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Abstract

The main purpose of this paper is to investigate ordered �-semihypergroups in the general terms
of ordered �-hyperideals. We introduce ordered (generalized) (m;n)-�-hyperideals in ordered �-
semihypergroups. Then, we characterize ordered �-semihypergroup by ordered (generalized) (0; 2)-�-
hyperideals, ordered (generalized) (1; 2)-��hyperideals and ordered (generalized) 0-minimal (0; 2)-�-
hyperideals. Furthermore, we investigate the notion of ordered (generalized) (0; 2)-bi-�-hyperideals,
ordered 0-(0; 2) bisimple ordered �-semihypergroups and ordered 0-minimal (generalized) (0; 2)-bi-�-
hyperideals in ordered �-semihyperoups. It is proved that an ordered �-semihypergroup S with a zero
0 is 0-(0; 2)-bisimple if and only if it is left 0-simple.
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1 Introduction

The theory of (m;n)-ideal in semigroups was given by Lajos [44] as a generalization of left(resp. right)
ideals in semigroups. Thereafter, the notion of generalized bi-ideal [(or generalized (1,1)-ideal] was
introduced in semigroups also by Lajos [43] as a generalization of bi-ideals in semigroups. Then,
various authors investigated these concepts [1], [2], [19], [27], [28], [29], [30], [31]. Akram, Yaqoob
and Khan studied (m;n)-hyperideals in LA-semihypergroups [25]. Hila et al. [23], [47] investigated
quasi-hyperideals and bi-hyperideals in semihypergroups.

The concept of hyperstructure was given by Marty [20], at the 8th Congress of Scandinavian
Mathematics. He formulated hypergroups and began to derive its properties and results. Now, the
notion of algebraic hyperstructures has become a highly fruitful branch in algebraic theory and it has
wide applications in various branches of mathematics and applied science. For detailed review of the
notion of hyperstructures, readers are referred to [8], [13], [18], [23], [33], [35], [37], [38], [39], [40], [42].
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Recently, Basar et al. studied di¤erent aspects of ideal theoretic results in ordered semihypergroups
[3], [4], [5], [6], [7] [41].

Later on, many algebraists have developed semihypergroups as the simplest algebraic hyperstruc-
tures with closure and associative properties. Semihypergroups (hypergroups) have been found useful
for dealing with problems in di¤erent domains of algebraic hyperstructures. Many mathematicians
studied various aspects of semihypergroups (hypergroups), for instance, Kondo and Lekkoksung [26],
Bonansinga and Corsini [35], Leoreanu [49], Davvaz [8], Pibaljommee and Davvaz [9], Davvaz [10], [11],
Freni [14], and Salvo [32]. The applications of semihypergroups (hypergroups) to areas such as graph
theory, optimization theory, theory of discrete event dynamical systems, automata theory, generalized
fuzzy computation, formal language theory, coding theory and analysis of computer programs have
been extensively studied in the literature [12].

Then connection between hyperstructures and ordered sets has been investigated by many re-
searchers. Heidari and Davvaz [15], [18] studied ordered hyperstructures. One main aspect of this
theory, known as El-hyperstructures, was studied by Chvalina and Novak [21], [34]. Conard studied
ordered semigroups [36]. The concept of ordered semihypergroups was studied in [9], [22], [47], [48].
Heideri et al. [16], [17], [45], [46] studied �-semihypergroups. We assume that the reader is familiar
with some terminology in theory of semihypergroup and other related notions. What follows now are
some de�nitions and preliminaries in the theory of �-semihypergroups that we need for formulation
and proof of our main results.

