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Abstract

In this study we have examined, the cubic Bezier curve based on the control points with
matrix form in E®. Frenet vector fields and also curvatures of the cubic Bezier curve are

examined in matrix form in E*. Also a simple way has been given to find the control points
of any cubic Bezier curve.

Keywords: Bezier Curve, Cubic Bezier Curve, Frenet Apparatus

3 boyutlu Oklid Uzayinda Kiibik Bezier Egrileri Uzerine

Oz

Bu calismamizda 3 boyutlu Oklid uzaymda kontrol noktalar: ile kiibik Bezier egrilerini
matris formunda incelendi. Frenet vektor alanlari ve egrilikleri de matris formunda incelendi.
Ayrica herhangi bir kiibik egrinin kontrol noktalarinin bulunmasi i¢in basit bir yontem de
ornek ile verildi.

Anahtar Kelimeler: Bezier Curve, Cubic Bezier Curve, Frenet Apparatus

1. Introduction and Preliminaries

In 1962 Bézier curves was studied by the French engineer Pierre Bézier, who used them to
design automobile bodies. But the study of these curves was first developed in 1959 by
mathematician Paul de Casteljau using de Casteljau’s algorithm, a numerically stable method
to evaluate Bézier curves. A Bézier curve is frequently used in computer graphics and related
fields, in vector graphics, used in animation as a tool to control motion. To guarantee
smoothness, the control point at which two curves meet must be on the line between the two
control points on either side. In animation applications, such as Adobe Flash and Synfig,
Bézier curves are used to outline, for example, movement. Users outline the wanted path in
Bézier curves, and the application creates the needed frames for the object to move along the
path. For 3D animation Bézier curves are often used to define 3D paths as well as 2D curves
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for keyframe interpolation. We have been motivated by the following studies. First Bezier-
curves with curvature and torsion continuity has been examined in Hagen (2001). Also in
Michael (2003) and Zhang & Jieqing (2006) Bezier curves and surfaces has been given. In
Kusak et al (2015) planar Bezier curves and Bishop Frame of Bezier Curves are examined,
respectively. Recently equivalence conditions of control points and application to planar
Bezier curves have been examined in Incesu & Girsoy (2017). In this study we will define

and work on Frenet apparatus of Bézier curves in E°. So we need the derivates of them.In

this study we will define and work on Frenet apparatus of cubic Bézier curves in E*. A
Bézier curve is defined by a set of control points P, through P, ,where n iscalled its order

If n=1 for linear, If n=2 for quadratic Bézier curve, etc. The first and last control points
are always the end points of the curve; however, the intermediate control points (if any)
generally do not lie on the curve. Lets give the simple definitions of the kinds of Bézier
curves. Generaly Béziers curve can be defined by n+1 control points R, P,,...,P, and has

the following form:

Definition 1.1 The points P, are called control points for the Bézier curve. The polygon
formed by connecting the Bézier points with lines, starting with P, and finishing with P, ,

is called the Bézier polygon (or control polygon). The convex hull of the Bézier polygon
contains the Bézier curve. Bézier curve with n+1 control points R,,P,,...,P, has the

following equation Incesu & Giirsoy (2017):

B(t):zn: (TJt'(l—t)”' t)[P ], teloq]

1=0

B®H)=Y B, ®[P

1=0

n n
where B, (t) = (Ijt'(l—t)"" and [IJ are the binomial coefficients, also expressed as

n
C/ is [IJ Il( I)' Given points P, and P, a linear Bézier curve is simply a straight

line between those two points. Linear Bézier curve is given by
B(t)=(1-t)P, +tR,

and also it has the matrix form with control points P, and R,
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b o 2

A quadratic Bézier curve is the path traced by the function B(t), given points P, , P, and
P,, which can be interpreted as the linear interpolant of corresponding points on the linear
Bézier curves from P, to B, and from P, to P, respectively.

B(t)=(1—-t)’P, +2t(1—t)R, +t?P,,

A quadratic Bézier has the matrix form with control points

1 -2 1P
Bt)=ft> t 1]-2 2 o|n
1 0 0|P

Theorem 1.1 The derivatives of the any Bézier curve B(t) is

n-1

B'(t) = {”i_ljt‘(l—t)”“‘lq

where
QO = n(Pl_Po)1 Ql = n(PZ_Pl)’ Qz =I’1(P3—P2),...,Qn = n(Pi+l_Pi)'

Proof. Computing higher order derivatives of a Bézier curve is a simple matter. Once the
control points are known, the control points of its derivative curve can be obtained
immediately. Since the control points are constants and independent of the variable t,

computing the derivative curve B'(t) reduces to the computation of the derivatives of
B, (t) ’s, we have the following result

