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Abstract 

Given a graph 𝐺 = (𝑉, 𝐸), a subset 𝑀 of 𝐸 is called a matching if no two edges in 

𝑀 are adjacent. A matching is said to be maximal if it is not a proper subset of any other 

matching. The maximal matching polytope associated with graph 𝐺 is the convex hull of 

the incidence vectors of maximal matchings in 𝐺. In this paper, we introduce new classes 

of valid inequalities for the maximal matching polytope.  

Keywords: Matching, Maximal matching, Valid inequalities, Matching polytope, 

Maximal matching polytope 

Maksimal Eşleme Politopu için Geçerli Eşitsizlikler 

Öz 

Verilen bir 𝐺 = (𝑉, 𝐸) çizgesinde, uçları kesişmeyen kenarlardan oluşan 𝑀 ⊆ 𝐸 

kümesine eşleme denir. Herhangi başka bir eşlemenin öz altkümesi olmayan bir eşlemeye 

maksimal eşleme denir. 𝐺 çizgesindeki maksimal eşlemelerin insidans vektörlerinin 

konveks örtüsüne 𝐺 kümesi ile ilişkili maksimal eşleme politopu adı verilir. Bu 

çalışmada, maksimal eşleme politopu için yeni geçerli eşitsizlik sınıfları sunulmaktadır. 

Anahtar Kelimeler: Eşleme, Maksimal eşleme, Geçerli eşitsizlikler, Eşleme 

politopu, Maksimal eşleme politopu 
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1. Introduction 

Let 𝐺 = 𝑉, 𝐸  be a simple undirected graph where 𝑉 is the set of vertices and 𝐸 is 

the set of edges of 𝐺. If 𝑒 = 𝑖, 𝑗 ∈ 𝐸, we say that the vertices 𝑖 and 𝑗 are adjacent. Two 

edges 𝑒, 𝑓	 𝑒 ≠ 𝑓  are said to be adjacent if 𝑒 ∩ 𝑓 ≠ ∅. A vertex 𝑖 is incident to an edge 

𝑒 if 𝑖 ∈ 𝑒. The set of all edges incident to a vertex 𝑖 ∈ 𝑉 is denoted by 𝐸3. The cardinality 

of 𝐸3 is called the degree of vertex 𝑖. Given two graphs 𝐺 = (𝑉, 𝐸) and 𝐻 = (𝑉, 𝐸), we 

say that 𝐻 is a subgraph of 𝐺, denoted by 𝐻 ⊴ 𝐺, if 𝑉 ⊆ 𝑉 and 𝐸 ⊆ 𝐸. Following [1] and 

[2], we call a subgraph 𝑄 of 𝐺 a clique if every pair of vertices in 𝑄 are adjacent in 𝑄. A 

subgraph 𝐶 of 𝐺 is said to be a cycle if 𝐶 is a connected graph and the degree of each 

vertex in 𝐶 is two. A cycle in 𝐺 is called an odd cycle if it has an odd number of vertices 

and an even cycle if has an even number of vertices. For a subgraph 𝐻 of 𝐺, 𝑉(𝐻) and 

𝐸(𝐻) represent the set of vertices and edges of 𝐻, respectively.  

Given a graph 𝐺 = (𝑉, 𝐸), a subset 𝐼 of 𝑉 is called an independent set if no two 

vertices in 𝐼 are adjacent. A subset 𝑀 of 𝐸 is called a matching if no two edges in 𝑀 are 

adjacent. Given a matching 𝑀 in 𝐺 = 𝑉, 𝐸 , any vertex in ∪:∈; 𝑒 is said to be matched 

and any vertex in 𝑉 −∪:∈; 𝑒 is said to be unmatched by the matching 𝑀. If all the vertices 

in 𝑉 are matched by the matching 𝑀, then 𝑀 is called a perfect matching. A matching is 

said to be maximal if it is not a proper subset of any other matching. In Fig. 1, three 

maximal matchings are displayed for a given graph, where the bold edges represent the 

edges selected in each maximal matching. Note that the maximal matching in Fig. 1c is 

also a perfect matching. 

Given an edge weight 𝑤: for each 𝑒 ∈ 𝐸, the minimum weighted maximal matching 

(MWMM) problem is the problem of finding a maximal matching in 𝐺 = (𝑉, 𝐸) of 

minimum weight, where the weight of a maximal matching 𝑀 is defined as ∪:∈; 𝑤: [3]. 

