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Abstract. In this work, the Laplacian spectrum of Complementary Prism graph is considered. The complemen-
tary prism operation was introduced by Haynes et al. and denoted by GḠ. Some upper and lower bounds obtained
using majorization and operator definition of Laplacian. Beside Cardoso et al.’s results in literature about Laplacian
spectrum of complementary prisms, an alternative proof about nonzero minimum and maximum Laplacian eigen-
value of complementary prism that contains disconnected components in the underlying graph G or Ḡ is provided.
Also using this result, the lower and upper bound of nonzero minimum and maximum Laplacian eigenvalue of the
complementary prism graph is emphasized.
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1. Introduction

Let G = (V, E) be a simple graph with vertex set V = V(G) and edge set E = E(G). The Laplacian matrix of the
graph G is the n × n matrix L(G) = D(G) − A(G) where D(G) = diag{d1, d2, . . . , dn} is the diagonal matrix of vertex
degrees denoted by di for each i ∈ V(G) and A(G) = (ai j) is the (0, 1)-adjacency matrix of the graph G, that is, ai j = 1
if i and j are adjacent vertices and ai j = 0 otherwise.

Li j(G) =


di , i = j
−1 , (i, j) ∈ E(G)
0 , otherwise

L can be viewed as an operator on the space of functions f : V(G)→ R satisfying

L f (i) := di f (i) −
∑
j, j∼i

f ( j). (1.1)

L(G) is real and symmetric matrix. Eigenvalues of L are real and non-negative, the smallest eigenvalue is equal to
zero with constant eigenvector 1 and is a simple for connected graph. Multiplicity of zero eigenvalue of L(G) is equal
to number of connected components of graph. We denote λmin and λmax the smallest nonzero eigenvalue and largest
eigenvalue, respectively. All eigenvectors of L orthogonal to each other. Thus, for an eigenvector f = ( fi) corresponds
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Figure 1. Example of Complementary Prisms of a graphs C5 and C5

to a nonzero eigenvalue the sum
∑

i∈V(G)
fi = 0. In addition, smallest positive eigenvalue λmin is called the algebraic

connectivity of the graph [2]. Eigenvectors of L(G) associated with algebraic connectivity is called Fiedler vectors.
Several research has been done for Laplacian spectrum of many graph operations which combines graphs with

different ways. Adjacency, Laplacian, signless Laplacian spectra of product graphs and other operations have taken
attention of many researchers. In this work, the Laplacian spectrum of Complementary prism graph is considered. The
complementary prism operation was introduced by Haynes et al. [4] and denoted by GḠ. In Section 2, some useful
definitions and results are given. In Section 3, some upper and lower bounds are obtained using majorization and
operator definition of Laplacian. In [1], it is provided a result about the Laplacian spectrum of complimentary prisms.
Supporting result of Cardoso et al. about Laplacian spectrum of complementary prism graph, an alternative proof about
nonzero minimum and maximum Laplacian eigenvalue of complementary prisms which has disconnected construction
in underlying graph G or Ḡ is given.

2. Preliminaries

Definition 2.1 ( [4]). Complementary prisms of a graph G, denoted as GḠ. Let G be a graph and Ḡ be the complement
of G is the graph with V(G)=V(Ḡ) and E(Ḡ)=E(Kn) \ E(G).

The complementary prism GG of G is the graph formed from the disjoint union G ∪ Ḡ of G and Ḡ by adding the
edges of a perfect matching between the corresponding vertices (same label) of G and Ḡ.

L(GḠ) =

[
L(G) + In −In

−In L(Ḡ) + In

]
Example 2.2. Petersen Graph is a Complementary Prism graph shown in Figure 1.

Following theorem was proved by Cardoso et al. provide information about Laplacian spectrum of complementary
prism graph.

Theorem 2.3 ( [1]). Let G be graph on n vertices with Laplacian eigenvalues µ1 > µ2 > ... > µn−1 > µn = 0. For each
i = 1, ..., n − 1, if (µi,ui) is a L-eigenpair of G, then

τ1,2(µi) =
(n + 2) ±

√
(n − 2µi)2 + 4
2

are L-eigenvalues of GḠ with associated eigenvectors
(

ui
(µi−τ1,2(µi))ui

)
. The others L-eigenvalues of GḠ are 2 and 0 with

associated eigenvectors
(

j
−j

)
and

(
j
j

)
, respectively.

