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1. Introduction

Tropical geometry is a most recent but fast growing branch of mathematical sciences which is analytically based
on idempotent analysis and algebraically on idempotent semirings or one may alternatively say on tropical semirings.
These are basically extended sets of real numbers R∞ : = R∪ {∞} and R−∞ : = R∪ {−∞} which are given monoidal
structures by using min and max operations for addition, respectively, and in order to adhere the semiring structure, the
additive operation of R is used as the multiplication operation. By these choices, both R∞ and R−∞ become idempotent
semirings. In literatur, they are also termed as, min and max plus algebras, respectively. In both cases 0 of R becomes
multiplicative identity and∞ and −∞ become additive identities of these semirings, respectively.

Interestingly, some authors associated R−∞ to the tropical geometry while some other authors associated R∞ to
the tropical geometry (see for instance [2, 3, 5, 6]). In this paper, we unified the different terms and introuduce an
original structure which in fact is an ”abstract tropical algebra”. We termed it as ”omega algebra” or in short just, ”ω−
algebra”. We will see that R−∞ and R∞ and their nearby structures, like min−max and max− times algebras, etc., are
all subsumed under this newly defined structure. All these are idempotent semirings which sometimes also termed as
dioids.

In the previous studies, for the construction of all such semirings, an ordered infinite abelian group is mandatory.
In the newly introduced ω− algebra, the definition is extended to cyclically ordered abelian groups and also for finite
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sets under some suitable ordering. Note that cyclically ordered abelian groups are more general than that of ordered
abelian groups [7].

In the following, first we give an abstract definition of omega algebras and supported them by presenting concrete
examples, one from an ordered infinite set, another from a cyclically ordered infinite set, and a third one from a finite set.
We also have constructed omega cartesian products and introduced omega homomorphisms. Finally, as applications,
we have typically used some relations to construct symmetrized ω− algebras and defined over them matrices with their
operations. Some topological distances over them are also constructed.

2. Omega Algebras

Let (G, ◦, e) be an abelian group. Let A be a closed subset of G and e ∈ A. Then (A, ◦, e) is a submonoid of G.
Assume that ω is an indeterminate (may belong to A or G, as we will see in Examples 2 & 3. Obviously, in this case

ω is no longer an indeterminate). Because the terms are generated from tropical geometry, so such an indeterminate
may be termed as a tropical indeterminate.

Definition 2.1. We say that Aω = A ∪ {ω} is an omega algebra (in short ω− algebra) over the group G in case Aω is
closed under two binary operations,

⊕,⊗ : Aω × Aω −→ Aω,

such that ∀a, b, c ∈ A, the following axioms are satisfied:
(1) a ⊕ b = a or b;
(2) a ⊕ ω = a = ω ⊕ a;
(3) ω ⊕ ω = ω;
(4) a ⊗ b = b ⊗ a ∈ A;
(5) (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c);
(6) a ⊗ e = a;

(7) a ⊗ ω = ω ⊗ a =

{
ω i f ω , e
a i f ω = e ;

(8) ω ⊗ ω = ω;
(9) a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c).

Remark 2.2. 1. ⊕ is a pairwise comparison operation, such as, max, min, inf, sup, up, down, lexicographic ordering,
or any thing else that compairs two elements of Aω. Obviously, it is associative and commutative and the tropical
indeterminate ω playes the role of the identity. Hence (Aω,⊕, ω) is a commutative monoid.

2. ⊗ is also associative and commutative on Aω and e plays the role of the multiplicative identity of Aω. Hence
(Aω,⊗, e) is also a commutative monoid.

3. The left distributive law (8) also gives the right distributive law.
4. Every element of Aω is an idempotent under ⊕.
5. Altogether, we write both structures as Aω = (Aω,⊕,⊗, ω, e). This is an idempotent semiring also called ”dioid”

in literature.

Remark 2.3. An ω− algebra can similarly be defined over a commutative monoid or a ring or even on a semiring.
More generally, one may construct analogously such algebras on other more weaker structures.