=0 \ I

n-1

5()=3 |

1=0

n-1

Jea-one.-m)

Where Q0 = n(Pl o PO)’Ql - n(Pz - P:L)’QZ = n(Ps - P2)1"'1Qn = n(Pi+1 - Pu)
Therefore, the derivative of «(t) is a Bézier curve of degree n—1 defined by n control
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points n(R,—PR,),n(P,—PR),n(P,—PR,),...n(P,—P,,). This derivative curve is usually
referred to as the hodograph of the original Bézier curve. Note that P_, —P is the direction
vector from P, to P,, and n(P,,—P) is n times longer than the direction vector. Recall
that the derivative of B(t) is the following:

B(1)=3 8,00
where
B,.i(t) = (n i_lJti (1_t)n_l_i'

Also, after some simple algebraic operations we can show that the derivative of a Bézier
curve is the difference of two Bézier curves of degree n—1,thus,

O Dol R TRAN N S o e TR}

1=0 I 1=0

Applying the derivative formula to the above Bézier curve we find the second derivative of
the original Bézier curve:

B ()=3 (” . zjti (1-1)""[n-1(Q.-Q)]

n-2
1=0

with control points n(n-1)((P,,-2P,,+R)), 0<i<n-2.

Theorem 1.2 The set, whose elements are Frenet vector fields and the curvatures of a curve
a(t)c IE?, is called Frenet apparatus of the curves. Let a(t) be the curve, with

n = (t)) #1 and Frenet apparatus are {T (t), N(t), B(t), (t), z(t)}. Frenet vector fields are
given for a non arc-lengthed curve

o (H)Aa'(t)

) o t)ae )

_at)
"

where curvature functions are defined by

. N(t)=B(®)AT(t) B(t)
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0 o (t)'Aa;(t)H o ( (t?Aa" 0. 0)
Ha (t)H Ha (DA (1)

Also Frenet formulae are well known as

T 0 nk 0T
N |=|-nx 0 nr|N|
B 0 -nr 0B

2. Cubic Bezier Curve and Frenet Apparatus in E®

Definition 2.1 Four points B,, B, P, and P, in the plane or in higher-dimensional space
define a cubic Bézier curve with the following equation

B(t)=(1-t)’P,+3t(1-t)" P, +3t*(1-t) P, + t°P,.

Those curve starts at P, going toward P, and arrives at P, coming from the direction of
P,. Usually, it will not pass through P, or P,; these points are only there to provide
directional information. The distance between P, and P, determines "how long" the curve
moves into direction P, before turning towards P,.

Theorem 2.1 Let « be a cubic Bézier curve with control points P,,P,P,, and PF,. The
matrix form of the cubic Bezier curve with is

-1 3 -3 1P

3 -6 3 0|P

t)=[t* t* t 1 '
alt)=| } 3 3 0 0|PR
1 0 0 OfP

the corresponding matrix of the cubic Bezier curve is

1 3 -3 1
113 -6 3 0
lomer’]= 3 3 0 0
1 0 0 0

called as coefficients’s Matrix of cubic Bezier curve with inverse:

87



S. Kiligoglu & S. Senyurt /On The Cubic Bezier Curves In E*

0001
00 11

3
0o 12
3 3
11 1 1]

Proof. Let «(t) be a cubic Bézier curve with four control points P, P, P, and P, inE?,
couse of the definition, a cubic Bézier curve is

a(t)=(1-t]’P, +3t1—t]P +3t*(1-t)P, +t°P,
= —t°P, + 3t°P, - 3t°P, + t°P, + 3t°P, — 6t°P, + 3t*P,P - 3tP, + 3tP,

—P,+3P,—3P,+P,
3P, —6PF, +3P,
—-3R, +3P,

I:)O

=t © t 1]

it is easy to write the matrix product form as in the proof. In differantial geometry to calculate
the Frenet apparatus we need the derivatives. Also we will give their matrix form as in the
following theorems.

