 
However, similar to the results from previous tables, it was found that the ST test for large sample 

sizes gave lower power values than the other tests. 
 
Table 4. While one of the sample sizes is different and 𝛼 = 0.01, 0.05, experimental power   values of the tests for the C1, 

C2 and C3 scenarios  

𝑘 =3 C1 C2 C3 C1 C2 C3 

𝜶 Test 𝑛𝑖 =(4,4,22) 𝑛𝑖 =(10,10,25) 

0.01 D .4044 .5823 .5894 .1797 .5451 .6041 

 WT .0318 .2284 .2137 .0505 .3822 .4442 

 −𝟐 𝐥𝐧𝝀 .3151 .5395 .4803 .2263 .8136 .6502 

 ST .1231 .1116 .1566 .0309 .1754 .2585 

0.05 D .5573 .7424 .7406 .3440 .7545 .7780 

 WT .1165 .4250 .3864 .1570 .6238 .6500 

 −𝟐 𝐥𝐧𝝀 .4259 .6641 .5958 .3912 .9107 .7915 

 ST .1704 .2176 .2675 .0842 .3933 .4429 

𝜶 Test 𝑛𝑖 =(14,14,47) 𝑛𝑖 =(15,15,120) 

0.01 

 

D .3498
 

.8539
 

.8617 .6517 .9830 .9714 

WT .0850 .6501 .6493 .1140 .8356 .7666 

−𝟐 𝐥𝐧𝝀 .3732 .9382 .8101 .4897 .9270 .7918 

ST .0257 .3331 .3584 .0571 .4061 .3280 

0.05 D .5104 .9337 .9313 .7624 .9932 .9818 

WT .2101 .8339 .8095 .2524 .9259 .8686 

−𝟐 𝐥𝐧𝝀 .5017 .9671 .8736 .5465 .9465 .8263 

ST .0817 .6127 .5951 .1329 .6379 .5488 
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Table 4 contains the experimental power values of the tests when only one of the sample sizes is different 

and quite larger than the others. In the C2 scenario in which all of inverse-coefficients of variation were 

different, the D and −2 ln 𝜆 tests gave higher power values than the other two tests. In the C1 and C2 
scenarios where only one of the inverse-coefficients of variation is different, the DT test gave the greatest 

power values for most cases. However, it was observed that the −2 ln 𝜆 test for the sample sizes of 10, 

10 and 25 generally yielded better power results than the other tests. Therefore, while the sample sizes 

and type I error rate increase, it is seen that the powers of the tests generally increase as expected. 
 

On the other hand, while all of inverse-coefficients of variation were different, the ST test yielded the 

worst results in terms of power. Except the C1 scenario, where the sample sizes were 4, 4, and 22, the 

ST test yielded the worst results in all scenarios considered. In the case of C1 where the sample sizes 
are 4, 4 and 22, the WT test yielded the worst power values. 
 

4. REAL DATA APPLICATION 
 

In real data application, the data collected by Gezgen et al. [6] from 188 patients who underwent bone 

marrow transplantation in bone marrow transplantation units between 2010 -2016 were used. Data 

were obtained from bone marrow transplantation units by using a retrospective study. According to the 
experts in the bone marrow transplantation unit and the previous scoring studies, they grouped the 

diseases into risk factors.  

 

 
Figure 2. Box-plot of survival time according to hematological disorders 

 

It was aimed to investigate whether there is a statistical difference among the variations of survival 

times of patients according to the grouped diseases. Box-plot in Figure 2 was drawn to observe the 

structure of the distributions. According to this box-plot, it was observed that the distributions of 
Acute Leukemia and Solid Tumor were right-skewed, and Thalassemia distribution is left-skewed. 

The results of descriptive statistics and analysis of disease groups are given in Table 5. 
 

