Proceedings of International Conference on Mathematics
and Mathematics Education (ICMME 2019)
Turk. J. Math. Comput. Sci.
11(Special Issue)(2019) 60-64
© MatDer
https://dergipark.org.tr/tjmcs
http://tjmes.matder.org.tr

A Note on a Banach Algebra

Ismail Aydin (i)
Department of Mathematics, Faculty of Arts and Sciences, Sinop University, 57000, Sinop, Turkey.

Received: 24-08-2019
Accepted: 11-28-2019
Abstract. In this paper, we discuss and investigate Segal algebra using the Hardy -Littlewood maximal operator in amalgam spaces.

2010 AMS Classification: 46E30, 46E35.
Keywords: Amalgam spaces, maximal function, Segal algebras.

1. Main Results

Let G be a locally compact abelian group with Haar measure μ. An amalgam space $\left(L^{p}, \ell^{q}\right)(G)(1 \leq p, q \leq \infty)$ is a Banach space of measurable (equivalence classes of) functions on G which belong locally to L^{p} and globally to ℓ^{q}. The first systematic study of amalgams on the real line was undertaken by [3]. In 1979, Stewart [5] extended the definition of Holland to locally compact abelian groups using the Structure Theorem for locally compact groups. A Banach function space (shortly BF-space) on G is a Banach space ($B,\|.\| \|_{B}$) of measurable functions which is continuously embedded into $L_{l o c}^{1}(G)$, i.e. for any compact subset $K \subset G$ there exists some constant $C_{K}>0$ such that $\left\|f \chi_{K}\right\|_{L^{1}} \leq C_{K}\|f\|_{B}$ for all $f \in B$.

We denote by $L_{l o c}^{p}(G)(1 \leq p \leq \infty)$ the space of (equivalence classes of) functions on G such that f restricted to any compact subset E of G belongs to $L^{p}(G)$. Let $1 \leq p, q<\infty$. The amalgam of L^{p} and ℓ^{q} on the real line is the normed space

$$
\left(L^{p}, \ell^{q}\right)=\left\{f \in L_{l o c}^{p}(\mathbb{R}):\|f\|_{p q}<\infty\right\},
$$

where

$$
\begin{equation*}
\|f\|_{p q}=\left[\sum_{n=-\infty}^{\infty}\left[\int_{n}^{n+1}|f(x)|^{p} d x\right]^{q / p}\right]^{1 / q} . \tag{1.1}
\end{equation*}
$$

We make the appropriate changes for p, q infinite. Now we show that the norm $\|.\|_{p q}$ makes $\left(L^{p}, \ell^{q}\right)$ into a Banach space [3].
Theorem 1.1. Let $J_{k}=[k, k+1), k \in \mathbb{Z}$ and $1 \leq p, q<\infty$. The space $\left(L^{p}, \ell^{q}\right)$ is a Banach space with respect to the norm $\|\cdot\|_{p q}$.

[^0]Proof. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a Cauchy sequence in $\left(L^{p}, \ell^{q}\right)$. Then given $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that if $n, m \geq N$, then

$$
\begin{equation*}
\left\|f_{n}-f_{m}\right\|_{p q}=\left(\sum_{k \in \mathbb{Z}}\left\|f_{n}-f_{m}\right\|_{p, J_{k}}^{q}\right)^{1 / q}<\varepsilon \tag{1.2}
\end{equation*}
$$

Hence, for any fixed k,

$$
\left\|f_{n}-f_{m}\right\|_{p, J_{k}}<\varepsilon \quad(n, m \geq N)
$$

Thus $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in $L^{p}\left(J_{k}\right)$ for $k \in \mathbb{Z}$. Define $f=\sum_{k \in \mathbb{Z}} f^{k} \chi_{J_{k}}$, where $f^{k} \in L^{p}\left(J_{k}\right)$. Now we show that $f \in\left(L^{p}, \ell^{q}\right)$. Using Fatou's Lemma (applied to the right-hand series viewed as integral over the integers)

$$
\begin{align*}
\|f\|_{p q}^{q} & =\sum_{k \in \mathbb{Z}}\left\|f^{k}\right\|_{p, J_{k}}^{q}=\sum_{k \in \mathbb{Z}} \lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{p, J_{k}}^{q} \\
& \leq \lim _{n \rightarrow \infty} \inf \left\|f_{n}\right\|_{p q}^{q} . \tag{1.3}
\end{align*}
$$

