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ABSTRACT 
 

In this study, we focus on control of height and attitude of an unmanned aerial vehicle quadrotor via a backstepping control 

method in the discrete-time setting. Firstly, the mathematical model of the quadrotor unmanned aerial vehicle is introduced 

and the mathematical system equations are evaluated to discretize with the standard Euler method. Afterward, the designed 

backstepping control has been considered in one structure that derives the outputs of height and attitude subsystems to 

desired trajectories, respectively. Then, the proposed discrete-time backstepping controllers have individually shown the 

stability of the closed-loop system for z position and roll, pitch, yaw angle dynamics the sense of Lyapunov and by Barbalat’s 

lemma. In order to show the effectiveness of the obtained controllers for height and attitude subsystems, computer simulation 

studies have been presented by being compared with the traditional control method PD and satisfactory results have been 

obtained. 
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1. INTRODUCTION 

 

Unmanned Aerial Vehicles (UAV) are fully autonomous motorized aircraft. They are used in various 

fields [1-4] such as military, entertainment, illumination, transportation. Their importance has gained 

extra credits in missions where it is too dangerous to deploy the task with a human on board, 

concurrently it is important not to have any human faults, errors. For UAVs, one can speak about two 

main classes to work on: multirotor [5] or fixed-wing [6]. These two have different advantageous one 

over another, however, in recent years it is also possible to see hybrid vehicles where edges of these 

two classes are embedded onto the same vehicle. Among multirotor, quadrotors have become very 

popular due to numerous applications and vast theoretical research developed on them. 

Fast flight performance, agility, and ability to hover are the main advantages of a quadrotor. In order 

to improve these edges, many control methods are applied up to now. The mentioned control methods 

are exemplified as conventional control methods [7-8], nonlinear backstepping control [9-10], 

geometric tracking control [11], adaptive control [12], adaptive backstepping [13], sliding mode [14], 

robust adaptive control [15], discrete-time controllers [16-17]. In addition, in order to control the UAV 

system has been not attracted attention to the discrete-time controller designs according to continuous 

time controllers in the literature.  

The backstepping control method is a nonlinear control method where the chattering effect within the 

controller has not existed. This can also be named as the main advantage over sliding mode control. 

The crucial issue of the backstepping method can also be mentioned as disturbance rejection and 

robustness. In case of disturbance and uncertainties within the system, these can be compensated by 

considering these issues in the controller design [18-19]. Since multi degrees of freedom actuators 
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plays a vital role in the quadrotor realization and design, the backstepping control method can be 

shown as a suitable technique for multi degrees of freedom actuator controller design. The last but not 

least, the usage of the backstepping controller brings a total decrease of uncertainties together with 

state variables [20]. 

In order to overcome many difficult problems such as complex dynamic structure, high-order 

nonlinearities, and coupling phenomena in nonlinear systems, the backstepping method in the 

continuous-time domain or discrete-time domain has been also widely used [21-22]. However, in 

digital applications, discrete-time control designs stand out due to the applicability and performance 

features such as faster time response and rise time. This prefer is also valid for the nonlinear control 

approaches. By means of taking the mentioned advantages for the discrete-time controllers into 

account, and this study aims to develop and design a discrete-time backstepping controller to stabilize 

the height position and to maintain stabilize of the hover attitude in the quadrotor system. Note that the 

initial results of this study are represented in a conference paper [23].  

 

In the following sections of this study, the dynamical quadrotor math model is introduced in 

continuous-time and discretized. Afterward, utilizing Forward-Euler approximation, the quadrotor 

dynamical model equations are discretized. In the next section, a nonlinear backstepping height and 

attitude controllers are obtained considering error dynamics in the discrete-time setting. A Lyapunov 

function is used to explain the stability of the developed subsystems for the height and attitude control. 

The last section illustrates the successful numerical simulations for the viability index of the 

backstepping height and attitude controllers in the discrete setting. The last but not the least, the 

developed proposed controller is compared to conventional PD for all control objectives. 