Following useful majorization definition that will use to construct relationship between Laplacian spectra of G, Ḡ
and GḠ in the next section.
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Definition 2.4 ( [3]). Suppose that b = (b1, . . . , bp) and c = (c1, . . . , cq) are sequences of non negative real numbers
arranged in non-increasing order. We say that b majorizes c, denoted by c ≺ b, if

k∑
i=1

bi ≥

k∑
i=1

ci, 1 ≤ k ≤ min{p, q}

and
p∑

i=1

bi =

q∑
i=1

ci.

Theorem 2.5 (Fan 1954 [3]). Let H and H̄ be n × n Hermitian matrices having the form

H =

[
H11 H12
H21 H22

]
, H̄ =

[
H11 0
0 H22

]
,

where H11 : l × l, H22 : m × m, l + m = n, and µ is sequence of spectrum of matrices in non increasing order. Then,

(µ(H11), µ(H22)) = µ(H̄) ≺ µ(H).

3. Main Results

For the next result, the majorization concept will be used. For a symmetric matrix M, the notation µ(M) + 1 means
adding 1 to each element of spectrum of M.

Lemma 3.1. Let GḠ be the complementary prism of G. Let µ is sequences of eigenvalues in non increasing order.
Then,

(µ(L(G)) + 1, µ(L(Ḡ)) + 1) ≺ µ(L(GḠ)).

Proof.

L(GḠ) =

[
L(G) + In −In

−In L(Ḡ) + In

]
, L′ =

[
L(G) + In 0

0 L(Ḡ) + In

]
.

We can obtain the result applying Theorem 2.5 to L and L′:

(µ(L(G) + 1), µ(L(Ḡ) + 1)) = (µ(L(G) + In), µ(Ḡ) + In) ≺ µ(L(GḠ)). �

Remark 3.2. Let GḠ is complementary prism graph. It is known from Theorem 2.3, 2 is eigenvalue of L(GḠ).
Furthermore, if f = (x1, . . . , xn, y1, . . . , yn) is the corresponding eigenfunction, then

n∑
i=1

xi = −

n∑
i=1

yi , 0.

Following lemma can be said from Theorem 2.3. It is also show relationshi between nonzero maximum and mini-
mum eigenvalues using alternative way.

Lemma 3.3. Let GḠ be the 2n order complementary prism of G.

λmin(GḠ) + λmax(GḠ) = n + 2 (3.1)

where λ1 = 0 < λmin(GḠ) ≤ · · · ≤ λmax(GḠ) is spectrum of L(GḠ).

Proof. Let f = (x1, . . . , xn, y1, . . . , yn) be an eigenvector of L(GḠ) where
∑

i∈V(GḠ) fi = 0, corresponding to kth (2 ≤ k ≤
2n) eigenvalue λk. We know from (1.1) that, for all i ∈ V(G),

(di + 1)xi −
∑
j∼i

i, j∈V(G)

x j − yi = λk xi (3.2)

for all ī ∈ V(Ḡ)
(dī + 1)yi −

∑
j∼i

i, j∈V(Ḡ)

y j − xi = λkyi
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Let f ′ = (−y1, . . . ,−yn, x1, . . . xn) be an eigenfunction of L(GḠ) corresponding to eigenvalue λm (2 ≤ m ≤ 2n). Apply
f ′ to (1.1)

(di + 1)yi −
∑
j∼i

i, j∈G

y j + xi = λmyi

for all i ∈ V(Ḡ)
(dī + 1)xi −

∑
j∼i

i, j∈V(Ḡ)

x j + yi = λmxi. (3.3)

Adding equations (3.2) and (3.3),

(n + 1)(xi + yi) − (
n∑

j=1

x j +

n∑
j=1

y j − xi − yi) = (λk + λm)(xi + yi).