Let H be a nonempty set, then the mapping � : H � H ! H is called hyperoperation or join
operation on H, where P ?(H) = P (H) n f0g is the set of all nonempty subsets of H. Let A and B be
two nonempty sets. Then a hypergroupoid (S; �) is called a �-semihypergroups if for every x; y; z 2 S
and �; � 2 �,

x � � � (y � � � z) = (x � � � y) � � � z;

i.e., [
u2y���z

x � � � u =
[

v2x���y
v � � � z:

A �-semihypergroup (S; �) together with a partial order " � " on S that is compatible with �-
semihypergroup operation such that for all x; y; z 2 S, we have

x � y ) z � � � x � z � � � y and x � � � z � y � � � z;

ia called an ordered �-semihypergroup. For subsets A;B of an ordered �-semihypergroup S, the prod-
uct set A � � �B of the pair (A;B) relative to S is de�ned as below:

A � � �B = fa �  � b : a 2 A; b 2 B;  2 �g;

and for A � S, the product set A � � �A relative to S is de�ned as A2 = A � � �A.

For M � S, (M ] = fs 2 S j s � m for some m 2Mg. Also, we write (s] instead of (fsg] for s 2 S.

Let A � S. Then, for a non-negative integer m, the power of A is de�ned by Am = A � � �A � � �A �
��A � � � , where A occursm times. Note that the power vanishes ifm = 0. So, A0���S = S = S���A0.

In what follows we denote ordered �-semihypergroup (S; �;�;�) by S unless otherwise speci�ed.

Suppose S is an ordered �-semihypergroup and I is a nonempty subset of S. Then, I is called an
ordered right (resp. left) �-hyperideal of S if

(i) I � � � S � I(resp: S � � � I � I),

(ii) a 2 I; b � a for b 2 S ) b 2 I.

Equivalent De�nition:
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(i) I � � � S � I (resp. S � � � I � I).

(ii) (I] = I.

An ordered �-hyperideal I of S is both a right and a left ordered �-hyperideal of an ordered �-
semihypergroup S. A right, left or (two-sided) ordered �-hyperideal I of S is called proper if I 6= S.

De�nition 1.1: Let S be a �-semihypergroup and A be a nonempty subset of S, then A is called a
generalized (m;n)-�-hyperideal of S if Am�S�An � A, wherem, n are arbitrary non-negative integers.
Notice that if A is a sub-�-semihypergroup of S, then A is called an (m;n)-�-hyperideal of S:

De�nition 1.2. Suppose A is a sub-�-semihypergroup (resp. nonempty subset) of an ordered
�-semihypergroup S. Then, A is called an (resp. generalized) (m;n)-�-hyperideal of S if (i) Am � � �
S � � �An � A, and (ii) for b 2 A, s 2 S, s � b) s 2 A:

Observe that in the above De�nition 1.2., if we put m = n = 1, then A is called an ordered
(generalized) bi-�-hyperideal of S. Furthermore, if m = 0 and n = 2, then we �nd an ordered
(generalized) (0; 2)-�-hyperideal of S. In a similar manner, we can derive an ordered (generalized)
(1; 2)-�-hyperideal and an ordered (generalized) (2; 1)-�-hyperideal of S.

Let (S; �;�;�) be an ordered �-semihypergroup and A;B be nonempty subsets of S, then we easily
have the following:

(i) A � (A];

(ii) If A � B, then (A] � (B];

(iii) (A] � � � (B] � (A � � �B];

(iv) (A] = ((A]];

(v) ((A] � � � (B]] = (A � � �B];

(vi) For every left (resp. right) ordered �-hyperideal T of S, (T ] = T .

If A is a nonempty subset of S, (A2 [A �� �S �� �A2] is an ordered (generalized) bi-�-hyperideal
of S, we depict the proof of it as follows:

((A2 [A � � � S � � �A2]] = (A2 [A � � � S � � �A2]
and (A2 [A � � � S � � �A2] � � � S � ��
(A2 [A � � � S � � �A2]
= (A2 [A � � � S � � �A2] � ��
(S] � � � (A2 [A � � � S � � �A2]
� (A2 � � � S � � �A2 [A2�
� � S � � �A � � � S � � �A2 [A�
� � S � � �A2 � � � S � �
�A2 [A � � � S � � �A2 � �
� S � � �A � � � S � � �A2]
� (A � � � S � � �A2]
� (A2 [A � � � S � � �A2]:
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2 Main Results

In the current section, we now study ideal theory in ordered �-semihypergroups. We obtain many
equivalent conditions based on ordered �-hyperideal, ordered (0, 2)-�-hyperideal, ordered bi-�-hyperideal.
We begin with the following:

Lemma 2.1: The following assertions are equivalent for a subsetA of an ordered �-semihypergroup
S:

(i) A is an ordered (generalized) (0; 2)-�-hyperideal of S;

(ii) A is an ordered left �-hyperideal of some ordered left �-hyperideal of S.