 

2. MATHEMATICAL MODEL OF THE QUADROTOR 

 

In Figure 1. the inertial body and earth frames of a conventional quadrotor for the math model are 

represented. On the figure, 𝐵 = (𝑥, 𝑦, 𝑧)𝑇 stands for body-fixed and 𝐸 = (𝑒𝑥, 𝑒𝑦, 𝑒𝑧)
𝑇 is for earth 

frame. The following assumptions are made for the math model: The weight of the vehicle uniformly 

distributed along the body and all the propellers are rigid and mounted fixed to the axes. The gravity 

center and the body frame centers are the same. The applied forces to the system are proportional to 

the speed of each propeller. 

 
 

Figure 1. The body orientation Euler angles and earth frame of a conventional quadrotor 
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Defining T: E ⟶ B , the transformation matrix of the quadrotor from [𝜙, 𝜃, 𝜓]′ which symbolize the 

attitude angles, that are the roll, the pitch and yaw Euler angles, to [𝑝, 𝑞, 𝑟]′ which symbolize angular 

velocities of the quadrotor in the body-frame can be written as (1): 

 [
p
q
r
] = [

1 0 −s(θ)
0 c(ϕ) s(ϕ)c(θ)
0 −s(ϕ) c(ϕ)c(θ)

] [

ϕ̇

θ̇
ψ̇

] (1) 

where 𝑠(∗) and 𝑐(∗) stand for 𝑠𝑖𝑛(∗)  and 𝑐𝑜𝑠(∗) for the simplicity, respectively. Euler angles 

[ϕ, θ, ψ] used for this math model [ϕ, θ, ψ] can be seen below  

 ϕ = (−
π

2
,
π

2
) ,    θ = (−

π

2
,
π

2
) ,    ψ = (−π, π). 

The whole dynamic model including translational (x, y, z) and rotational (ϕ, θ, ψ) dynamics can be 

written as below [24-25] 

 ẍ =
1

m
(c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ))u1 −

K1ẋ

m
 (2) 

 ÿ =
1

m
(c(ϕ)s(θ)s(ψ) − s(ϕ)c(ψ)u1 −

K2ẏ

m
 (3) 

 z̈ =
1

m
(c(ϕ)c(θ))u1 − g −

K3ż

m
 (4) 

 ϕ̈ = θ̇ψ̇
Iy−Iz

Ix
+

Jr

Ix
θ̇Ωr +

l

Ix
u2 −

K4l

Ix
ϕ̇ (5) 

 θ̈ = ϕ̇ψ̇
Iz−Ix

Iy
+

Jr

Iy
ϕ̇Ωr +

l

Iy
u3 −

K5l

Iy
θ̇ (6) 

 ψ̈ = ϕ̇θ̇
Ix−Iy

Iz
+

1

Iz
u4 −

K6

Iz
ψ̇ (7) 

Here, x, y and 𝑧 are used for the positions for the quadrotor gravitational center, l and m are depicted 

as the length from the rotor center to the gravitational center, and the total mass. Thus, g is depicted as 

well-known gravitational acceleration. Ix, Iy and Iz illustrates the inertias within the four rotor dynamic 

model, Ki, (i = 1, . . . ,6) are the positive constant factors for the drag force, Ωr = Ω1 − Ω2 + Ω3 + Ω4,

Ωj, (j = 1, . . . ,4) are used for the jth propeller speed, r represents the overall speed of propeller j. Jr is 

the inertia torque. u1, u2, u3 and u4 illustrate thrust force along the z-axis, the roll reference, the pitch 

reference and the yaw reference, respectively. Moreover, the thrust that the system produces Fj = bΩj
2 

by all the rotors it has and u1, u2, u3 and u4 is determined as:  

 

 [

u1

u2

u3

u4

] =

[
 
 
 
1 1 1 1
0 −1 0 1
−1 0 1 0

−
d

b

d

b

d

b

d

b ]
 
 
 