Using
∑

j∈GḠ fi =
∑n

j=1 x j +
∑n

j=1 y j = 0, therefore

(λk + λm) = n + 2. (3.4)

Letλk(GḠ) and λm(GḠ) be in the spectrum of L(GḠ). Assume that

λm(GḠ) = λmin(GḠ),

λk(GḠ) ≤ λmax(GḠ). (3.5)

satisfying equation (3.4) such that
λk(GḠ) + λmin(GḠ) = n + 2. (3.6)

So, we can write for another eigenvalues, λt(GḠ) and λn(GḠ) in the spectrum of L(GḠ)

λn(GḠ) = λmax(GḠ),

λt(GḠ) ≥ λmin(GḠ). (3.7)

satisfying equation (3.4) such that
λt(GḠ) + λmax(GḠ) = n + 2. (3.8)

Adding (3.5) and (3.7),
λmin(GḠ) + λk(GḠ) ≤ λt(GḠ) + λmax(GḠ)

for equality using equations (3.6) and (3.8),

λk(GḠ) = λmax(GḠ),

λt(GḠ) = λmin(GḠ).

Hence, we obtain (3.1). �

Proposition 3.4. Let GḠ = (GḠ) be a 2n order complementary prism of G. λmin(G) and λmin(Ḡ) are nonzero smallest
eigenvalues of G and Ḡ, respectively. For minimum eigenvalue of L(GḠ)

λmin(GḠ) ≤ min{2,
λmin(G) + λmin(Ḡ) + 2

2
}.

Proof. Let x = (x1, . . . , xn), ‖x‖ = 1, be an eigenvector of L(G) corresponding to λmin(G) and y = (y1, . . . , yn), ‖y‖ = 1,
is an eigenvector of L(Ḡ) corresponding to λmin(Ḡ). Using equation (1.1) for all i ∈ V(G)

dixi −
∑

(i, j)∈E(G)

x j = λmin(G)xi. (3.9)

Similarly, for all ī ∈ V(Ḡ)
dīyi −

∑
i, j)∈E(Ḡ)

y j = λmin(Ḡ)yi. (3.10)

Modify the each equations in (3.9) and (3.10) are multiplied by yi, xi respectively for all vertices in graph.

dixiyi − yi

∑
(i, j)∈E(G)

x j = λmin(G)xiyi, (3.11)
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dīxiyi − xi

∑
(i, j)∈E(Ḡ)

y j = λmin(Ḡ)xiyi (3.12)

equations can be obtained. Adding both side of equations (3.11) and (3.12),

(n − 1)
n∑

i=1

xiyi +

n∑
i=1

xiyi = (λmin(G) + λmin(Ḡ))
n∑

i=1

xiyi

is found. Therefore, λmin(G) + λmin(Ḡ) = n for
∑n

i=1 xiyi , 0. Assume that λmin(G) + λmin(Ḡ) < n then
∑n

i=1 xiyi = 0.
Let f = ( fi) ∈ R2n be a function as follows

fi =

{
xi/
√

2 , i ∈ G
yi/
√

2 , i ∈ Ḡ
.

Hence,

λmin(GḠ) ≤
∑

(i, j)∈E(GḠ)( fi − f j)2∑
i f 2

i

=

∑
(i, j)∈E(G)( fi − f j)2 +

∑
(i, j)∈E(Ḡ)( fi − f j)2∑

i f 2
i

+

∑
(i, j)∈E(G,Ḡ)( fi − f j)2∑

i f 2
i

=
λmin(G)

2
+
λmin(Ḡ)

2
+

∑
(i, j)∈E(G,Ḡ)

( fi − f j)2.

From the assumption,
∑n

i=1 xiyi = 0 then it can be get that
∑

(i, j)∈E(G,Ḡ)( fi − f j)2 = 1. Thus,

λmin(GḠ) ≤
λmin(G) + λmin(Ḡ) + 2

2
from Theorem 2.3, it is known that 2 is eigenvalue of L(GḠ) matrix for GḠ. Hence,

λmin(GḠ) ≤ min
{

2,
λmin(G) + λmin(Ḡ) + 2

2

}
. �

The following theorem that uses Rayhleigh quotient emphasizes the nonzero minimum and maximum Laplacian
eigenvalues of complementary prism graph that contain disconnected components in the underlying graph G or Ḡ.