Proof. (i) ) (ii). Suppose A is an ordered (generalized) (0; 2)-�-hyperideal of an ordered �-
semihypergroup S. Then, we obtain the following:

(A [ S � � �A] � � �A = (A2 [ S � � �A2]
� (A]
= A;

and
((A] = (A];

therefore, A is an ordered left �-hyperideal of ordered left �-hyperideal (A [ S � � �A] of S.
(ii)) (i). Suppose L is an ordered left �-hyperideal of S and B is an ordered left �-hyperideal of L.
Then, we have

S � � �A2 � S � � � L � � � � �A
� L � � �A
� A:

Suppose b 2 A and s 2 S are such that s � b. As b 2 L, we get s 2 L and so s 2 A. Hence, A is an
ordered (generalized) (0; 2)-�-hyperideal of S.

Theorem 2.2. Let A be a subset of an ordered �-semihypergroup S. Then the following results
are equivalent:

(i) A is an ordered (generalized) (1; 2)-�-hyperideal of S;

(ii) A is an ordered left �-hyperideal of some ordered (generalized) bi-�-hyperideal of S;

(iii) A is an ordered (generalized) bi-�-hyperideal of some left ordered �-hyperideal of S;

(iv) A is an ordered (generalized) (0; 2)-�-hyperideal of some ordered right �-hyperideal of S;

(v) A is an ordered right-�-hyperideal of some ordered (generalized) (0; 2)-�-hyperideal of S.

Proof. (i) ) (ii): Suppose A is an ordered (generalized) (1; 2)-�-hyperideal of S. This means A
is a sub-�-semihypergroup (nonempty subset) of S and A � � � S � � �A2 � A. Therefore,

(A2 [A � � � S � � �A2] � � �A = (B2 [A � � � S � � �A2] � � � (A]
� (A3 [A � � � S � � �A3]
� (A2 [A � � � S � � �A2]
� (A] = A:
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Clearly, if b 2 A, s 2 (S2 [ A � � � S � � � A2] so that s � b then, s 2 A. Hence, A is an ordered left
�-hyperideal of ordered (generalized) bi-�-hyperideal (A2 [A � � � S � � �A2] of S.

(ii)) (iii): Suppose A is an ordered left �-hyperideal of some ordered (generalized) bi-�-hyperideal
B of S. Recall that (A [ S � � �A] is an ordered left �-hyperideal of S. According to our hypothesis,

A � (A [ S � � �A] �B � (A] � � � (A [ S � � �A] � � � (A]
� (A3 [A � � � S � � �A2]
� (A [A � � � S � � �A � � �A]
� (A [A � � �A]
� (A]
= A:

Suppose b 2 A, s 2 (A [ S � � �A] such that s � b. As, b 2 A, b 2 B. So, s 2 B and therefore, s 2 A.
Hence, A is an ordered (generalized) bi-�-hyperideal of left ordered hyperideal (A [ S � � �A] of S.

(iii) ) (iv): Suppose A is an ordered (generalized) bi-�-hyperideal of some left ordered �-
hyperideal L of S. This implies that B � L, A � � � L1 � � �B � A and S � � � L � L. Therefore,

(A [A � � � S] � � �A2 � (A [A � � � S] � (A2]
� (A3 [A � � � S � � �A2]
� (A [A � � � S � L � � �A]
� (A [A � � � L � � �A]
� (A] = A:

Furthermore, suppose that b 2 A, s 2 (A[A���S] such that s � b, so b 2 L. Then, s 2 L, therefore,
s 2 A. Hence, A is an ordered (generalized) (0; 2)-�-hyperideal of the ordered right �-hyperideal
(A [A � � � S] of S.