In this note, we confined ourselves to only ω− algebras over abelian groups and rings.

Proposition 2.4. (i) ω ∈ Aω is unique.

(ii) Let ⊗|A = ◦. Then ω = e if and only if ω ∈ A.

Proof. If ω ∈ A, then ω−1 exists in G, and so

ω ⊗ ω = ω =⇒ ω ◦ ω = ω =⇒ ω = e.

The rest is trivial. �

Definition 2.5. Let Aω = (Aω,⊕,⊗, ω, e) be an ω− algebra over an abelian group G = (G, ◦, e). Let B be a non-empty
closed subset of A such that e ∈ B. Then Bω is said to be an ω− subalgebra of Aω in case Bω = (Bω,⊕,⊗, ω, e) itself is
an ω− algebra over G.
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The trivial ω− subalgebra of Aω is O = ({ω, e},⊕,⊗, ω, e).
An ω− algebra is called simple if its only proper ω− subalgebra is O.

The following is obvious.

Proposition 2.6. Let Aω = (Aω,⊕,⊗, ω, e) be a tropical algebra over an abelian group G = (G, ◦, e). Then a subset Bω
of Aω is an ω−subalgebra of Aω if and only if

(i) B is a non-empty closed subset of A such that e ∈ B.
(ii) Bω is closed under the binary operations ⊕ and ⊗.

3. Examples

Example 3.1. Max-plus algebra, min-plus algebra and all such ”so called” algebras are particular cases of the ω−
algebra over the ring R or its associated subrings.

A simpler example is following.
In the ring (Z,+, ·), for any integer n, we set W(n) = {0, n, 2n, · · · }. This is an additive submonoid of (Z, +). Let

ω = −∞, a ⊕ b = max(a, b) and a ⊗ b = a + b,∀a, b ∈ W(n). Then

W(n)−∞ = {W(n)−∞,⊕,⊗,−∞, 0}

is −∞ − algebra over the ring of integers Z.
Hence we have a sequence of ω− subalgebras

W(n) ≥ W(2n) ≥ · · · .

Example 3.2. (A cyclically ordered abelian group)
This example is constructed exclusively over an abelian group.
A cyclically ordered abelian group is more general than that of a linearly ordered abelian group. Every linearly

ordered abelian group is cyclically ordered but the converse in general is not true. Following example is that of a
cyclically ordered abelian group which is not an ordered abelian group [7]. For more details about a cyclically ordered
abelian groups see [1].

Consider the cyclically ordered abelian group in the form of the unit circle

C = {z ∈ C | |z| = 1} .

Let
W = {0, 1, 2, · · · }.

For some θ ∈ [0, 1), define ρx = e2πiθx, where x ∈ W, in particular, ρ0 = 1.
Set

A := {ρx |x ∈ W} ⊂ C.
Because ρxρy = ρx+y, ∀x, y ∈ W, A is multiplicatively closed.

Theorem 3.3. Aρ0 = A∪ {ρ0} is an omega algebra with the identical additive and multiplicative identities. This omega
algebra contains infinite omega subalgebras.

Proof. Define ⊕ on A by
ρx ⊕ ρy = ρz where x, y, z ∈ W, with z = max(x, y)

and define ⊗ on A by
ρx ⊗ ρy = ρx+y, where x, y ∈ W.

Clearly, both operations are associative and as ρ0⊕ρx = ρx and ρ0⊗ρx = ρx so (A,⊕, ρ0) and (A,⊗, ρ0) are monoids.
Finally, ∀x, y, z ∈ W,

ρx ⊗ (ρy ⊕ ρz) = ρx ⊗ ρmax(y,z)

= ρx+max(y,z)

= ρmax(x+y,x+z)

= (ρx+y ⊕ ρx+z)
= (ρx ⊗ ρy) ⊕ (ρx ⊗ ρz).
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As, ∀x ∈ W,
ρx ⊕ ρx = ρx

and ρ0 = 1 we conclude that, A = (A,⊕,⊗, 1, 1) is an omega algebra.
Finally, consider W(n) = {0, n, 2n, · · · }, where n = 1, 2, · · · . For each n, one can construct an omega subalgebra. �

Example 3.4. (A Lexicographic Ordering.)
Consider the binary linear code of length 2;

Z(2)
2 = {00, 01, 10, 11}.