[

F1

F2

F3

F4

] (8) 

 

Here, the term b is a factor also often named as thrust, and d is the length from the mass center and the 

propeller axis. Lastly, Fj is used for the applied control signals within the air vehicle. 
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3. THE PROCESS OF THE MATH MODEL DISCRETIZATION 

 

The math model discretization necessary for the backstepping controller design will be explained in 

this section. The discretized rotational and translational math model will be derived from the 

continuous-time dynamical math model equations. The nonlinear equation approximation solutions 

can be extracted via using various methods that are already existed in the literature. In this study the 

well-known Forward-Euler method is selected for this purpose. In order to begin designing the 

discrete-time backstepping height controller and the controller responsible for the angle of the attitude, 

the discretized height and attitude subsystem equations for the variables of the state are sufficient. 

These are z for position and roll, pitch, yaw angles, respectively. To start with state variable are given 

as below: 

z = x1,    ż = x2,    ϕ = x3,    ϕ̇ = x4 

θ = x5,    θ̇ = x6,    ψ = x7,    ψ̇ = x8. 

The forward -Euler approximation for the necessary discretized math mode is given as,  

                                         ẋi =
xi
+−xi

T
,    i = {1, . . . ,8}. (9) 

 Moreover, the first derivative of the (4-7), the discretized dynamics are given for each variable as,  

 x1
+ = x1 + Tx2 (10) 

 x2
+ = (1 −

TK3

m
) x2 +

T

m
(c(x3)c(x5))u1 − Tg (11) 

 x3
+ = x3 + Tx4 (12) 

 x4
+ = (1 −

TK4l

Ix
) x4 + Tx6x8

Iy−Iz

Ix
+

TJr

Ix
x6Ωr +

Tl

Ix
u2 (13) 

 x5
+ = x5 + Tx5 (14) 

 x6
+ = (1 −

TK5l

Iy
) x6 + Tx4x8

Iz−Ix

Iy
+

TJr

Iy
x4Ωr +

Tl

Iy
u3 (15) 

 x7
+ = x7 + Tx8 (16) 

 x8
+ = (1 −

TK8

Iz
) x4 + Tx4x6

Ix−Iy

Iz
+

T

Iz
u4 (17) 

where xi and xi
+, (i = 1, . . . ,8) is for xi(k) and xi(k + 1) respectively, the arguments are not taken into 

account to keep the simplicity. In the next sections, xi
+j

, (j = (1,2, . . . )), (i = 1, . . . ,8) will be used for 

xi(k + j). Moreover, T and k = 0,1,2, . .. illustrates the sampling instants and the period. Since the 

math model is highly coupled and under-actuated structure, having nonlinear dynamics. For the sake 

of the stable operational flight this study proposes the backstepping control method for the control 

objectives. 
 

4. THE CONTROLLER DESIGN FOR BACKSTEPPING INTEGRAL METHOD IN 

DISCRETE TIME 

 

Here, within this part for the given trajectories discrete-time backstepping controllers for height and 

attitude subsystems have been recursively obtained in one structure according to desired trajectories, 

respectively. After obtaining the first-order difference equations of the continuous-time system, since 

discretized system dynamics relate to the height and the attitude of the quadrotor have in the lower 

triangular form, the backstepping control technic can be applied directly to the relevant part of the 
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quadrotor system. The discrete-time backstepping controller design for height and attitude controllers 

starts with the derivation of the error dynamics. Thence, the height controller position error (𝐳) and the 

attitude controller (𝛟, 𝛉,𝛙) can be formed as: 

 

ei = xi − xid,    i = (1,3,5,7) (18) 

The height velocity error (e1) and the attitude angular velocity error subsystem (e3,e5, 𝑒7) can be given 

as 

 ei+1 = xi+1 − x(i+1)d,    i = (1,3,5,7). (19) 