When all the edge weights are 1, the MWMM problem becomes the problem of finding 

a maximal matching of minimum cardinality and is called the minimum maximal 

matching (MMM) problem. The MMM problem is in general NP-hard [4] and therefore 

the MWMM problem is in general NP-hard as well, whereas the problems of finding a 

minimum/maximum weighted matching or minimum/maximum weighted perfect 

matching are all solvable in polynomial time, see, e.g., [5]. In particular, the MMM 
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problem has been shown to be NP-hard in bipartite graphs with maximum degree 3 [4], 

planar cubic graphs [6], and 𝑘-regular bipartite graphs for any 𝑘 ≥ 3 [7]. On the positive 

side, it has been shown that the MMM problem can be solved in polynomial time in some 

classes of graphs including trees [8], series-parallel graphs [9], and block graphs [10]. 

There are also some results in the literature that investigates the MMM problem from an 

approximation point of view, see e.g., [11, 12].  

   

(a) (b)  (c) 

Figure 1. Examples of maximal matchings 
 

The MWMM problem is used in applications where it is desirable to obtain a 

maximum weighted matching in a network (with positive edge weights) when the user 

has no control on the edges that are going to be selected in the matching. In such cases, 

the solution of the MWMM problem provides the worst-case performance of the network 

when the network is saturated (i.e., the minimum possible weight in a maximal matching). 

Yannakakis and Gavril provide such an application in a telephone switching network in 

[4]. For other applications of the MWMM, the reader is referred to [7]. 

Most of the studies in the literature on the MWMM problem explores the 

unweighted case, i.e., the MMM problem. These results, however, do not immediately 

generalize to the weighted case, i.e., to the MWMM problem [3]. Among the few studies 

on the MWMM problem with arbitrary edge weights, Taşkın and Ekim [3] propose an 

integer programming (IP) formulation for the MWMM problem. This is the first study on 

the MWMM problem from an optimization point of view. Moreover, they propose some 

valid inequalities for the problem. The same authors propose a decomposition algorithm 
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for the MWMM problem in [13]. More recently, Tural [14] investigates the IP 

formulation proposed in [3] and shows that the linear programming (LP) relaxation of it 

always returns an integral solution for trees and therefore is able to solve the MWMM 

problem in trees. In other words, the LP relaxation of the IP formulation proposed in [3] 

characterizes the maximal matching polytope in trees.  

In this paper, we propose several new classes of valid inequalities for the maximal 

matching polytope. The structure of the paper is as follows. In the next section, we 

describe the IP formulation for the MWMM problem proposed in [3] and discuss the 

known results about the maximal matching polytope including the valid inequalities. We 

then propose several new classes of valid inequalities for the maximal matching polytope.  

2. An IP Formulation for the MWMM Problem and Known Valid 

Inequalities 

Given a graph 𝐺 = (𝑉, 𝐸) and an edge weight 𝑤: for each 𝑒 ∈ 𝐸, an IP formulation 

is introduced for the MWMM problem in [3]. We first define the decision variables of the 

formulation. For each edge 𝑒 ∈ 𝐸, 𝑥: is a binary variable that takes the value one if and 

only if 𝑒 is selected in the maximal matching. Moreover, for each vertex 𝑖 ∈ 𝑉, 𝑦3 is a 

binary variable that takes the value one if and only if vertex 𝑖 is matched by the maximal 

matching. An IP formulation for the MWMM is given below [3]. 

 																																				𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒		 𝑤:𝑥:
:∈F

  

(IP-MWMM)        𝑠. 𝑡.		 𝑥::∈FJ = 𝑦3 ≤ 1, ∀𝑖 ∈ 𝑉 (1) 

                      𝑦3 + 𝑦O − 𝑥: ≥ 1, ∀𝑒 = 𝑖, 𝑗 ∈ 𝐸 (2) 

 𝑥: ∈ 0,1 , ∀𝑒 ∈ 𝐸			 (3) 

The objective function of (IP-MWMM) minimizes the weight of the maximal 

matching. Constraints in (1) make sure that the selected edges form a matching by 

enforcing that at most one edge that is incident with vertex 𝑖 is selected.  Moreover, they 

assure that vertex 𝑖 is matched, i.e., 𝑦3 = 1, if and only if an edge that is incident with 𝑖 

is included in the maximal matching. Constraints in (2) imply that the set of the selected 

edges is a maximal matching by enforcing that if 𝑥: = 0 for some edge 𝑒 = {𝑖, 𝑗}, then at 

least one of 𝑦3 and 𝑦O should be one, i.e., at least one of 𝑖 and 𝑗 should be matched. Finally, 
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binary restrictions on the 𝑥 variables are defined in (3). Note that the 𝑦 variables in (IP-

MWMM) are used to make the exposition simpler. They are not necessary in the 

formulation and can be dropped. The LP relaxation of (IP-MWMM) is obtained by 

replacing the constraints in (3) by the constraints 0 ≤ 𝑥: ≤ 1, ∀𝑒 ∈ 𝐸. 