Under componentwise addition + and componentwise multiplication ◦, (Z(2)
2 ,+, ◦) is a ring with code-words 0 = 00

and 1 = 11 as additive and multiplicative identities.
We define the lexicographic ordering on the elements of Z(2)

2 and arrange them as:

00 < 01 < 10 < 11

Let A = {00, 01}. Consider ω = 11.
Note that, in this example, ω < A but ω ∈ G.
We define addition on Aω = {00, 01, 11} by:

a ⊕ b = min(a, b).

Hence we get the table:
⊕ 00 01 11
00 00 00 00
01 00 01 01
11 00 01 11

.

Define multiplication as the boolean sum, namely,

0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 1.

Hence we get the table:
⊗ 00 01 11
00 00 01 11
01 01 01 11
11 11 11 11

.

We conclude that: (Aω,⊕, 11) and (Aω,⊗, 00) are the additive and multiplicative monoides.
Clearly, this is a simple ω− algebra.

Example 3.5. (Cartesian products of omega algebras)
In this example we explain a construction of an omega algebra from other given omega algebras.
Let {(Gi, ◦i, ei) : i = 1, · · · , n} be abelian groups and {(Aωi ,⊕i,⊗i, ωi, ei) : i = 1, · · · , n} be a respective family of

omega algebras, where ωi are tropical indeterminates. As usual, we define the cartesian product as

Xω = Aω1 × · · · × Aωn = {(a1, · · · an) : ai ∈ Aωi ; i = 1, · · · , n}.

In order to provide a convenient technique to give an additive structure to Xω, we assume that the n − tuples
a =(a1, · · · an), b =(b1, · · · bn) ∈ Xω are in lexicographic ordering. Then define the sum

a ⊕ b = a or b (3.1)

by using the following rules:
If a1 ⊕1 b1 = a1 then a ⊕ b = a. (3.2)

If ai = bi for 1 ≤ i ≤ k ≤ n, and ak+1⊕k+1bk+1 = ak+1, then a ⊕ b = a. (3.3)

Similarly, rules for a ⊕ b = b can be determined.
Multiplication can be define componenetwise. Thus

a ⊗ b =(a1 ⊗1 b1, · · · , an ⊗n bn).
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The other rules can straightforwardely be verified. Hence (Xω,⊕,⊗, ω, e), where ω = (ω1, · · · , ωn) is the additive
identity and e = (e1, · · · , en) is the multiplicative identity of Xω, is an omega algebra over the cartesian product of
abelian groups G1 × · · · ×Gn.

4. Omega Homomorphisms

Definition 4.1. Let h : (G1, ◦, e1) −→ (G2, ∗, e2) be an abelian groups homomorphism. Let ω1 and ω2 be tropical
indeterminates such that A1ω1 = (A1ω1 ,⊕1,⊗1, ω1, e1) and A2ω2 = (A2ω2 ,⊕2,⊗2, ω2, e2) be omega algebras over G1 and
G2, respectively. The homomorphism h is called an omega homomorphism if in case

Im(h|A1ω1
) ⊆ A2ω2 ,

the following conditions are satisfied:
(i) h|A1ω1

(ω1) = ω2;
(ii) ∀a, b ∈ A1ω1 , h|A1ω1

(a ⊕1 b) = h(a) ⊕2 h (b) ;
(iii) ∀a, b ∈ A1ω1 , h|A1ω1

(a ⊗1 b) = h(a) ⊗2 h (b) .

Definition 4.2. An omega homomorphism h : G1 −→ G2, satisfying

h|A1ω1
: A1ω1 −→ A2ω2

is said to be an omega ismorphism if h|A1ω1
is an ismorphism.

As usual we display an omega isomorphism by

A1ω1 � A2ω2 .