Here, xid and x(i+1)d stand for the planned trajectories for xi and x(i+1), respectively. In this section, 

notice that, design steps will be repeated for i = (1,3,5,7) to the state variables. After that, considering 

the equations (10) - (17),  

 ei
+ = xi

+ − xid
+  

 = xi + Txi+1 − xid
+  (20) 

 = ei+1
+ = xi+1

+ − x(i+1)d
+  (21) 

can be obtained. After this step, e(i+1)
+  can be written as:  

 e2
+ = (1 −

TK3

m
) x2 +

T

m
(c(x3)c(x5))u1 − Tg − x2d

+  (22) 

 e4
+ = (1 −

TK4l

Ix
)x4 + Tx6x8

Iy−Iz

Ix
+

TJr

Ix
x6Ωr +

Tl

Ix
u2 − x4d

+  (23) 

 e6
+ = (1 −

TK5l

Iy
)x6 + Tx4x8

Iz−Ix

Iy
+

TJr

Iy
x4Ωr +

Tl

Iy
u3 − x6d

+  (24) 

 e8
+ = (1 −

TK6

m
)x8 + Tx4x6

Ix−Iy

Iz
+

T

Iz
u4 − x8d

+ . (25) 

Since the references of the height position and the Euler angles are selected as constant trajectories, 

hence xid = xid
+ . Considering (21), the virtual control signal xi+1 is designed as  

 xi+1 =
1

T
(−xi + xid

+ − kiei) + ei+1 (26) 

 where ki is positive constant controller parameters. Moreover, the virtual signals are calculated with 

(18). Thence, the error equations (20) with the designing virtual signals can be rewritten as  

 ei
+ = Tei+1 − kiei. (27) 

 Then, considering (22), (23), (24) and (25), the control signal u1, u2, u3 and u4 are constructed as  

 u1 =
m

Tc(x3)c(x5)
[− (1 −

K3

m
) x2 + g + x2d

+ − k2e2] (28) 

 u2 =
Ix

Tl
[−(1 −

TK4l

Ix
)x4 − Tx6x8

Iy−Iz

Ix
−

TJr

Ix
x6Ωr + x4d

+ − k4e4] (29) 

 u3 =
Iy

Tl
[−(1 −

TK5l

Iy
)x6 − Tx4x8

Iz−Ix

Iy
−

TJr

Iy
x4Ωr + x6d

+ − k6e6] (30) 

 u4 =
Iz

T
[−(1 −

TK6

m
)x8 − Tx4x6

Ix−Iy

Iz
+ x8d

+ − k8e8] (31) 



Adıgüzel and Mumcu / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 21 (3) – 2020 

 

401 

 where ki+1 is positive constant controller coefficient. x(i+1)d
+  is obtained by using (26) as in the 

following:  

 x(i+1)d
+ =

1

T
(−xi

+ + xid
+2 − kiei

+) (32) 

 where xid
+2 = xid

+ . Additionally, the equation (21) becomes  

 ei+1
+ = −ki+1ei+1. (33) 

 At this point, the asymptotic stability of subsystems that belong to quadrotor systems is established in 

the following section. 

 
 

5. STABILITY ANALYSIS 

 

In order to show the stability of height and attitude of the quadrotor in the discrete time for 

backstepping controller, the Lyapunov function is formed as 𝐕 = ∑𝟔
𝐢=𝟏 𝐞𝐢

𝟐 for 𝐢 = 𝟏, . . . , 𝟖. Here, the 

difference can be calculated as  

 ΔV = V+ − V 

 = ∑6
i=1 (ei

+)2 − ∑6
i=1 ei

2 (34) 

 Substituting (26) and (32) within the equation (34), it can be reformulated as  

 ΔV = (T2 + k2
2 − 1)e2

2 + (k1
2 − 1)e1

2 + (k3
2 − 1)e3

2 + (T2 + k4
2 − 1)e4

2 + (k5
2 −

1)e5
2 + (k7

2 − 1)e7
2 + (T2 + k6

2 − 1)e6
2 − 2Tk1e1e2 + (T2 + k8

2 − 1)e8
2 − 2Tk3e3e4 − 2Tk5e5e6 −

2Tk7e7e8.  (35) 