The last quantity is finite since $\left\{f_{n}\right\}_{n=1}^{\infty}$, being Cauchy, is bounded in norm. Hence, the left side of (1.3) is finite, that is, $f \in\left(L^{p}, \ell^{q}\right)$. To show that $\left\{f_{n}\right\}_{n=1}^{\infty}$ convergences in $\left(L^{p}, \ell^{q}\right)$ to f we have, for $m \geq N$

$$
\begin{aligned}
&\left\|f_{m}-f\right\|_{p, J_{k}}^{q}=\lim _{n \rightarrow \infty}\left\|f_{m}-f_{n}\right\|_{p, J_{k}}^{q}, \\
&\left\|f_{m}-f\right\|_{p q}^{q}=\sum_{k \in \mathbb{Z}} \lim _{n \rightarrow \infty}\left\|f_{m}-f_{n}\right\|_{p, J_{k}}^{q} \\
& \leq \lim _{n \rightarrow \infty} \inf \sum_{k \in \mathbb{Z}}\left\|f_{m}-f_{n}\right\|_{p, J_{k}}^{q} \\
&<\varepsilon^{q}
\end{aligned}
$$

by (1.2). Thus the Cauchy sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to f, which is what we wished to show.
The following definition of $\left(L^{p}, \ell^{q}\right)(G)$ is due to Stewart [5]. By the Structure Theorem ([2], Theorem 24.30), $G=\mathbb{R}^{a} \times G_{1}$, where a is a nonnegative integer and G_{1} is a locally compact abelian group which contains an open compact subgroup H. Let $I=[0,1)^{a} \times H$ and $J=\mathbb{Z}^{a} \times T$, where T is a transversal of H in G_{1}, i.e. $G_{1}=\bigcup_{t \in T}(t+H)$ is a coset decomposition of G_{1}. For $\alpha \in J$ we define $I_{\alpha}=\alpha+I$, and therefore G is equal to the disjoint union of relatively compact sets I_{α}. We normalize μ so that $\mu(I)=\mu\left(I_{\alpha}\right)=1$ for all α. Let $1 \leq p, q \leq \infty$. The amalgam space $\left(L^{p}, \ell^{q}\right)(G)=\left(L^{p}, \ell^{q}\right)$ is a Banach space

$$
\left\{f \in L_{l o c}^{p}(G):\|f\|_{p q}<\infty\right\},
$$

where

$$
\begin{align*}
& \|f\|_{p q}=\left[\sum_{\alpha \in J}\|f\|_{L^{p}\left(I_{a}\right)}^{q}\right]^{1 / q} \text { if } 1 \leq p, q<\infty, \tag{1.4}\\
& \|f\|_{\infty q}=\left[\sum_{\alpha \in J} \sup _{x I_{\alpha}}|f(x)|^{q}\right]^{1 / q} \text { if } p=\infty, 1 \leq q<\infty, \\
& \|f\|_{p \infty}=\sup _{\alpha \in J}\|f\|_{L^{p}\left(I_{\alpha}\right)} \text { if } 1 \leq p<\infty, q=\infty .
\end{align*}
$$

If $G=\mathbb{R}$, then we have $J=\mathbb{Z}, I_{\alpha}=[\alpha, \alpha+1)$ and (1.4) becomes (1.1).
The amalgam spaces $\left(L^{p}, \ell^{q}\right)$ satisfy the following relations and inequalities [5]:

$$
\begin{gathered}
\left(L^{p}, \ell^{q_{1}}\right) \subset\left(L^{p}, \ell^{q_{2}}\right) \quad q_{1} \leq q_{2} \\
\left(L^{p_{1}}, \ell^{q}\right) \subset\left(L^{p_{2}}, \ell^{q}\right) \quad p_{1} \geq p_{2} \\
\left(L^{p}, \ell^{p}\right)=L^{p} \\
\left(L^{p}, \ell^{q}\right) \subset L^{p} \cap L^{q}, \quad p \geq q \\
L^{p} \cup L^{q} \subset\left(L^{p}, \ell^{q}\right), \quad p \leq q \\
\|f\|_{p_{2}} \leq\|f\|_{p q_{1}}, \quad q_{1} \leq q_{2} \\
\|f\|_{p_{1} q} \leq\|f\|_{p_{2} q}, \quad p_{1} \leq p_{2} .
\end{gathered}
$$