Note that in above definition we have not assumed that h : G1 −→ G2 is an isomorphism. If h is an isomorphism of
abelian groups and if h is also an omega isomorphism we may then say that h is a strong omega isomorphism.

Proposition 4.3. Let h : G1 −→ G2 be an isomorphism. Then A1ω1 � A2ω2 if and only if h is an omega epimorphism.

Proof. By definition h|A1ω1
: A1ω1 −→ A2ω2 is an epimorphism and it is monic as h is monic. Hence A1ω1 � A2ω2 . The

converse is obvious. �

Omega monomorphisms and omega epimorphisms can analogously be defined.

Example 4.4. In Example 3.1, Z � R as additive groups. But under inclusion maps

n −→ n; n −→ 2n; · · ·

we get the omega isomorphisms,
W(n)−∞ � W(n)−∞ � W(2n)−∞ · · ·

respectively, which are not strong, of course.

Example 4.5. Consider Example 3.2, (Z(2)
2 ,+) is an additive abelian group and the map that exchanges the generators,

namely,
01 −→ 10; 10 −→ 01

is an automorphism. In this group we notice that we have two simple omega algebras,

Aω = {00, 01, 11} and Bω = {00, 10, 11).

Both are simple and omega isomorphic. This is a strong omega isomorphism.

Example 4.6. In the cartesian product of omega algebras, we can define an omega injection by using the arrow

Aωi −→ Xω

via
ai 7−→ (ω1, · · · , ωi−1, ai, ωi+1, · · · , ωn)

and an omega surjection map
Xω −→ Aωi

via
(a1, · · · , an) 7−→ ai.
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Similarly, one observes that

{ω1} × · · · × {ωi−1} × Aωi × {ωi+1} × · · · × {ωn} ≤ Xω

is an omega subalgebra.

5. The Symmetrized Omega Algebra

Let (G, ◦, e) be an abelian group and (Aω,⊕,⊗, ω, e) an ω−algebra over the group G . Following the method used
in constructing integers from the naturl numbers, we consider the set of ordered pairs Pω = A2

ω with componentwise
addition ⊕, for all (a, b), (c, d) ∈ Pω,

(a, b) ⊕ (c, d) = (a ⊕ c, b ⊕ d) (5.1)
Because of the four possibilities (a, b), (a, d) , (c, d) or (c, b) for the result, the addition in (4) is ambiguous. As our
goal from constructing the algebra of pairs is the construction of the symmetrized omega algebra of Aω, we are in front
of two possibilities: One is to use Example 3.5 for n = 2 and define an equivalence relation ∼ on the ω−algebra of
pairs which is compatible with relevant operations and the other is to define an equivalence relation on the set Pω that
allows the componentwise addition to be defined in the quotient set.

First construction
(1) Let ≤ be the ordering defined on Aω by the relation

a ≤ b⇐⇒ a ⊕ b = b (5.2)

which gives a total order on Aω and for all a ∈ Aω, we have ω ≤ a. For a , b, such that a ⊕ b = b, we denote by a < b.
Under the ordering ≤, rules (2) and (3) defined in Example 3.5 are satisfied on Pω = A2

ω and so Pω is an ω−algebra
under the addition defined in (1) and the componentwise multiplication.

Let 5 be the relation defined on Pω as follows: for all (a, b), (c, d) ∈ Pω

(a, b) 5 (c, d)⇐⇒ a ⊕ d = b ⊕ c.

Then 5 is reflexive and symmetric but not transitive for Aω contains more than 4 elements.
In fact, let a, b, c, d ∈ Aω such that a < b < c < d, then we have

a ⊕ d = d = b ⊕ d = c ⊕ d and a ⊕ c = c , b = b ⊕ b

which give (a, b) 5 (d, d) and (d, d) 5 (b, c), but there is no relation between (a, b) and (b, c).
As 5 is not an equivalence relation, we cannot use it to obtain the quotient ω−algebra Pω

5
(like the one to obtain

integers from the natural numbers).