(iv) ) (v): Suppose A is an ordered (generalized) (0; 2)-�-hyperideal of some ordered right �-
hyperideal R of S. This implies that A � R, R � � �A2 � A and R � � � S � R. Then,

A � � � (A [ S � � �A2] � (A] � � � (A [ S � � �A2]
� (A2 [A � � � S � � �A2]
� (A [R � � � S � � �A2]
� (A [R � � �A2]
� (A] = A:

Let b 2 A, s 2 (A [ S � � � A2] such that s � b. Then, b 2 R, so s 2 R, thus s 2 B. Hence, B is an
ordered right �-hyperideal of the (generalized) (0; 2)-�-hyperideal (B [ S � � �B2] of S.

(v) ) (i). Suppose A is an ordered right �-hyperideal of an ordered (generalized) (0; 2)-�-
hyperideal R of S. This further shows that A � R, A � � � R � A and S � � � R2 � R. Then,
we have the following:

A � S � � �A2 � A � � � S � � �R2

� A �R
� A:

Suppose b 2 A, s 2 S such that s � b. Since b 2 R, so s 2 B. Therefore, A is an ordered (generalized)
(1; 2)-�-hyperideal of S. Hence, A is an ordered (generalized) bi-�-hyperideal of S.

Lemma 2.3. A sub-�-semihypergroup (nonempty subset) A of an ordered �-semihypergroup S
such that A = (A] is an ordered (generalized) (1; 2)-�-hyperideal of S if and only if there exists an
ordered (generalized) (0; 2)-�-hyperideal L of S and an ordered right �-hyperideal R of S so that
R � � � L2 � A � R \ L.
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Proof. Suppose A is an ordered (generalized)(1; 2)-�-hyperideal of S. We know that (A[S���A2]
and (A[A �� � S] are an ordered (generalized) (0; 2)-�-hyperideal and an ordered right �-hyperideal
of S, respectively. Furthermore, assume L = (A [ S � � �A2] and R = (A [A � � � S]. Then, we have
the following:

R � � � L2 � (A3 [A2 � � � S � � �A2 [A � � � S � � �A2 [A � � � S � � �A � � � S � � �A2]
� (A3 [A � � � S � � �A2]
� (A] = A:

Hence, R � R \ L.
Conversely, suppose R is an ordered right �-hyperideal of S and L is an ordered (generalized)

(0; 2)-�-hyperideal of S so that R � � � L2 � A � R \ L. Then, we have the following:

A � � � S � � �A2 � (R \ L) � � � � � S � � � (R \ L) � � � � � (R \ L)
� R � � � S � � � L2

� R � � � L2

� A:

Hence, A is an ordered (generalized) (1; 2)-�-hyperideal of S.

De�nition 2.4. An ordered (generalized) (0; 2)-bi-�-hyperideal B of S is called 0-minimal if
B 6= f0g, f0g is the only ordered (generalized) (0; 2)-bi-�-hyperideal of S properly contained in B.

Lemma 2.5. Suppose L is an ordered 0-minimal left �-hyperideal of an ordered �-semihypergroup
S with 0 and I is a sub-�-semihypergroup (nonempty subset) of L such that I = (I]. Then, I is an
ordered (generalized) (0; 2)-�-hyperideal of S contained in L if and only if (I �� � I] = f0g or I = L.

Proof. Suppose I is an ordered (generalized) (0; 2)-�-hyperideal of S contained in L. As (S���I2]
is an ordered left �-hyperideal of S and (S � � � I2] � I � L, we obtain the following:
(S � � � I2] = f0g or (S � � � I2] = fLg.
If (S � � � I2] = L, then L = (S � � � I2] � (I]. So, I = L. Suppose (S � I2] = f0g. As S � (I2] �
(S � � � I2] = f0g � (I2], then (I2] is an ordered left �-hyperideal of S contained in L. By the
minimality of L, we obtain (I2] = f0g or (I2] = L. If (I2] = L, then I = L. Therefore, I2 = f0g or
I = L.
The converse part is straightforward.