Theorem 2.2 The first derivative of a cubic Bézier curve «, has the following equation
and matrix form is
1 -2 1|Q,
am)=[t> t 1]|-2 2 o||qQ
1 0O 0|Q,
Where

Q, =3(P1_Po) =(Xo’ yO’ZO)’Ql =3(P2 _Pl)= (X11 yl’zl)’QZ =3(P3_P2) =(X21 yz’zz)

are the control points of the first derivative of cubic Bezier curve .The corresponding matrix
of the first derivative of cubic Bezier curve is called as the coefficients’s Matrix of the first
derivative of a cubic Bézier curve;
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1 -2 1
[d3]=|-2 2 0 with inverse matrix
1 0 0
1 -2 1] |00
-2 2 0] =|0 1
1 00 1 % 1

Also it can be written based on the control points

X0_2X1_X2 yo_zyl_YZ Z0_221_22
oz'(t)z[t2 t 1] 2%, — 2%, 2y, -2y, 22, -2z,
XO yO Z0

dll dlZ dlS
d®=[ t 1] |d, d, dyl
d31 d32 d33

Proof. According to the definition of the derivation of a cubic Bézier curve

a(t)= P, —3tP, + 3tP, + 3t°P, — 6t°P, —t°P, + 3t?P, + 3t°P, - 3t°P, + t°P,
we get

o (t) =t°Q, +Qy(— 2t +12 +1)+ Q (2t - 2t?)

=Q, - 2tQ, + 2tQ, +1°Q, — 2t’Q, +t°Q,

It is easy to write its matrix form as

1 -2 1Q,
da=[t* t 1] |2 2 0[|Q|
1 0 0/Q,
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Theorem 2.3 The second derivative of a cubic Bézier curve and matrix form is

comi [ 23

where the control points of the second derivative of cubic Bezier curve are
Ro = 6(P2 _2P1+ Po): 6(X1_X07 Y1 = Yoo Z1_20) and
R, =6(P,—2P,+P)=6(x, — X, Y, — ¥;,Z, — Z, ). And also the matrix;

bl T o)

is the matrix of coefficients of the second derivative with inverse matrix

-1 17" Jo 1

1 0| |11
Proof. According to the definition of the second derivation of a cubic Bézier curve «, we
have

05" (t) = (1_t)2(Q1 _Qo)+t2(Q2 _Ql) = (1_t)2[QoQ1]+t2[Q1Q2]
o' (t) = (1-t)R, +1tR..

Hence it is easy to write its matrix form with control points R; and R, as in the theorem.
Also it can be written

-1 1}[6(% ~2P + PO)}

«®)= [t’l]{ 1 0|[6(P,-2P,+P)

¢ =6t 1] {(XZ‘ZX”X(’) (%2 =2+ %) (zz—zzﬁz()}
(Xl_Xo) (yl_yo) (Zl_zo)
Theorem 2.4 The third derivative of a cubic Bézier curve and its matrix form is;

" (1) =[R,R,],
o (t)=6[P, —3P, +3P, - P,],
a (t)= 6(()(2 — 2%+ X%, )’ (yZ -2Y1+ Y, )’ (Zz -27,+1, ))

where the control point of the third derivative of cubic Bezier curve is
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[RORl] =R —-R, = 2[Q1Q2]_ 2[Q0Q1] = 6[P3 —3PF,+3R - Po]-

Proof. According to the definition of the third derivation of a cubic Bézier curve «, we have
o (1) =(A-t)R, +1R)) ,
a" (1) =[RR],
=R —-R,

where the control pointis [R,R,]=2[Q,Q,]-2[Q,Q,] or it can be written

[RORl] = G(Ps —-3P, +3R - Po)-
Since
Ro = Z[Qle]: 6(X1 X Y1 = Yo 4y _Zo)’
R = Z[Qle] = 6(X2 — X Yo~ Y1 4 _21)

we have the following result too

[RoR,]=6((x, =25, + %), (Y, =2, + Yo ). (2, — 22, + 2,)).

2.1 Frenet Apparatus of A Cubic Bezier Curve

Theorem 2.6 Tangent vecror field of a cubic Bezier curve has the following matrix form

1 -2 17Q,
Th)=1 t 1]-2 2 o|Q
g 1 0 0]Q,

where
Q= 3(P1 - Po): 3[P0P1] = (X01 Yos Zo)’ Q= 3(P2 - Pl): 3[P1P2]: (Xv Y1 21)’
Q,=3(R-P,)=3RR]=(x,Yy, 2,) and 7= HO‘H

_a (t
Jor @)

~—

Proof. Since T(t) , We get

S
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3PP,
[t t 1][d, B°]| 3PP,
3PP,

T(H)=

n
1 -2 1|x%x Y Z
1,
Th)==[ t 1]-2 2 ox vy 7
g 1 0 Ofx, vy, z
Where let 7 has the follwing matrix form