Definition 5.1. Let ∼ be the equivalence relation close to 5 defined as follows: for all (a, b), (c, d) ∈ Pω,

(a, b) ∼ (c, d) ⇐⇒
{

(a, b) 5 (c, d) if a , b and c , d
(a, b) = (c, d) otherwise .

In addition to the class element ω = (ω,ω); for all a ∈ Aω, with a , ω, we have three kinds of equivalence classes:
(a) (a, ω) = {(a, b) ∈ Pω, b < a}, called positive ω−element.
(b) (ω, a) = {(b, a) ∈ Pω, b < a}, called negative ω−element.
(c) (a, a) called balenced ω−element.
Unfortunately, the addition defined by (1) and rules (2) and (3) in Example 3.5 is not compatible with the equivalence

relation in Pω, because for (a, ω), (a, b), (ω, c), (d, c) ∈ Pω, such that{
(a, ω) ∼ (a, b)
(ω, c) ∼ (d, c) ,

we have
(a, ω) ⊕ (ω, c) ∼ (a, b) ⊕ (d, c) iff (a, b) ⊕ (d, c) = (a, b)

and if (a, b) ⊕ (d, c) = (d, c),
then there is no compatibility. So the omega algebra of pairs cannot produce the symmetrized omega algebra.

Second construction
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Proposition 5.2. The addition operation ⊕ defined by

(a, b)⊕(c, d) = (a ⊕ c, b ⊕ d)

on the quotient set Pω
∼

is well defined and satisfies the axioms (1), (2) and (3) of definition of omega algebra.

Proof. By using the previous equivalence classes, for all a, b ∈ Aω, we have
(1)

(a, ω)⊕(b, ω) = (a ⊕ b, ω ⊕ ω) = (a, ω) or (b, ω);

(2)

(a, ω)⊕(ω, b) = (a ⊕ ω,ω ⊕ b) = (a, b) =

{
(a, ω) if b < a
(ω, b) if a < b

= (a, ω) or (ω, b) ;

(3)

(a, ω)⊕(b, b) = (a ⊕ b, ω ⊕ b) = (a ⊕ b, b) =

{
(a, ω) if b < a
(b, b) if a < b

= (a, ω) or (b, b);

(4)

(ω, a)⊕(b, b) = (ω ⊕ b, a ⊕ b) = (b, a ⊕ b) =

{
(ω, a) if b < a
(b, b) if a < b

= (ω, a) or (b, b).

A direct check shows that the axioms (1), (2) and (3) of definition of omega algebra are satisfied with the zero class
element ω. �

Proposition 5.3. (i) The set Pω
∼

is closed under the binary multiplication operation ⊗ defined as follows:
for all (a, b), (c, d) ∈ Pω

∼
;

(a, b)⊗(c, d) = ((a ⊗ c) ⊕ (b ⊗ d), (a ⊗ d) ⊕ (b ⊗ c))

and satisfies axioms from (4) to (9) of definition of omega algebra with the unit class element e = (e, ω).
(ii) In addition, we have for all a, b ∈ Aω

(1)
(a, ω)⊗(b, ω) = (a ⊗ b, ω);

(2)
(a, ω)⊗(ω, b) = (ω, a ⊗ b);

(3)
(a, ω)⊗(b, b) = (a ⊗ b, a ⊗ b);

(4)
(ω, a)⊗(b, b) = (a ⊗ b, a ⊗ b).

Proof. A routine but direct calculations give the desired results. �

Definition 5.4. The omega algebra
(
Pω
∼
,⊕,⊗, ω, e

)
is called the symmetrized ω−algebra over the abelian group G ×G

and we denote it by Sω.

In the coming sections just for simplicity we will only use ⊕ and ⊗ instead the operations ⊕ and ⊗, respectively.

Remark 5.5. 1. Despite the nature of the positive and the negative ω−elements, they are not the inverses of each other
for the additive operation ⊕,

2. Proposition 2.6 shows that we have three symmetrized ω−subalgebras of Sω,

S(+)
ω =

{
(a, ω), a ∈ Aω

}
,

S(−)
ω =

{
(ω, a), a ∈ Aω

}
,

S(0)
ω =

{
(a, a), a ∈ Aω

}
.