Lemma 2.6. Suppose M is an ordered 0-minimal (generalized) (0; 2)-�-hyperideal of an ordered
�-semihypergroup S with a zero 0. Then (M2] = f0g or M is an ordered 0-minimal left �-hyperideal
of S.

Proof. Since M2 �M and

S � � � (M2]2 = S � � � (M2] � � � (M2]

� (S � � �M2] � � � (M2]

� (M ] � � � (M2]

� (M2]:

Then, we obtain (M2] is an ordered (generalized) (0; 2)-�-hyperideal of S contained in M . Therefore,
(M2] = f0g or (M2] =M . Suppose (M2] =M . Since

S �M = S � � � (M2]

� (S � � �M2]

� (M ] =M:
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It follows that M is an ordered left �-hyperideal of S. Suppose B is an ordered left �-hyperideal of S
contained in M . Therefore,

S � � �B2 � B2

� B
�M:

Hence, B is an ordered (generalized) (0; 2)-�-hyperideal of S contained in M and so, B = f0g or
B =M .

Corollary 2.7 Suppose S is an ordered �-semihypergroup without a zero 0. Then,M is an ordered
minimal (generalized) (0; 2)-�-hyperideal of S if and only ifM is an ordered minimal left �-hyperideal
of S.

Proof. It follows by Lemma 2.5 and Lemma 2.6.

Lemma 2.8. Suppose S is an ordered �-semihypergroup without a zero 0. Further, suppose that
M is a nonempty subset of S. Then, the following results are equivalent:

(i) M is an ordered (generalized) minimal (2; 1)-�-hyperideal of S;

(ii) M is an ordered (generalized) minimal bi-�-hyperideal of S.

Proof. Suppose S is an ordered �-semihypergroup without zero and M is an ordered minimal
(generalized) (2; 1)-�-hyperideal of S. Then, (M2 � � � S � � �M ] �M and so (M2 � � � S � � �M ] is
an ordered (generalized) (2; 1)-�-hyperideal of S. Therefore, we obtain (M2 � � � S � � �M ] =M .
As

M � � � S � � �M = (M2 � � � S � � �M ] � � � S � � �M
� (M2 � � � S � � �M � � � S � � �M ]
� (M2 � � � S � � �M ] =M;

we have that M is an ordered (generalized) bi-�-hyperideal of S. Let there exist an ordered (gener-
alized) bi-�-hyperideal A of S contained in M . Then, A2 � S � A � A2 � A � M , therefore, A is an
ordered (generalized) (2; 1)-�-hyperideal of S contained in M . Using the minimality of M , we obtain
A =M .

Conversely, suppose M is an ordered minimal (generalized) bi-�-hyperideal of S. Then, M is an
ordered (generalized) (2; 1)-�-hyperideal of S. Suppose T is an ordered (generalized) (2; 1)-hyperideal
of S contained in M . As

(T 2 � � � S � � � T ] � � � S � � � (T 2 � S � T ] � (T 2 � (S � T � � � S � � � T 2 � � � S) � � � T ]
� (T 2 � � � S � � � T ];

we obtain (T 2 � � � S � � � T ] is an ordered (generalized) bi-�-hyperideal of S. This shows that
(T 2 � � � S � � � T ] = M . As M = (T 2 � � � S � � � T ] � (T ] = T , M = T . Hence, M is an ordered
minimal (generalized) (2; 1)-�-hyperideal of S.

De�nition 2.9. A sub-�-semihypergroup (nonempty subset) A of an ordered �-semihypergroup
S is called an ordered (generalized) (0; 2)-bi-�-hyperideal of S if A is an ordered (generalized) bi-�-
hyperideal of S and also an ordered (generalized) (0; 2)-�-hyperideal of S.