Table 5. Results of descriptive and test statistics of hematological diseases 
 

Hematological 

Disorders 

𝒏 𝑿𝒊 𝑺𝒊 𝜸̂𝒊 D WT LR ST 

Thalassemia 77 1512.377 749.8169 2.0169 4.1155 7.8791a 9.7793a,b 7.2223a 
Acute Leukemia 80 1208.925 862.3277 1.4019     
Solid Tumor 31 1032.839 820.5978 1.2586     

                   a,b Denotes statistical significance level at 0.05 and 0.01 
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As can be seen from the results of the analysis in Table 5, the equality of the inverse-coefficients of 

variation with the WT and ST tests could not be rejected at the significance level of 0.01. But, it is 

seen that the hypothesis of the equality of inverse-variation coefficients will be rejected with these 
tests according to the p-values in Table 5 at significance level of 0.05. On the other hand, the equality 

of inverse-variation coefficients by the D test cannot be rejected at both significance levels of 0.01 and 

0.05. Besides, it is clear that the hypothesis of the equality of inverse-variation coefficients with LR test 
will be rejected at both significance levels of 0.01 and 0.05. As it will be remembered, according to the 

simulation results in the previous section, the most powerful test was found to be the LR (−2 ln 𝜆) test 

in general. It is understood that the result of this application supports the simulation findings. 

 

5. CONCLUSIONS  
 

This section is on the interpretation of the results of the simulation study for the comparison of the 

tests in terms of type I error rate and power. When the tests were compared with respect to type I error 

rate, it was observed that the D and WT tests for small sample sizes gave the experimental type I error 
rates quite close to the nominal type I error rate in all scenarios considered. In these sample sizes, it 

was seen that the LR (−2 ln 𝜆) test in case where number of populations is 3, and ST test in case 

where number of populations were 6 yielded the worst experimental type error I rates. In scenarios 
with a population number of 3, it is understood that the experimental type I error rates of the LR and 

ST tests converge to the nominal type I error, and that the experimental type I error rates of all tests 

for 𝑛 = 50 are almost equal to the nominal type I error. In scenarios where the number of populations 

is 6, it is seen that the experimental type I error rates of the D and WT tests for large sample sizes are 
quite close to the nominal type I error. On the other hand, the experimental type I error rates of LR 

and ST tests for these sample sizes have improved slightly, but these ratios for the ST test are slightly 

different from the nominal type I error. 
 

As a result, although the experimental type I error rates of the LR and ST tests for small sample sizes 

are not close to the nominal type I error, the experimental type I error rates of all tests for large 

sample sizes are generally close to nominal type I error rate. 
 

In scenarios where the sample sizes are equal and the inverse-coefficients of variation are different, 

the −2 ln 𝜆 test is the most powerful test. In this scenario, the D test for small sample sizes yielded 

poor results in terms of power, whereas the ST test for large sample sizes yielded poor results. On the 

other hand, when only one of the inverse-coefficients of variation is different, the most powerful test 

is the -2lnL test, while the worst test is the D test.  
 

In scenarios where the sample sizes are different but close to each other (Table 2.) and three of the 

inverse-coefficients of variation are different, the −2 ln 𝜆 test is generally powerful than the other 
tests. For this scenario, the ST and D tests gave very low experimental power results. When only one 

of the inverse-coefficients of variation was different, it was observed that the −2 ln 𝜆 test was the 

most powerful test and the D test had the lowest power. 
 

In the scenario where the sample sizes are different and one is quite small (Table 3.) compared to the 
others, when all of the inverse-coefficients of variation are different, it was found that the most 

powerful test was the −2 ln 𝜆 test and the ST test had the lowest power results. When only one of the 

inverse-coefficients of variation was different, it was observed that the D test was the most powerful 

test and the ST test had the lowest power. 
 

In the scenario where the sample sizes are different and one is quite larger (Table 4.) compared to the 

others, when all of the inverse-coefficients of variation are different, the D and −2 ln 𝜆 tests were found 

to be powerful than the other tests and the ST test yielded the worst results. On the other hand, when 

only one of the inverse-coefficients of variation was different from the others, the D test was generally 
better than the other tests in terms of power, and the ST test was the test with the lowest power. 
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Survival data of 188 patients who underwent bone marrow transplantation from bone marrow 

transplantation units were collected by a retrospective study. In order to determine whether there is 

any difference among the variations of survival times in the disease groups, the inverse coefficient of 
variation was used. Then, the hypothesis of the equality of the inverse-coefficients of variation was 

tested. According to the results of the analysis, the LR statistic was significant at both significance 

levels, but the D test was not significant at the significance levels of 0.01 and 0.05 (Table 5.). Thus, it 

is understood that these results are consistent with the simulation results. 
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