3. The three symmetrized ω−subalgebras of Sω are connected by the zero class element ω.
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6. Rules of Calculation in Omega and The Omega -Absolute Value

Let a ∈ Aω. Then we admit the following notations:

+a. = (a, ω), − a. = (ω, a), · a = (a, a).

By results in Proposition 5.2 and Proposition 5.3 and the above notation, it is easy to verify the rules of calculation
in the following proposition.

Proposition 6.1. For all a,b ∈ Aω, we have
(i) (+a) ⊕ (+b) = + (a ⊕ b) ;

(ii) (+a) ⊕ (−b) =


+a if b < a
−b if b > a
·a if b = a

;

(iii) (±a) ⊕ (·b) =

{
±a if b < a
·b if b > a :

(iv) (−a) ⊕ (−b) = − (a ⊕ b) ;
(v) (+a) ⊗ (+b) = + (a ⊗ b) ;
(vi) (+a) ⊗ (−b) = − (a ⊗ b) ;
(vii) (±a) ⊗ (·b) = · (a ⊗ b) ;
(viii) (−a) ⊗ (−b) = + (a ⊗ b) .

From the previous rules, we can notice that the sign of the result in the addition operation follows the greater element
in Aω. While in the multiplication operation, the balance sign is the strong one (has priority).

From Proposition 6.1, we can deduce the following.

Proposition 6.2. The map |.|ω : Sω −→ Aω, such that for all a ∈ Aω,

|+a|ω = |−a|ω = |·a|ω = a

is an absolute value on Sω. We call it the ω− absolute value.

Proposition 6.3. Let (Aω,⊕,⊗, ω, e) be an ω−algebra over an abelian group (G, ◦, e) and A a subgroup of G, such that
the ⊗|A = ◦. Then Aω is a Z−semimodule.

Proof. As G is an abelian group, then it is a Z−module (considered as an additive group), which yields to A to be a
subsemimodule. Then Aω is a Z−semimodule. �

Let sign (.) denote one of the three signs of an element in Sω. Under conditions of Proposition 6.4, we can define
the ω−power and the ω−multiple of an element in Sω.

Definition 6.4. The ω−power and the ω−multiple of an element in S ω

Let a ∈ Sω and n ∈ N∗.
(1) The ω−power of a is defined by the rule:

If a , ω, then a⊗n = a ⊗ ... ⊗ a︸     ︷︷     ︸
n−times

= (sign)n (α ◦ ... ◦ α)︸      ︷︷      ︸
n−times

, where a = sign (α)

ω⊗n = ω.

(2) The ω−multiple of a by n is defined by the rule:

If a , ω, then n ⊗ a = na = sign (nα) for α ∈ A

n ⊗ ω = ω.
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7. Matrix Operations

Definition 7.1. Let (Aω,⊕,⊗, ω, e) be an ω−algebra over an abelian group (G, ◦, e) and A a subgroup of G, such that
the ⊗|A = ◦. Let X =

(
xi j

)
m×n

, Y =
(
yi j

)
m×n

, Z =
(
z jk

)
n×p

be three matrices over Sω and α ∈ Sω. Then, we define the
sum X ⊕ Y , the product X ⊗ Z and the product by a scalar α ⊗ X over the group G as follow:

X ⊕ Y =
(
xi j ⊕ yi j

)
m×n

X ⊗ Z =

(
n
⊕
j=1

(
xi j ⊗ z jk

))
m×p

αX =
(
α ⊗ xi j

)
m×n

Remark 7.2. 1. From the previous definition, (it is easy to show that) the zero matrix and the identity matrix are
respectively: Ω = (ω)m×n and E is a square matrix consists of +e on the diagonal and ω on the off diagonal.

2. We can define the ω−algebraic norm ‖.‖ω of a matrix X =
(
xi j

)
m×n

over Sω as follows:

‖X‖ω =
n
⊕
j=1

m
⊕

i=1

(∣∣∣xi j

∣∣∣
ω

)
3. If ⊗|A , ◦, then we must take the operation defined on Aω and all possible induced operations into consideration.