Note that C_{c} is included in all amalgam spaces.
Theorem 1.2. If p, q, r, s are exponents such that $1 / p+1 / r-1=1 / m \leq 1$ and $1 / q+1 / s-1=1 / n \leq 1$, then

$$
\left(L^{p}, \ell^{q}\right) *\left(L^{r}, \ell^{s}\right) \subset\left(L^{m}, \ell^{n}\right)
$$

Moreover, if $f \in\left(L^{p}, \ell^{q}\right)$ and $g \in\left(L^{r}, \ell^{s}\right)$, then

$$
\begin{align*}
\|f * g\|_{m n} & \leq 2^{a}\|f\|_{p q}\|g\|_{r s} \text { if } m \neq 1 \tag{1.5}\\
\|f * g\|_{1 n} & \leq 2^{2 a}\|f\|_{1 q}\|g\|_{1 s} .
\end{align*}
$$

By (1.5) the inequality

$$
\|f * g\|_{p q} \leq C\|f\|_{p q}\|g\|_{11}=C\|f\|_{p q}\|g\|_{1}
$$

satisfies for all $f \in\left(L^{p}, \ell^{q}\right)$ and $g \in\left(L^{1}, \ell^{1}\right)=L^{1}$, where $C \geq 1$, i.e. the amalgam space $\left(L^{p}, \ell^{q}\right)$ is a Banach $L^{1}-$ module with respect to convolution ([4], p. 60). Also it is easy to see that the amalgam space $\left(L^{p}, \ell^{1}\right)$ is a Banach algebra under convolution $p \geq 1$. In fact using Young's inequality for amalgams (1.5), we have

$$
\|f * g\|_{p 1} \leq C\|f\|_{1}\|g\|_{p 1} \leq C\|f\|_{p 1}\|g\|_{p 1} .
$$

Thus $\left\|\|f\|_{p 1}=C\right\| f \|_{p 1}$ defines a norm in $\left(L^{p}, \ell^{1}\right)$ under which $\left(L^{p}, \ell^{1}\right)$ is a Banach algebra. Recall that $\left(L^{p}, \ell^{1}\right) \subset L^{1}$.
The translation operator T_{y} is given by $T_{y} f(x)=f(x-y)$ for $x \in G .\left(B,\|.\|_{B}\right)$ is called strongly translation invariant if one has $T_{y} f \in B$ and $\left\|T_{y} f\right\|_{B}=\|f\|_{B}$ for all $f \in B$ and $y \in G$.

Theorem 1.3 ([4], Theorem 3.11). Let $1 \leq p, q<\infty$. If for each $y \in G$ and $f \in\left(L^{p}, \ell^{q}\right)$, then $\left\|T_{y} f\right\|_{p q} \leq 2^{a}\|f\|_{p q}$, i.e. the amalgam space $\left(L^{p}, \ell^{q}\right)$ is translation invariant.

Theorem 1.4 ([4], Theorem 3.14). Let $1 \leq p, q<\infty$. Then the mapping $y \rightarrow T_{y}$ is continuous from G into $\left(L^{p}, \ell^{q}\right)$.
A subalgebra $S(G)$ of $L^{1}(G)$ is called a Segal algebra if:
(S - 1) $S(G)$ is dense in $L^{1}(G)$ and if $f \in S(G)$ then $T_{y} f \in S(G)$;
$(\mathbf{S}-\mathbf{2}) S(G)$ is a Banach algebra under some norm $\|.\|_{S(G)}$ which also satisfies $\|f\|_{S(G)}=\left\|T_{y} f\right\|_{S(G)}$ for all $f \in S(G)$, $y \in G$;
$(\mathbf{S}-\mathbf{3})$ if $f \in S(G)$, then for every $\varepsilon>0$ there exists a neighborhood U of the identity element of G such that $\left\|T_{y} f-f\right\|_{S(G)}<\varepsilon$ for all $y \in U$.