Any feasible solution (𝑥, 𝑦) of (IP-MWMM) corresponds to a maximal matching 

in 𝐺 = (𝑉, 𝐸). More formally, the set 𝑒 ∈ 𝐸	 	𝑥: = 1} is a maximal matching in 𝐺. On 

the reverse side, for any maximal matching 𝑀, if we define 𝑥: as one if 𝑒 ∈ 𝑀 and zero 

otherwise, then the vector 𝑥 = [𝑥:]:∈F is a feasible solution of (IP-MWMM) (the values 

of the 𝑦 variables are determined based on the values of the 𝑥 variables). In this case, we 

say that 𝑥 is the incidence vector of the maximal matching 𝑀. 

Given a graph 𝐺 = (𝑉, 𝐸), the maximal matching polytope associated with 𝐺, 

denoted by 𝑀𝑀(𝐺), is the convex hull of the incidence vectors of maximal matchings in 

𝐺. Denoting by 𝐼𝑃(𝐺) and 𝐿𝑃(𝐺) the feasible regions of (IP-MWMM) and its LP 

relaxation, respectively, we have that 𝑀𝑀(𝐺) = 𝑐𝑜𝑛𝑣(𝐼𝑃(𝐺)), where 𝑐𝑜𝑛𝑣(𝐼𝑃(𝐺)) is 

the convex hull of 𝐼𝑃(𝐺). In general, we have that 𝑀𝑀 𝐺 ⊆ 𝐿𝑃(𝐺). In [14], the author 

shows that if G is a tree, then the maximal matching polytope associated with 𝐺 is 

characterized by the LP relaxation of (IP-MMWM), i.e., 𝑀𝑀 𝐺 = 𝐿𝑃(𝐺). This implies 

that the MWMM problem in trees can be solved as an LP problem.  

Taşkın and Ekim [3] propose two classes of valid inequalities for the maximal 

matching polytope, i.e., inequalities that are satisfied by the incidence vectors of all 

maximal matchings in 𝐺. For any clique 𝑄 in 𝐺, the authors show that the inequality  

 𝑦3
3∈Z([)

≥ 𝑉 𝑄 − 1 (4) 

called the clique inequality is valid for the maximal matching polytope. To see that (4) is 

valid for the maximal matching polytope, observe that if less than 𝑉 𝑄 − 1 many 

vertices of the clique 𝑄 are included in a matching, then the matching cannot be maximal 

as there exist two adjacent vertices that are both unmatched by the matching. Therefore, 

any feasible solution (𝑥, 𝑦) of (IP-MWMM) satisfies (4). Note that if there exist two 

cliques 𝑄\ and 𝑄] in 𝐺 such that 𝑄\ ∪ 𝑗 = 𝑄], then the clique inequality written for 𝑄] 
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together with 𝑦O ≤ 1 imply the clique inequality written for 𝑄\. Therefore one does not 

need to consider clique inequalities for cliques that are not inclusion-wise maximal. 

Taşkın and Ekim perform a computational experiment in [3] by enumerating all maximal 

cliques and show that addition of the corresponding clique inequalities to formulation (IP-

MWMM) results in lower computational times in solving the MWMM problem by a 

commercial solver.  

Another valid inequality proposed in [3] for the maximal matching polytope is 

 𝑦3
3∈Z(^)

≥
𝑉 𝐶
2

, (5) 

where 𝐶 is an odd cycle in 𝐺. To see that (5) is valid for the maximal matching polytope, 

assume that the incidence vector of some maximal matching 𝑀 in 𝐺 does not satisfy (5) 

for some odd cycle 𝐶 in 𝐺. This implies that among the vertices on this cycle, at most 
Z ^
]

− 1 many of them are matched by 𝑀. This, however, again implies that there are 

two adjacent vertices in 𝐶 and therefore in 𝐺 that are both unmatched by the maximal 

matching resulting in a contradiction. Even though the inequality (5) when written for an 

even cycle is still valid for the maximal matching polytope, it is unnecessary as a stronger 

inequality is implied by the inequalities in (2). 