Example 7.3. If the ω−algebra is the max-plus-algebra, then, the previous operations become the max, + and scalar
multiplication over Rε , where ε = −∞.

8. Some Topological Distances Over Omega-Algebras

8.1. The inner distance on Sω. Some metrics were first time introduced and some algebraic and topological properties
were studied in the symmetrized max-plus-algebra [4]. Let Aω be an ω−algebra over an abelian group (G, ◦), such that
the restriction ⊗|A = ◦. By the fundamental theorem of abelian groups, the group G is a direct sum (direct product)
of its cyclic groups, which make it isomorphic to a direct sum of copies of the cyclic groups Z of integers and/or
isomorphic to a direct sum of cyclic groups of the quotients of Z (according to the group is infinite or finite). In all
cases we can represent an element of G by n-tuple of elements of Z for some natural number n via that isomorphism.
From this point of view, we will define metrics (or semimetrics) on our ω−algebra via the distance in Z. Let Φ be a such
isomorphism. For any a ∈ G, there exists n ∈ N and there exist α1, . . ., αn ∈ Z (also they can be the representatives of
classes in Z), such that Φ (a) = (α1, ..., αn). Let us extend Φ on Aω as follows:

Φ (a) =

{
(α1, ..., αn) for a ∈ A, n ∈ N
0 for a = ω

When there is a valued structure (S, v) which originally is an additive group, Then the valuation v (the absolute
value) can produce a distance d such that for all a, b ∈ S, d (a, b) = v (a + (−b)) = v (a − b). It said that v produces
a distance in the usual way. The ω−absolute value cannot produce a distance on Sω in the usual way, because the
negative elements of Sω are not their inverses, which gives: for a , ω,

d (+a,−a) = |+a ⊕ (−a)|ω = |·a|ω = a , ω.

For this reason, we define a distance dSω in Sω via a distance dZ in copies of Z as follows:

dSω (a, b) = dZ (Φ (a) ,Φ (b)) = ‖Φ (a) − Φ (b)‖

where ‖.‖ is a norm on the Z−semimodule Φ (Aω). We call thedistance dSω inner distance.
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8.2. The Frobenius and the Euclidean distances on Sω. We suppose that the group G is a direct sum of its n cyclic
subgroups (then G is a finitely generated group). Then for every a ∈ A, Φ (a) = (ϕ1 (a) , ..., ϕn (a)), where ϕ1, . .
.,ϕn are the projections of Φ (G) on the corresponding sub-cyclic groups of Z or its quotients. Let ca be the circulant
matrix defined by (ϕ1 (a) , ..., ϕn (a)). As circulant matrices are diagonalizable in a same basis, we can benefit from this
property to define a metric on Sω by using Frobenius norm ‖‖F (it is a matrix norm). Let θ be a cube root of unity, say,
θ = −1+

√
3i

2 . As elements of Sω are defined by three signs, then we can emerge from Sω into the algebra of circulant
matrices by the map φ defined by: for all a ∈ Aω,

φ (+a) = θ exp ((ca)) , φ (−a) = θ2 exp ((ca)) , φ (·a) = exp ((ca))

Definition 8.1. Let dF : Sω × Sω −→ R be defined by

dF (a, b) = ‖φ (a) − φ (b)‖F
Then dF is a distance on Sω, we call it the omega Frobenius distance.

Definition 8.2. dE : Sω × Sω −→ R be defined by

dE (a, b) = de (Φ (|a|ω) ,Φ (|b|ω))

where dE is the Euclidean distance of Rn. We call dE the Euclidean distance.

Remark 8.3. It is clear that both “Euclidean” and “inner”distances induce the same topology on Sω, which will be
called the usual topology on Sω.

Problem What is the important topological properties of the space of circulant matrices over real numbers? How to
benefit from omega Frobenius distance to translate those properties from the space of circulant matrices to Sω?
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