Theorem 3.5. Let GḠ be a 2n order complementary prism of G. If G or Ḡ is disconnected graph, then

λmin(GḠ) =
(n + 2) −

√
n2 + 4

2
,

λmax(GḠ) =
(n + 2) +

√
n2 + 4

2
where λmin(GḠ) and λmax(GḠ) are minimum and maximum non zero eigenvalues of L(GḠ), respectively.

Proof. Without loss of generality, G be a disconnected graph with k connected components denoted by G j where
1 ≤ j ≤ k. Let f = f j be an eigenfunction of L(GḠ) corresponding to eigenvalue λ , 2

f j =

{
x j, v ∈ V(G j)
y j, v ∈ V(Ḡ j)

where
∑

v∈V(G) f j =
∑

v∈V(Ḡ) f j = 0. Using (1.1), for every v ∈ V(G j),

dix j −
∑

E(G j)

x j − y j = λx j

x j − y j = λx j

(1 − λ)x j = y j (3.13)
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for every vertex v̄ ∈ V(Ḡ j)

dīy j −
∑

(i,ī)∈E(Ḡ)

fi − x j = λy j

dīy j + diy j − x j = λy j

(n + 1)y j − x j = λy j. (3.14)

Apply (3.13) to (3.14) provided that x j , 0

(1 − λ)(n + 1 − λ)x j = x j

λ2 − λ(n + 2) + n = 0.

Hence,

λ =
(n + 2) +

√
n2 + 4

2
or

λ =
(n + 2) −

√
n2 + 4

2
.

Let g = (x1, x2, ..., xn, y1, ..., yn) be an eigenfunction. We want to minimize Rayleigh quotient for any λ′

λ′ =

∑
(i, j)∈E(GḠ)

(gi − g j)2

∑
ig2

i

subject to
n∑

i=1

xi + yi = 0

and

n∑
i=1

x2
i + y2

i = 1.

Using Lagrange multipliers, define a Lagrangian function

F(x1, ..., xn, y1, ..., yn) =
∑

(i, j)∈E(GḠ)

(gi − g j)2 + µ1

n∑
i=1

(xi + yi) + µ2((
n∑

i=1

x2
i + y2

i ) − 1).

For all xi corresponding to i ∈ Ḡ j, for 1 ≤ i ≤ n

∂F
∂xi

= 2(L f )i + µ1 + 2µ2xi = 0. (3.15)

For all yi corresponding to i ∈ Ḡ j, for 1 ≤ i ≤ n

∂F
∂yi

= 2(L f )i + µ1 + 2µ2yi = 0. (3.16)

Adding all equations (3.15) and (3.16) corresponding to all xi and yi, it is obtained that µ1 = 0. Also, substitute µ1 = 0
in equation (3.15);

2(L f )i + 2µ2xi = 0

λ′xi = −µ2xi.
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Then µ2 is equal to negative value of corresponding eigenvalue λ′.

λ′ =

∑
(i, j)∈E(GḠ)

(gi − g j)2

∑
ig2

i

≥
∑

(i, j)∈E(G jḠ j)

(gi − g j)2 +
∑

(i, j)∈E(Ḡ jḠk)

(gi − g j)2. (3.17)

All entries corresponding to a connected component G j and Ḡ j are constant in eigenfunction f . When the f is applied
to Rayleigh quotient then summation is equal to zero on edges of G j and Ḡ j. The remaining part different from zero is
evaluated as the right side of the inequality (3.17). Let minimize∑

(i, j)∈E(G jḠ j)

(gi − g j)2 +
∑

(i, j)∈E(Ḡ jḠk)

(gi − g j)2

subject to
n∑

i=1

xi + yi = 0

and
n∑

i=1

x2
i + y2

i = 1.

where g = (x1, x2, ..., xn, y1, ..., yn). Similarly using Lagrange multipliers define following function