1
6 6 1% Yo ZLif|% Yo Z ' :

n=le|={[t* t 1]-6 8 -2||x v, z|x ¥ z [t2t1]T
1 =2 1% Y, ,]|% Y. 7,

Theorem 2.7 Binormal vector field of a cubic Bezier curve is,

b, b, by
b b
B(t):%[t3 2 ¢ 1|72 P P

31 32 b33

b, by, by
where m = o (t)Ae’ (t)] and

o T

b, =2Y,2, —22,y, —4Y,2, +4Y,2,, 0, = Y2, = V12, —3YoZ, +32,Y, +3Y,2, —3Y,2,,
by = —2Y,2, +2Y120+ Y02, — 25, Dy = YoZi = ViZo,

b, = —2X,2, +2X,2, +4X,Z, —4X,2,,b,, = —X,Z, + X2y +3X,Z, —3X,2, — 3%, Z, + 3X,Z;
Dy, = 2Xy2, —2X,Zy — XoZ, + XoZy, D, = —XoZ, + %, Z,

bis = 2X0Y, = 2YoX, —4X Y, + 4%, Y1, D55 = Xo Y1 — X Yo = 3% Y, +3YoXp +3X Y, —3X, Y1,
b3 = =2X, Y1 + 2% Yo + X0 Y2 — YoXo, Baz = Xo Y1 =X Yo

Proof. Since B(t)= a (tAa (1

e )aa )]

, using the following determinant as o (t)Aa’(t)
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2Y,2, —22,Y, -4y 2, +4y,7,
YoZi — YiZo —3YoZ, +32,Y, +3y,2, —3Y,7,
—2Y,2, +2Y,25 + YoZ, — 25,
YoZi — Y120
—2XZ, +2X,Z, +4X,2, —4X,Z,
o (HAa (t)= 6[t3 t? t 1] — XoZy + X, Zg +3%yZ, —3X,24 —3X,Z, +3X,7;
2X0Zy —2X,Z — XoZ, + X, 2,
—XoZ; + X%, Z,
2Xo Y2 = 2YoX, —AX1Y, +4X,Y,
Xo Y1 — X1 Yo — 3%, Y, +3YoX, +3X, Y, —3X, Y,
—2Xo Y, +2X Yo + XY, — YoX,

Xo Y1 =X Yo

If we replace by,

bll blZ bl3
C b,, b, b
o Ao’ = 6P 2t 1] * BB
b31 b32 b33
by, by by

and we can write it in matrix product form, this complete the proof.

Theorem 2.8 Normal vecror field of a cubic Bezier curve is

N
N
N
w

N(t)=
( o

~
N
~
w

a
N
a1
w

n
n
)_6[t5 ot 1 n,
n
n
n

> 5 O w:i > 35
N

>0 5O 5 w: = R
w

(4]
N

where; e (t)Ae” () = m

n, = b12d13 B b13d12 v Ny = b12d23 B b13d22 + b22d13 o b23d12 )

Ny = b12d33 B b13d32 + b22d23 B b23d22 + b32d13 o d12b33

Ny = b22d33 B b23d32 + b32d23 o d12b43 B b33d22 + b42d J

Ny = b32d33 B b33d32 + b42d23 B d22b43’ Ne1 = b42d33 o b43d32 v M = _b11d13 + b13d11’

Ny = _budzs B b21d13 + b13d21 + d11b231 Ny, = _b11d33 o b21d23 + b13d31 o b31d13 + d11b33 + b23d21!
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2 = _b21d33 o b31d23 + d11b43 + b23d31 B b41d13 + d21b33 J

52 = ~D3y033 = 0,105 + A3y + b33y, NG, = =0, Ay +dyibys, 0y = byydi, — 4,0,

23 = b11d 22 b12d21 + b21d12 o b22d11’ Ny3 = b11d32 o b12d31 + b21d 22 b22d21 + b31d12 o d11b32 1
N3 = b21d32 o b22d31 + b31d22 B d11b42 B b32d21 + b41d12 1Ny3 = b31d32 o b32d31 + b41d 227 d21b42
Nes = b41d32 B b42d31-

> 5 5
N

Proof. Since N(t)=B(t)AT(t) = M, we have

mn
Ell :;)12 Els dll d12 d13
N(t)=i[t3 ot 1) * ® FIA[Y t 1]jd, d, dy
mn by, by, by d d d
b41 b42 b43 . ? *

Nm:%@ﬁMﬁﬂhH%1%+Mﬁﬂ%H%2mﬁMﬁf%H%J

AL (dy +1dy + €y, Ay +1dy, +P0y,  dyg +1d, + )
7

Hence we have the proof as the result of the following determinant

i j K
—_ 6 2 3 2 3 2 3
N(t)=—/b,, +tb, +t%0, +t°b, b, +th, +t%0,, +t%0, b, +tb,, +t?b,, +t0,,).
m
d,, +td,, +t3d,, d,, +td,, +t%d,, d, +td,, +t°d,,

We have the matrices product replacing each components with njj we have the proof.