By utilizing Cauchy’s inequality;   

 −2Tk1e1e2 ≤
4T2k1

2e1
2

ϵ
+ ϵe2

2 (36) 

 −2Tk3e3e4 ≤
4T2k3

2e3
2

ϵ
+ ϵe4

2 (37) 

 −2Tk5e5e6 ≤
4T2k5

2e5
2

ϵ
+ ϵe6

2 (38) 

 −2Tk7e7e8 ≤
4T2k7

2e7
2

ϵ
+ ϵe8

2 (39) 

  can be obtained with ϵ > 0. Then, equation (35) becomes  

 ΔV = (k1
2 − 1 +

4T2k1
2

ϵ
)e1

2 + (T2 + k2
2 − 1 + ϵ)e2

2 

 +(k3
2 − 1 +

4T2k3
2

ϵ
)e3

2 + (T2 + k4
2 − 1 + ϵ)e4

2 

 +(k5
2 − 1 +

4T2k5
2

ϵ
)e5

2 + (T2 + k6
2 − 1 + ϵ)e6

2 

 +(k7
2 − 1 +

4T2k7
2

ϵ
)e7

2 + (T2 + k8
2 − 1 + ϵ)e8

2. (40) 

The stability conditions  



Adıgüzel and Mumcu / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 21 (3) – 2020 

 

402 

 k1
2 − 1 +

4T2k1
2

ϵ
< 0,    T2 + k2

2 − 1 + ϵ < 0 (41) 

 k3
2 − 1 +

4T2k3
2

ϵ
< 0,    T2 + k4

2 − 1 + ϵ < 0 (42) 

 k5
2 − 1 +

4T2k5
2

ϵ
< 0,    T2 + k6

2 − 1 + ϵ < 0 (43) 

 k7
2 − 1 +

4T2k7
2

ϵ
< 0,    T2 + k8

2 − 1 + ϵ < 0. (44) 

 can be obtained and thereby, ∥ ei
2 ∥, (i = 1, . . .8) for all k , here is the error bounded. Hence, using 

Barbalat’s lemma,  

 lim
k→∞

ei
2 = 0,    (i = 1, . . .8) (45) 

 are satisfied. Notice that, the system angle errors disappear when (45) is fulfilled. Here, the aim of this 

study is confirmed. 

6. SIMULATON RESULTS 

 

In order to show the achievable and practice of the designed backstepping controller for the multirotor 

attitude subsystem and the height position, numerical simulations are provided. The controller 

performance for this application is compared with the PD controller that is one of the conventional 

control approaches. The numerical simulation is realized within MATLAB/Simulink environment. 

Here, the sampling period for the controller is chosen as 0.001 𝒔. 

 
Table 1. Model Parameters of UAV. 

Variables Value Units 

m   2.0   kg  

Ix = Iy   1.25   Ns2/rad  

Iz   2.2   Ns2/rad  

K1 = K2 = K3   0.1   Ns/m  

K4 = K5 = K6   0.012   Ns/m  

l   0.2   m  

Jr   1   Ns2/rad  

b   2   Ns2  

d   5   Nms2  

g   9.8   m/s2  

 

On Table 1 the model parameters for the system are given. The states are initially set to z position and 

the Euler angles: [x1(0); x3(0); x5(0); x7(0)] = [0;  0;  0;  0] and the velocity of the z position and 

angular velocity of the Euler angles: [x2(0); x4(0); x6(0); x8(0)] = [0;  0;  0;  0]. The gains for the 

controller are chosen as ki = 10,    (i = 1, . . . ,8). Besides, constant references trajectories are chosen 

as [x1d;  x3d;  x5d;  x7d] = [5;  π/3;  π/3;  π/3] for the z position and the Euler angles, respectively. 