F′(x1, ..., xn, y1, ..., yn) =
∑

(i, j)∈E(G jḠ j)

(gi − g j)2 +
∑

(i, j)∈E(Ḡ jḠk)

(gi − g j)2+

µ1

n∑
i=1

(xi + yi) + µ2((
n∑

i=1

x2
i + y2

i ) − 1)

we can evaluate partial differential of F′. After adding all partial differential for each variable, it is obtained that µ1 = 0
and xi(1 + µ2)=yi is the form of only critical point. Therefore, it is clear from (3.13) that eigenfunction f is minimize
also the right side of inequality (3.17). Hence, λmin =

(n+2)−
√

n2+4
2 . Using Lemma 3.3, λmax(GḠ) =

(n+2)+
√

n2+4
2 . �

Theorem 3.6. Let λmin(GḠ) and λmax(GḠ) are the smallest and largest nonzero eigenvalues of a complementary prism
graph GḠ. Then,

(n + 2) −
√

n2 + 4
2

≤ λmin(GḠ)

and

λmax(GḠ) ≤
(n + 2) +

√
n2 + 4

2

Proof. Assume that HH̄ is a complementary prisms and H has two connected component such as G1 and G2. Also,
GnḠn is a complementary prism graph obtained by adding an edge between two connected component such that both
Gn and Ḡn are connected graphs (see in Figure 2). Let j ∈ V(H) that has same vertex degree in both HH̄ and GnḠn and
g = gi is eigenfunction corresponding to λmin(GnḠn). Using form of the eigenvector f = fi corresponding to λmin(HH̄)
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Figure 2. GnḠn is obtained by HH̄ where H has two disconnected component

defined in proof of Theorem 3.5, λmin(HH̄) can be expressed from (1.1):

λmin(HH̄) =
f j − f j̄

f j

=

d j f j −
∑

(i, j)∈E(H)
fi − f j̄

f j

≤

(d j − 1)g j −
∑

(i, j)∈E(Gn)
gi + g j − g j̄

g j

=

d jg j −
∑

(i, j)∈E(Gn)
gi − g j̄

g j

= λmin(GnḠn).

Thus, using Theorem 3.5, lower bound for nonzero smallest eigenvalue of any complementary prism GḠ can be
written as

(n + 2) −
√

n2 + 4
2

≤ λmin(GḠ).

Moreover, using Lemma 3.3, upper bound for largest eigenvalue of any complementary prism can be expressed;

λmax(GḠ) ≤
(n + 2) +

√
n2 + 4

2
. �

Now using Theorem 3.1, we can define the bound for λmax(GḠ) and λmin(GḠ).

Proposition 3.7. Let GḠ is 2n order graph. Then, for nonzero maximum eigenvalues of L(GḠ)

λmax(GḠ) ≥ max{λmax(G), λmax(Ḡ)} + 1.

Proof. Let b = (λmax(GḠ), . . . , λmin(GḠ), 0) is sequence of spectrum of L(GḠ) in nonincreasing order and

c = (max{λmax(G), λmax(Ḡ)} + 1, . . . ,min{λmin(G), λmin(Ḡ)} + 1, 1, 1)

is sequence of spectrum of λ(L(G) + In) and λ(L(Ḡ) + In) in nonincreasing order. We know from Theorem 3.1 that b
majorizes c. Therefore, using Definition 2.4,

k∑
i=1

bi ≥

k∑
i=1

ci, 1 ≤ k ≤ 2n (3.18)
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and
2n∑
i=1

bi =

2n∑
i=1

ci. (3.19)

If k = 1, then λmax(GḠ) ≥ max{λmax(G), λmax(Ḡ)} + 1. �

Remark 3.8. From (3.18) and (3.19) we have
2n−2∑
i=1

bi ≥

2n−2∑
i=1

ci and
2n∑
i=1

bi =

2n∑
i=1

ci.

Hence, λmin(GḠ) ≤ 2. We know from Theorem 2.3 that 2 is always eigenvalue of Laplacian of complementary prisms.
Therefore, we can also obtain that 2 is an upper bound for nonzero minimum eigenvalue by majorization.
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