Now we use the fact that $\left(L^{p}, \ell^{q}\right)$ has an equivalent translation-invariant norm $\|.\| \|_{p q}^{\sharp}$.
Theorem 1.5 (([4], Theorem 1.21), [1]). A function f belongs to $\left(L^{p}, \ell^{q}\right), 1 \leq p, q \leq \infty$, iff the function f^{\sharp} on G defined by $f^{\sharp}(x)=\|f\|_{L^{p}(x+E)}$ belongs to $L^{q}(G)$. If $\|f\|_{p q}^{\sharp}=\left\|f^{\sharp}\right\|_{q^{q}}$, then $2^{-a}\|f\|_{p q} \leq\|f\|_{p q}^{\sharp} \leq 2^{a}\|f\|_{p q}$, where E is open precompact neighborhood of 0 and

$$
\|f\|_{p q}^{\sharp}=\left[\int_{G}\|f\|_{L^{p}(x+E)}^{q} d x\right]^{1 / q} .
$$

Hence the norms $\|\cdot\|_{p q}$ and $\|.\|_{p q}^{\#}$ are equivalent.
Corollary 1.6. If $f \in\left(L^{p}, \ell^{q}\right)$ and $f^{\sharp}(x)=\|f\|_{L^{p}(x+E)}$, then it is obtained that

$$
\left(T_{y} f\right)^{\sharp}(x)=\left\|T_{y} f\right\|_{L^{p}(x+E)}=\|f\|_{L^{p}(x+y+E)}=f^{\sharp}(x+y)=T_{-y} f^{\sharp}(x)
$$

and

$$
\left\|T_{y} f\right\|_{p q}^{\sharp}=\left\|\left(T_{y} f\right)^{\sharp}\right\|_{q}=\left\|T_{-y} f^{\sharp}\right\|_{q}=\left\|f^{\sharp}\right\|_{q}=\|f\|_{p q}^{\sharp} .
$$

So the space $\left(L^{p}, \ell^{q}\right)$ is strongly translation invariant with respect to $\|.\|_{p q}^{\sharp}$.
Theorem 1.7 ([4], Theorem 4.16). Let $1 \leq p<\infty$. Then the amalgam space $\left(L^{p}, \ell^{1}\right)$ becomes a Segal algebra with respect to $\|.\|_{p q}^{\sharp}$.

Definition 1.8. For $x \in \mathbb{R}^{n}$ and $r>0$ we denote an open ball with center x and radius r by $B(x, r)$. For $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$, we denote the (centered) Hardy-Littlewood maximal operator $M f$ of f by

$$
M f(x)=\sup _{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y
$$

where the supremum is taken over all balls $B(x, r)$.
Let $1 \leq p, q<\infty$. We define the space

$$
A^{p, q}\left(\mathbb{R}^{n}\right)=\left\{f \in L^{1}\left(\mathbb{R}^{n}\right): M f \in\left(L^{p}, \ell^{q}\right)\right\}
$$

and the norm ||.|| given by

$$
\|f\|=\|f\|_{1}+\|M f\|_{p q}
$$

for $f \in A^{p, q}\left(\mathbb{R}^{n}\right)$ due to the fact that $M f$ is a sublinear operator.
Theorem 1.9. The space $\left(A^{p, q}\left(\mathbb{R}^{n}\right),\|\|.\right)$ is a Banach algebra according to convolution.
Proof. Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $A^{p, q}\left(\mathbb{R}^{n}\right)$. Clearly $\left(f_{n}\right)_{n \in I N}$ and $\left(M f_{n}\right)_{n \in I N}$ are Cauchy sequences in L^{1} and $\left(L^{p}, \ell^{q}\right)$, respectively. Since L^{1} is Banach space, then there exist $f \in L^{1}$ such that $\left\|f_{n}-f\right\|_{1} \rightarrow 0$. For $\varepsilon>0$ there exists a positive integer N such that $\left\|M\left(f_{n}-f_{m}\right)\right\|_{p q}<\varepsilon$ whenever $n, m \geq N$. Without loss of generality we may assume f_{n} converges to f almost everywhere.