The simulation results for height tracking and the attitude tracking are shown for z position and 

orientation angles in Figure 2. This figure illustrates the efficiency and validity of tracking reference 

values for the orientation angles and height. As the figure illustrates, the z position and the Euler 

angles reached effectively to the reference values. It is also shown in this figure that the convergence 



Adıgüzel and Mumcu / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 21 (3) – 2020 

 

403 

of the height position and the angle errors to zero is accomplished. The position z error and the errors 

of the angles changes can be seen in Figure 3. Moreover, the four control signals for the states are 

shown in Fig. 4. The simulations confirm the applicability of the proposed backstepping controllers 

which are designed in the discrete-time domain for a quadrotor system for height and orientation. 

Thence, the designed backstepping controller has been compared to the PD controller, and these 

results have been given in Figure 2. According to the simulation comparisons, the discrete-time 

backstepping controller has been going to the desired reference values with the more agile and faster 

performance for all design states. 

 

 

Figure 2. The quadrotor height (z) position and orientation angles roll, pitch and yaw (ϕ, θ, ψ). 
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Figure 3. The angle errors (e1, e3, e5, e7) for height position and orientation angles. 

 

Figure 4. The inputs (u1, u2, u3, u4) for the controller. 
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6.  CONCLUSIONS  

 

In this paper, for the height and attitude tracking of a multirotor platform is realized via backstepping 

control in discrete-time. Height and attitude subsystems math model derivation is explained by 

utilizing the standard Euler approximation. The discrete-time backstepping controller is developed 

within a single structure for the constant reference trajectories. Thereafter, system dynamics height 

and attitude subsystems and their stability are shown in the sense of Lyapunov. Thus the convergence 

of the height position error and angle errors to zero are given. The last but not least, in order to 

examine the practice and efficiency of the developed controller, numerical simulations are presented. 

The simulation results show that the discrete nonlinear control method has a better tracking 

performance in comparison with conventional control PD. 

 

REFERENCES 

 

[1] Oltmanns S d’Oleire, Marzolff I, Peter K and Ries J. Unmanned aerial vehicle (uav) for 

monitoring soil erosion in morocco. Remote Sensing, 2012; vol. 4, no. 11, pp. 3390–3416. 

 

[2] Nex F and Remondino F. Uav for 3d Mapping Applications: A Review. Applied Geomatics, 

2014; vol. 6, no. 1, pp. 1–15. 

 

[3] Girard AR, Howell AS and Hedrick JK. Border Patrol and Surveillance Missions using Multiple 

Unmanned Air Vehicles, in 2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE 

Cat. No. 04CH37601), vol. 1. IEEE, 2004, pp. 620–625. 

 

[4] Zhang C and Kovacs JM. The Application of Small Unmanned Aerial Systems for Precision 

Agriculture: A Review. Precision Agriculture, vol. 13, no. 6, pp. 693–712, 2012. 

 

[5] Mahony R, Kumar V and Corke P. Multirotor Aerial Vehicles: Modeling, Estimation, and 

control of quadrotor. IEEE Robotics & Automation Magazine, 2012; vol. 19, no. 3, pp. 20–32. 

 

[6] Sujit P, Saripalli S and Sousa JB. Unmanned Aerial Vehicle Path Following: A survey and 

Analysis of Algorithms for Fixed-Wing Unmanned Aerial Vehicless. IEEE Control Systems 

Magazine, 2014; vol. 34, no. 1, pp. 42–59. 

 

[7] Li J and Li Y. Dynamic Analysis and Pid Control for a Quadrotor, in 2011 IEEE International 

Conference on Mechatronics and Automation. IEEE, 2011, pp. 573–578. 

 

[8] Hametner C, Mayr CH, Kozek M and Jakubek S. Pid Controller Design for Nonlinear Systems 

Represented by Discrete-Time Local Model Networks. International Journal of Control, 2013; 

vol. 86, no. 9, pp. 1453– 1466.  

 

[9] Madani T and Benallegue A. Backstepping Control for A Quadrotor Helicopter, in 2006 

IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2006, pp.3255–

3260.  