13

N
N

2

w

w
N

n
n

nS
n4
n
n

w

n

n

N(t):6[t5 t 2t 1n
7m Ny

n

n

w

a
N

5

w

> 5 J>3 >0 -5 D
)

(4]
N

53
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Theorem 2.9 First curvature of a cubic Bezier curve is

1
x(t)= %((b41 +1b,, +1t°h,, +t3bﬂ)2 + (b42 +1b,, +t%b,, +t°b, )2 + (b43 +1b,, +1%0,, +t3b13)2)2 :

Ha' (t)Ae (t)ﬂ
Jor 0

Proof. Since the first curvature of a cubic Bezier curve is x(t)= , first we

have
b, b, by,
C b, b, b
odhe =6 12t 1] | ® 2 B
b31 b32 b33
b41 b42 b43

= (6h,, + 6thy, +6t°h,, +6t°y,, 6h,, +6thy, +6t%h,, +6t°h,, 6h,, + 6th,, +6t°h,, + 6t°h; )

and it is easy to get that
1
by, +thy, +t%,, +t°, [|?
Ha'Aa"H:m:ES[b41+tb31+t2b21+t3b11 b, +thy, +t2h, +t%, by, +th, +t%b,, +t%, | by, +th, +t%,, +,,
by, +th, +t%,, +th,,

1

- 6((b41 1y, + 17, + 1%y, f + (b, +thy, + 12y, + %, | + (b +th, + by, +t3b13)2)5

So the matrices product form completes the proof.

Theorem 2.10 Second curvature of a cubic Bezier curve is

z'(t) =6 Xo¥1Z = Xo¥YoZs =X YoZp T X1Y5 20 + X5 Y02 — X3 Y120
2
m

<a' tAaa (t)a (t)>
Ha' Aa (tX 2

Proof. Since z(t)= and
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-2l (2 -2t -2+ 1)-y (2 - 2petly, g -z, o - 2oty

<a'(t)Aa" (t)vam (t)> =6 (Xo ‘X1)(t‘1)_t(xl_xz) (yo ‘y1)(t‘1)_t(y1‘yz) (Zo 'let'l)'t(zl‘zz)
Xy = 2%, +X, Yo—2Y,+Y, 1,-21,+1,

= 6(X0 YiZo = Xo Y22y = X1 YoZy + X Y220 + X5 Y2 — X, ylzo)
Hence we have the proof.

Example 2.1 Find the cubic Bezier curve with control points P, = (—1,3,2), B = (1,0,—1),
P,=(2,1,0), P, =(3,-1,5)
3.(3 ;
a(t)= Z(Jt' 1-t)"'P
1=0
=(1-1)’ P, +3t(1-t)" P, + 33 (1-t) P, + t°P,
=(1-1)°(-1,3,2) +3t(1-t)" (1,0,-1) + 3t*(1-1)(2,1,0) + t*(3,1,5)
a(t)= (t° —3t° +6t—1,~7t> +12t* -9t + 3,12t* — 9t + 2)
Example 2.2 Find the control points of the cubic Bezier curve

alt)= (t° —3t? + 6t —1,—7t° +12t* —9t +3,12t* — 9t + 2)

we can write it in matrix form as in the following way

1 -7 0

-3 12 12
t)=[t> t> t 1

-1 3 2

Since the equality the cubic matrix forms

1 -7 0 -1 3 -3 1R
~3 12 12 3 -6 3 0fP
[t t o] = ot 1 !
6 -9 -9 3 3 0 ofp
1 3 2 1 0 0 0|P

using inverse matrix
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009ty 7 0712% %44 5 _317p
003 3122 12/ 1% 313 -6 3 ofp
ol 246 -9 -9 (g1 24-3 3 0 ofR
3 3 3 3

1011t 201 gt 0 0 0fR

-1.3 2 (Xo’ymzo)
1 0 -1 — (X1’y1121)
2 1.0 (X27Y2’Zz)
3 -1 5 (X31y3’23)

we have the control points.

Example 2.3 Bézier curve with control points F,(0,0,0), P,(1,0,0), P,(0,1,0), and PR,(0,0,1)
has the following parametric form c(t)= (3t° +3t2 + 3t,3t> + 3% t°)
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