As any maximal matching is a matching, valid inequalities for the matching 

polytope are also valid for the maximal matching polytope. It is widely known that the 

matching polytope associated with a graph 𝐺 is characterized by the inequalities given in 

(1) without the 𝑦 variables and the following inequalities, see e.g., [5]. 

 𝑥:
:∈F(`)

≤
𝑉 𝐻
2

, ∀𝐻 ⊴ 𝐺	𝑤𝑖𝑡ℎ	 𝑉 𝐻 	𝑜𝑑𝑑 (6) 

 0 ≤ 𝑥: ≤ 1, ∀𝑒 ∈ 𝐸			 (7) 

The inequalities in (6) therefore form another class of valid inequalities for the 

maximal matching polytope. Note that for bipartite graphs, the matching polytope is 

characterized by the inequalities given in (1) and (7) only. 
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Adding valid inequalities to an IP formulation makes it stronger. Branch-and-bound 

algorithms usually enumerate a smaller number of nodes for a strengthened formulation. 

Therefore, if the solution times of the LP relaxations are not increased too much by the 

addition of the valid inequalities, this may result in lower computational times for the 

strengthened formulation. Moreover, addition of some classes of valid inequalities may 

lead to solving the problem as an LP in certain cases. In this paper, we investigate the 

maximal matching polytope and propose new classes of valid inequalities for it. One of 

these inequalities generalizes both of the valid inequalities proposed in [3]. We hope that 

clever use of the valid inequalities we propose may expedite the solution times of the 

MWMM problem. Moreover, the new inequalities may help researchers in characterizing 

the maximal matching polytope in some classes of graphs and therefore may allow them 

to solve the MWMM problem as an LP in those graph classes. 

3. Maximal Matching Polytope and New Valid Inequalities 

It is currently not known for which graphs 𝐺, we have that 𝑀𝑀 𝐺 = 𝐿𝑃(𝐺). It is 

shown in [14] that if 𝐺 is a tree, then 𝑀𝑀 𝐺 = 𝐿𝑃(𝐺). Is there any connected graph 𝐺 

which is not a tree for which 𝑀𝑀 𝐺 = 𝐿𝑃(𝐺)? If 𝐺 contains an odd cycle, then one can 

easily show that 𝑀𝑀 𝐺 ≠ 𝐿𝑃(𝐺). To see this, let 𝐶 be an odd cycle in 𝐺. Then for each 

edge 𝑒 ∈ 𝐸(𝐶), we can take 𝑥: as 0.5. For each edge 𝑓 not in 𝐶 that is incident with at 

least one vertex of 𝐶, we can take 𝑥d as 0. We then remove 𝐶 and all the edges that are 

incident with at least one vertex of 𝐶 from 𝐺 to obtain a new graph say 𝐻. Afterwards, 

we find a maximal matching in 𝐻, i.e., give 0 or 1 value to 𝑥e for each 𝑔 ∈ 𝐸(𝐻). Now, 

the vector 𝑥 constructed in this manner is in 𝐿𝑃(𝐺). However, 𝑥 is not in 𝑀𝑀(𝐺) as 𝑥 is 

not in the matching polytope associated with 𝐺. This can be seen by observing that 𝑥 

violates the constraint (6) that is written for the cycle 𝐶. 

Considering now bipartite graphs, i.e., graphs that do not contain any odd cycle, is 

𝑀𝑀 𝐺 = 𝐿𝑃(𝐺) for every bipartite graph 𝐺? Two bipartite graphs 𝐺\ and 𝐺] are 

displayed in Fig. 2. For 𝐺\, a feasible solution, say 𝑥, of the LP relaxation of (IP-MWMM) 

is also given in Fig. 2a. This solution is in the matching polytope associated with 𝐺\ and 

also in 𝐿𝑃(𝐺\). One can show that 𝑥 is not in 𝑀𝑀 𝐺\  (we will show this later!). Note 

that 𝑥 does not violate any of the proposed valid inequalities (4), (5), or (6) for the 
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maximal matching polytope. On the other hand, for the second graph 𝐺] displayed in Fig. 

2b, we have that 𝑀𝑀 𝐺 = 𝐿𝑃(𝐺). We leave the characterization of the graphs for which 

the feasible region of the LP relaxation of (IP-MWMM) is equal to the maximal matching 

polytope as a future research direction. 