We have, $m \geq N$,

$$
\begin{aligned}
\left\|M\left(f-f_{m}\right)\right\|_{p q}^{q} & =\sum_{k \in \mathbb{Z}}\left\|M\left(f-f_{m}\right)\right\|_{p, J_{k}}^{q} \\
& =\sum_{k \in \mathbb{Z}} \lim _{n \rightarrow \infty}\left\|M\left(f_{n}-f_{m}\right)\right\|_{p, J_{k}}^{q} \\
& \leq \lim _{n \rightarrow \infty} \inf \sum_{k \in \mathbb{Z}}\left\|M\left(f_{n}-f_{m}\right)\right\|_{p, J_{k}}^{q} \\
& =\lim _{n \rightarrow \infty} \inf \left\|M\left(f_{n}-f_{m}\right)\right\|_{p q}^{q}<\varepsilon^{q} .
\end{aligned}
$$

Therefore $f \in A^{p, q}\left(\mathbb{R}^{n}\right)$ and $\left\|f_{m}-f\right\| \rightarrow 0$ as $m \rightarrow \infty$. This asserts that $A^{p, q}\left(\mathbb{R}^{n}\right)$ is a Banach space.
Now let $f, g \in A^{p, q}\left(\mathbb{R}^{n}\right)$ be given. Then we write $f, g \in L^{1}$. Since L^{1} is a Banach algebra under convolution, then $f * g \in L^{1}$ and the inequality

$$
\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}
$$

is satisfied. It is well known that the maximal operator is bounded in $\left(L^{p}, \ell^{q}\right)$. Hence using

$$
\|M(f * g)\|_{p q} \leq C\|f * g\|_{p q}
$$

and

$$
\begin{equation*}
\|f * g\|_{p q} \leq C\|f\|_{p q}\|g\|_{1}, \tag{1.6}
\end{equation*}
$$

where $C \geq 1$, we have

$$
\begin{align*}
\|f * g\| & =\|f * g\|_{1}+\|M(f * g)\|_{p q} \\
& \leq\|f\|_{1}\|g\|_{1}+C\|f * g\|_{p q} \\
& \leq\|f\|_{1}\|g\|_{1}+C\|f\|_{p q}\|g\|_{1} \\
& \leq C\|f\|\|g\| . \tag{1.7}
\end{align*}
$$

Therefore $f * g \in\left(L^{p}, \ell^{q}\right)$. If we define the norm $\|f\|^{*}=C(q, r)\|f\|$ on $A^{p, q}\left(\mathbb{R}^{n}\right)$, then $A^{p, q}\left(\mathbb{R}^{n}\right)$ is a Banach algebra by (1.6) and (1.7).

Recall that,

$$
\begin{aligned}
M\left(T_{y} f\right) & =T_{y} M f \\
C_{c}\left(\mathbb{R}^{n}\right) & \subset L^{1}\left(\mathbb{R}^{n}\right) \cap\left(L^{p}, \ell^{q}\right) \subset A^{p, q}\left(\mathbb{R}^{n}\right) \subset L^{1}\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

for $1<p, q<\infty$.

Theorem 1.10. The space $\left(A^{p, q}\left(\mathbb{R}^{n}\right),\|.\|_{q, r}^{p 1}\right)$ is a Segal algebra.
Proof. Since $C_{c}\left(\mathbb{R}^{n}\right) \subset A^{p, q}\left(\mathbb{R}^{n}\right)$ and $C_{c}\left(\mathbb{R}^{n}\right)$ is dense in $L^{1}\left(\mathbb{R}^{n}\right)$, then $A^{p, q}\left(\mathbb{R}^{n}\right)$ is dense in $L^{1}\left(\mathbb{R}^{n}\right)$. So $A^{p, q}\left(\mathbb{R}^{n}\right)$ is a Segal Algebra by Theorem 1.4, Corollary 1.6 and Theorem 1.9.

Conflicts of Interest

The author declare that there are no conflicts of interest regarding the publication of this article.

References

[1] Fournier, J.J., Stewart, J., Amalgams of L^{p} and ℓ^{q}, Bull. Amer. Math. Soc., 13(1)(1985), 1-21. 1.5
[2] Hewitt, E., Ross, K.A., Abstract Harmonic Analysis v. I, II, Berlin-Heidelberg-New York, Springer-Verlag, 1979. 1
[3] Holland, F., Harmonic analysis on amalgams of L^{p} and ℓ^{q}, J. London Math. Soc. 2(10)(1975), 295-305. 1, 1
[4] Torres de Squire, M. L., Amalgams of L^{p} and ℓ^{q}, Ph.D. Thesis, McMaster University, 1984. 1, 1.3, 1.4, 1.5, 1.7
[5] Stewart, J., Fourier transforms of unbounded measures, Canad. J. Math., 31(6)(1979), 1281-1292. 1, 1, 1

[^0]: Email address: iaydin@sinop.edu.tr, aydn.iso953@gmail.com (I. Aydin)