Lemma 2.10. Suppose A is a subset of an ordered �-semihypergroup S. Then, the following
conditions are equivalent:

(i) B is an ordered (generalized) (0; 2)-bi-�-hyperideal of S;
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(ii) B is an ordered �-hyperideal of some ordered left �-hyperideal of S.

Proof. (i) ) (ii): Suppose A is an ordered (generalized) (0; 2)-bi-�-hyperideal of S. This shows
that A � � � S � � �B � B and S � � �A2 � A. Then, we have

S � (A2 [ S � � �A2] � (S � � �A2 [ S2 � � �A2]
� (S �A2]
� (A2 [ S � � �A2]

Therefore, (A2 [ S � � �A2] is an ordered left �-hyperideal of S. As

A � (A2 [ S � � �A2] � (A3 [A � S � � �A2]
� (A]
= A;

(A�2 [ S � � � A2] � � � B � (A3 [ S � � � A3] � (A] = A. Hence, A is an ordered �-hyperideal of left
ordered hyperideal (A2 [ S � � �A2] of S.
(ii)) (i): Suppose A is an ordered �-hyperideal of some ordered left �-hyperideal L of S. By Lemma
2.1, A is an ordered (generalized) (0; 2)-�-hyperideal of S, and hence, A is an ordered (generalized)
bi-�-hyperideal of S.

Theorem 2.11. Suppose A is an ordered 0-minimal (generalized) (0; 2)-bi-�-hyperideal of an
ordered �-semihypergroup S with a zero 0. Then, exactly one of the followings cases arises:

(i) A = f0; bg, (b � � � S � � � b] = f0g;

(ii) A = (f0; bg], b2 = 0, (b � S � � � b] = A;

(iii) (S � � � b2] = A for all b 2 A n f0g.

Proof. Suppose A is an ordered 0-minimal (generalized) (0; 2)-bi-�-hyperideal of an ordered �-
semihypergroup S. Furthermore, suppose b 2 A n f0g. Then, (S � � � b2] � A and (S � � � b � � � b] is
an ordered left �-hyperideal of S, therefore, (S � b2] is an ordered (generalized) (0; 2)-bi-�-hyperideal
of S. Hence, (S � � � b2] = f0g or (S � b2] = A.
Let (S � � � b2] = f0g. As b2 2 A, we obtain either b2 = b or b2 = 0 or b2 2 A n f0; bg. If b2 = b, then
b = 0. This is a contradiction. Let b2 2 A n f0; bg. Then,

S � � � (f0; b2g]2 � (f0; S � � � b2g] = (f0g] [ (S � � � b2]
= f0g
� (f0g [ b2];

(f0g [ b2] � � � S � � � (f0g [ b2] � (b2 � � � S � � � b2]
� (S � � � b2] = f0g
� f0; b2g:

So, (f0g[b2] is an ordered (generalized) (0; 2)-bi-�-hyperideal of S contained in A, and we obtain that
(f0g [ b2] 6= f0g, (f0g [ b2] 6= A. This is also not possible as A is an ordered 0-minimal (generalized)
(0; 2)-bi-�-hyperideal of S. Therefore, b2 = f0g and hence by Lemma 2.10, A = (f0; bg]. Now, since
we have (b �� �S �� � b] is an ordered (generalized) (0; 2)-bi-�-hyperideal of S contained in A, we get
(b���S ���b] = f0g or (b���S ���b] = A. So, (S ���b2] = f0g and it implies that either A = f0; bg
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and (b � � � S � � � b] = f0g or A = f0; bg, b2 = f0g and (b � � � S � � � b] = A. If (S � � � b2] 6= f0g,
then (S � � � b2] = A.

Corollary 2.12. Suppose B is an ordered 0-minimal (generalized) (0; 2)-bi-�-hyperideal of an
ordered �-semihypergroup S with a zero 0 so that (B2] 6= f0g. Then, B = (S � � � b2] for every
b 2 B n f0g.

De�nition 2.13. An ordered �-semihypergroup S with a zero 0 is called 0-(0; 2)- bisimple if (i)
(S2] 6= f0g, and f0g is the only ordered proper (generalized) (0; 2)-bi-�-hyperideal of S.