  
(a) Graph 𝐺\ (b) Graph 𝐺] 

Figure 2. Two bipartite graphs 

We now propose new classes of valid inequalities for the maximal matching 

polytope.  

Theorem 1. Let 𝐻 ⊴ 𝐺 and 𝐼 be an independent set in 𝐻 of maximum cardinality. 

Then the inequality 

 𝑦3
3∈Z(`)

≥ 𝑉 𝐻 − |𝐼| (8) 

is valid for 𝑀𝑀(𝐺). 

Proof. Proof is by contradiction. Assume that the incidence vector of some maximal 

matching 𝑀 in 𝐺 does not satisfy (8). This means that less than 𝑉 𝐻 − |𝐼| many 

vertices of 𝐻 are matched by 𝑀. In other words, more than |𝐼| many vertices of 𝐻 are 

unmatched by 𝑀. As 𝐼 is an independent set in 𝐻 of maximum cardinality, any set of 

more than |𝐼| many vertices include two adjacent vertices. This means that there are two 

adjacent vertices in 𝐻 and hence in 𝐺 that are unmatched by 𝑀 and hence 𝑀 is not a 

maximal matching. 

The valid inequality (8) generalizes both of the valid inequalities (4) and (5) 

proposed by Taşkın and Ekim [3]. Taking 𝐻 as a clique in 𝐺, we obtain from (8) the 

inequality (4) and taking 𝐻 as an odd cycle in 𝐺, we obtain from (8) the inequality (5). 

One can consider interesting substructures in a given graph and obtain valid inequalities 

for the maximal matching polytope utilizing the inequality given in (8). 
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We now propose two classes of valid inequalities for the maximal matching 

polytope in Theorems 2 and 3. The proofs of these theorems will follow when another 

theorem, namely, Theorem 4, is proved. Therefore, we do not give the proofs of Theorems 

2 and 3. 

Theorem 2. For any clique 𝑄 in 𝐺, the inequality 

 𝑦3
3∈Z([)

− 𝑥:
:∈F [

≥
|𝑉(𝑄)|
2

 (9) 

is valid for 𝑀𝑀(𝐺). 

Note that when the cardinality of 𝑉(𝑄) is odd, inequality (9) is implied by (4) and 

(6) written for 𝐻 = 𝑄. Therefore, inequality (9) is only useful for cliques having an even 

number of vertices. 

Theorem 3. For any cycle 𝐶 in 𝐺, the inequality 

 𝑦3
3∈Z(^)

− 𝑥:
:∈F ^

≥
|𝑉(𝐶)|
3

 (10) 

is valid for 𝑀𝑀(𝐺). 

It should be noted that when 𝐶 is an odd cycle, an inequality that is at least as strong 

as inequality (10) is implied by (4) and (6) written for 𝐻 = 𝐶. Henceforth, inequality (10) 

is interesting only when 𝐶 is an even cycle. Consider the graph 𝐺\ displayed in Figure 2a 

and the solution 𝑥	which we claim to be outside of 𝑀𝑀(𝐺\). When we write inequality 

(10) for the even cycle in 𝐺\, we can see that 𝑥 does not satisfy the inequality (1.5 is not 

greater than or equal to 2!) proving that 𝑥 ∉ 𝑀𝑀(𝐺\).  

Next we state Theorem 4 which generalizes Theorems 2 and 3. Correctness of 

Theorems 2 and 3 will follow from the proof of Theorem 4. 

Theorem 4. Let 𝐻 ⊴ 𝐺 and 𝑁 be a maximal matching in 𝐻 of minimum cardinality. 

Then the inequality 

 𝑦3
3∈Z(`)

− 𝑥:
:∈F `

≥ |𝑁| (11) 
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is valid for 𝑀𝑀(𝐺). 

Proof. Let 𝑀 be a maximal matching in 𝐺 and let 𝑀 = 𝑀 ∩ 𝐸(𝐻). 𝑀 is a matching 

in 𝐻. Assume that 𝑀 ∪ 𝑂 is a maximal matching in 𝐻 for some 𝑂 ⊆ 𝐸(𝐻) where 𝑂 ∩

𝑀 = ∅. Note that 𝑂 can be the empty set. Let 𝑥 be the incidence vector of 𝑀 

(corresponding to 𝑥, we have 𝑦). As 𝑦33∈Z ` ≥ 2 𝑥::∈F ` + |𝑂| and 𝑥::∈F ` =

|𝑀|, we have that 𝑦33∈Z ` − 𝑥::∈F ` ≥ 𝑥::∈F ` + 𝑂 = 𝑀 + 𝑂 . Now, using 

the fact that 𝑁 is a maximal matching in 𝐻 of minimum cardinality, we have that 𝑀 +

𝑂 ≥ |𝑁| proving inequality (10). 