 

[10] Bouchoucha M, Seghour S, Osmani H, and Bouri M. Integral Backstepping for Attitude 

Tracking of a Quadrotor System. Elektronika ir Elektrotechnika, 2011; vol. 116, no. 10, pp. 75–

80. 

 

[11] Lee T, Leok M and McClamroch NH. Geometric tracking control of a quadrotor uav on SE (3), 

in 49th IEEE conference on decision and control (CDC). IEEE, 2010, pp. 5420–5425. 



Adıgüzel and Mumcu / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 21 (3) – 2020 

 

406 

 

[12] Dydek ZT, Annaswamy AM. and Lavretsky E. Adaptive Control of Quadrotor Uavs: A design 

Trade Study with Flight Evaluations, IEEE Transactions on Control Systems Technology, 2012; 

vol. 21, no. 4, pp. 1400– 1406. 

 

[13] Tang S, Zhang L and Zheng Z. Adaptive Height and Attitude Control of Small-Scale Unmanned 

Helicopter, in 2013 25th Chinese Control and Decision Conference (CCDC). IEEE, 2013, pp. 

1–6. 

 

[14] Xu R and Ozguner U. Sliding Mode Control of a Quadrotor Helicopter, in Proceedings of the 

45th IEEE Conference on Decision and Control. IEEE, 2006, pp. 4957–4962. 

 

[15] Nicol C, Macnab C and Ramirez-Serrano A. Robust Adaptive Control of a Quadrotor 

Helicopter, Mechatronics, 2011; vol. 21, no. 6, pp. 927–938.  

 

[16] Lozano R, Sanchez A, Salazar-Cruz S and Fantoni I. Discrete-time stabilization of integrators in 

cascade: Real-Time Stabilization of a Minirotorcraft. International Journal of Control, 2008; 

vol. 81, no. 6, pp. 894–904.  

 

[17] Xiong J-J and Zhang G. Discrete-Time Sliding Mode Control for a Quadrotor Uav. Optik-

International Journal for Light and Electron Optics, 2016; vol. 127, no. 8, pp. 3718–3722. 

 

[18] Cabecinhas D, Cunha R and Silvestre C. A Nonlinear Quadrotor Trajectory Tracking Controller 

with Disturbance Rejection. Control Engineering Practice, 2014; vol. 26, pp. 1–10. 

 

[19] Dou J, Kong X and Wen B. Altitude and attitude active disturbance rejection controller design 

of a quadrotor unmanned aerial vehicle,” Proceedings of the Institution of Mechanical 

Engineers, Part G: Journal of Aerospace Engineering, 2017; vol. 231, no. 9, pp. 1732–1745. 

 

[20] Krstic M, Kanellakopoulos I, Kokotovic PV et al., Nonlinear and Adaptive Control Design. 

Wiley New York, 1995, vol. 222. 

 

[21] Khalil HK. Nonlinear Systems, Upper Saddle River, 2002. 

 

[22] Tanasa V, Monaco S and Normand-Cyrot D. Backstepping Control Under Multi-Rate 

Sampling. IEEE Transactions on Automatic Control, 2015; vol. 61, no. 5, pp. 1208–1222. 

 

[23] Adıgüzel F and Mumcu TV. Discrete-Time Backstepping Attitude Control of a Quadrotor Uav, 

in 2019 International Artificial Intelligence and Data Processing Symposium (IDAP). IEEE, 

2019, pp. 1–5. 

 

[24] Alexis K, Nikolakopoulos G and Tzes A. Model Predictive Quadrotor Control: Attitude, 

Altitude and Position Experimental Studies. IET Control Theory & Applications, 2012; vol. 6, 

no. 12, pp. 1812–1827. 

 

[25] Xu R and Özgüner Ü, Sliding Mode Control of A Class of Underactuated Systems, Automatica, 

2008; vol. 44, no. 1, pp. 233–241. 

 