Corollary 2.14. An ordered �-semihypergroup S with a zero 0 is 0-(0; 2)-bisimple if and only if
(S � � � s2] = S for every s 2 S n f0g.

Proof. If S is 0-(0; 2)-bisimple, then (S � S] 6= f0g and S is an ordered 0-minimal (generalized)
(0; 2)-bi-�-hyperideal. By Corollary 2.12., we have S = (S � � � s2] for every s 2 S n f0g.

Conversely, suppose S = (S � � � s2] for every element s 2 S n f0g and further suppose that A is
an ordered (generalized) (0; 2)-bi-�-hyperideal of S such that A 6= f0g. Suppose b 2 A n f0g. Then,
S = (S �� � b2] � (S �� �A2] � (A] = A, therefore S = A. Since, S = (S �� � b2] � (S �� �S] = (S2],
we obtain f0g 6= S = (S � � � S] = (S2]. Hence, S is 0-(0; 2)-bi-simple. The proof is complete.

Theorem 2.15. An ordered �-semihypergroup S with a zero 0 is 0-(0; 2)-bisimple if and only if
S is left 0-simple.

Proof. We recall that every ordered left �-hyperideal A of an ordered �-semihypergroup S is an
ordered 0-(0; 2)-bi-�-hyperideal of S. So, A = f0g or A = S. Therefore, if S is 0-(0; 2)-bisimple then
S is left 0-simple.

Conversely, if S is left 0-simple then, (S � s] = S for every s 2 S n f0g from which it follows that

S = (S � � � s]
= ((S � � � s] � � � s]
� ((S � � � s2]]
= (S � � � s2]:

Therefore, using Corollary 2.14, S is 0-(0; 2)-bisimple. The proof is complete.

Theorem 2.16. Suppose A is an ordered 0-minimal (generalized) (0; 2)-bi-�-hyperideal of an
ordered �-semihypergroup S. Then, either (A � � �A] = f0g or A is left 0-simple.

Proof. Suppose (A � A] 6= f0g. Then, by Corollary 2.12, we obtain (S � � � b2] = A for every
b 2 Anf0g. As b2 2 Anf0g for every b 2 Anf0g, we obtain b4 = (b2)2 2 Anf0g. Suppose b 2 Anf0g.
As, (A � � � b2] � � � S � � � (A � � � b2] � (A � � �A � � � b2] � (A � � � b2] and

S � (A � � � b2]2 � (S � � �A � � � b2 � � �A � � � b2]
� (S � � �A2 � � � b2]
� (A � � � b2];

we get that (A � b2] is an ordered (generalized) (0; 2)-bi-�-hyperideal of S contained in A. Therefore,
(A � � � b2] = f0g or (A � � � b2] = A. As, b4 2 A � b2 � (A � b2], and b4 2 A n f0g, we obtain
(A � � � b2] = A. By Corollary 2.14 and Theorem 2.15, it follows that A is left 0-simple. The proof is
complete.
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3 Conclusion

In the current paper, we enriched ideal theory in ordered �-semihypergroups. We derived various
equivalent conditions related to ordered �-hyperideals, ordered (0, 2)-�-hyperideals, ordered bi-�-
hyperideals. We introduced ordered (generalized) (m;n)-�-hyperideals in ordered �-semihypergroups.
Then, we characterized ordered �-semihypergroup in terms of ordered (generalized) (0; 2)-�-hyperideals,
ordered (generalized) (1; 2)-�-hyperideals and ordered (generalized) 0-minimal (0; 2)-�-hyperideals.
Furthermore, we studied the notion of ordered (generalized) (0; 2)-bi-�-hyperideals, ordered 0-(0; 2)
bisimple ordered �-semihypergroups and ordered 0-minimal (generalized) (0; 2)-bi-�-hyperideals in
ordered �-semihyperoups. It is shown that an ordered �-semihypergroup S with a zero 0 is 0-(0; 2)-
bisimple if and only if it is left 0-simple.
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