Note that when 𝐻 is taken as a clique in Theorem 4, we obtain Theorem 2. On the 

other hand, when 𝐻 is taken as a cycle in Theorem 4, we get Theorem 3.  

Consider the cycle 𝐶 and a solution 𝑥 displayed in Fig. 3. Letting 𝑒\ = {1,2}, 𝑒] =

{2,3}, 𝑒k = {3,4}, 𝑒m = {4,5}, 𝑒n = {5,6}, and 𝑒p = {6,1}, we have that 𝑥:q = 𝑥:r =

𝑥:s = 𝑥:t = 0.5 and 𝑥:u = 𝑥:v = 0.4. The vector 𝑥 is in 𝐿𝑃(𝐶) and moreover it 

satisfies the valid inequalities (5) and (10). However, we claim that 𝑥 	∉ 𝑀𝑀(𝐶). To see 

this, note that the incidence vector of any maximal matching in 𝐶 satisfies 𝑥:q + 𝑥:r =

𝑥:u + 𝑥:v and 𝑥	violates this equality. Now, using this observation, we propose another 

class of valid inequalities in Theorem 5. 

 
Figure 3. A cycle 𝐶 with 6 vertices and a solution in 𝐿𝑃(𝐶) 

Theorem 5. Let 𝐶 be a cycle in 𝐺 having 6 vertices and 𝑒\ and 𝑒] be two adjacent 

edges in 𝐶. Moreover, let 𝑒m and 𝑒n be the edges in 𝐶 that are not adjacent to 𝑒\ or 𝑒]. 

Then the inequalities 
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 𝑦3
3∈Z(^)

− 2 𝑥:
:∈F ^

≥ 𝑥𝑒1 + 𝑥𝑒2 − 𝑥𝑒4 − 𝑥𝑒5 (12) 

and 

 𝑦3
3∈Z(^)

− 2 𝑥:
:∈F ^

≥ 𝑥𝑒4 + 𝑥𝑒5 − 𝑥𝑒1 − 𝑥𝑒2 (13) 

 

are both valid for 𝑀𝑀(𝐺). 

Proof. Let 𝑥 be the incidence vector of some maximal matching 𝑀 in 𝐺. 

𝑦33∈Z(^) − 2 𝑥::∈F ^  represents the number of vertices in 𝐶 that are matched using 

edges not in 𝐸(𝐶). It is clear that 𝑦33∈Z(^) − 2 𝑥::∈F ^ ≥ 0. On the other hand, if 

𝑥:q + 𝑥:r > 𝑥:u + 𝑥:v , i.e., 𝑥:q + 𝑥:r = 1 and 𝑥:u + 𝑥:v = 0, then at least one vertex 

of 𝐶 has to be matched using an edge not in 𝐸(𝐶). In other words, the inequality in (12) 

is a valid inequality for 𝑀𝑀(𝐺). The fact that (13) is valid for 𝑀𝑀(𝐺) follows from 

symmetry.  

For the graph given in Fig. 3, we have that 𝐺 = 𝐶. The solution 𝑥 clearly violates 

(12) as 𝑦33∈Z(^) − 2 𝑥::∈F ^ = 0, but 𝑥:q + 𝑥:r − 𝑥:u − 𝑥:v = 0.2. 

4. Conclusion 

In this paper, we investigate the maximal matching polytope and propose new 

classes of valid inequalities for it. The strengths of these valid inequalities should be 

investigated by future studies. The inequality we prove in Theorem 1 generalizes the 

existing inequalities in the literature, so the known inequalities become special cases of 

the inequality given in Theorem 1. As the MMM problem is solvable in polynomial time 

for some classes of graphs, it may be possible to characterize the maximal matching 

polytope for these graphs. The proposed valid inequalities may be useful in this respect. 

Moreover, the proposed valid inequalities can be used to strengthen the formulation (IP-

MWMM) and may help solve the MWMM problem faster using commercial solvers. A 

computational study investigating the effects of the proposed valid inequalities is left as 

a future research task. Finally, characterizing graphs 𝐺 for which 𝑀𝑀 𝐺 = 𝐿𝑃 𝐺  is an 

open question for future studies. 
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