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Abstract. In this study, a matrix method based on collocation points and Bell polynomials are improved to
obtain the approximate solutions of systems of high-order generalized delay differential equations with variable
coefficients. The presented technique reduces the solution of the mentioned delay system under the initial conditions
to the solution of a matrix equation with the unknown Bell coefficients. Thereby, the approximate solution is
obtained in terms of Bell polynomials. In addition, some examples along with residual error analysis are performed
to illustrate the efficiency of the method; the obtained results are scrutinized and interpreted.
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1. Introduction

The systems of differential, difference, differential-difference and delay differential equations and their solutions play
an important role in explaining many different phenomena and particularly, arise in industrial applications and in studies
based on biology, economy, electro dynamics, physics and chemistry. Since these type systems are usually difficult
to solve analytically, a numerical method is needed. In recent years for solving these equation,numerical methods
have been developed.For example, Adomian decomposition method [14], Differential transformation method [1], Haar
functions method [10], homotopy analysis method [18], via Laplace Transformation [15], Taylor collocation method
[8], Chelyshkov collocation method [12].
In this study, we introduce a novel collocation method based on Bell polynomials for solving the system of linear delay
differential equations in the form

m∑
k=0

J∑
j=1

Pk
i j(x)y(k)

j (α jk x + β jk) = gi(x), i = 1, 2, . . . , J, 0 ≤ a ≤ x ≤ b (1.1)

under the mixed conditions
y(k)

j (a) = λ jk; j = 1, 2, ..., J, k = 0, 1, ...,m − 1. (1.2)
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where y(0)
j (x) = y j(x), j = 1, 2, ..., J are unknown functions; Pk

i j(x) and gi(x)are continuous functions on [a, b] and
λ jk, α jk and β jk is real constant coefficients.
Our aim is to obtain an approximate solution of (1.1) in the following Bell polynomial form

y j(x) � y j,N (x) =

N∑
n=0

a jnBn (x) (1.3)

where aJn , n = 0, 1, · · ·N are unknown Bell coefficients and Bn (x) ,n = 0, 1, · · · , N are Bell polynomial defined by

Bn (x) =

n∑
k=0

S (n, k) xk (1.4)

where

S (n, k) =

k∑
j=0

(−1)k− j

k!

(
k
j

)
jn

is stirling numbers of the second kind [2–4, 16].

2. Fundamental Matrix Relations

In this section, we convert the equations (1.1)-(1.3) to the matrix forms.Firstly we will convert Bell polynomials
defined in Eq. (1.4) into matrix form

B (x) = X (x) S (2.1)
where

B (x) = [B0 (x) B1 (x) . . . BN(x)] , X (x) =
[
1 x x2. . . xN

]
and

S=



S(0, 0)
0
0
...
0

S(1, 0)
S(1, 1)

0
...
0

S(2, 0)
S(2, 1)
S(2, 2)
...
0

· · ·

· · ·

· · ·

. . .

· · ·

S(N, 0)
S(N, 1)
S(N, 2)

...
S(N,N)


.

Also, the approximate solutions y j(x) in (1.3) can be expressed as

y j (x) =B (x) Aj ; j = 1, 2, ..., J (2.2)

where

Aj =
[

a j0 a j1 . . . a jN

]T
.

By using (2.1) and (2.2), we obtain the relation

y j (x) = X (x) SAj.

On the other hand, it is cleary seen [17] that the relation between the matrix X(x) and its kth derivative X(k)(x) is

X(k) (x) = X (x) Mk (2.3)
where

M=



0 1 0 · · · 0
0 0 2 · · · 0
...
0
0

...
0
0

... · · ·
...

0 · · · N
0 · · · 0


, M0 =



1
0
0
...
0

0
1
0
...
0

0
0
1
...
0

· · ·

· · ·

· · ·

. . .

· · ·

0
0
0
...
1


.
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Thus, from the relations (2.2) and (2.3), we obtain the matrix relations

y(k)
j (x) = X (x) MkSAj ; j = 1, 2, ..., J. (2.4)

Similarly, if we put x→ α jk x + β jk into (2.4), we obtain the matrix relation

y(k)
j (α jk x + β jk) = X

(
α jk x + β jk

)
MkSAj=X (x)

(
α jk, β jk

)
MkSA. (2.5)

If α jk , 0 andβ jk , 0, [6]

µ
(
α jk, β jk

)
=



(
0
0

)
(αjk)0(βjk)0

(
1
0

)
(αjk)0(βjk)1

(
2
0

)
(αjk)0(βjk)2

· · ·
(

N
0

)
(αjk)0(βjk)N

0
(

1
1

)
(αjk)1(βjk)0

(
2
1

)
(αjk)1(βjk)1

· · ·
(

N
1

)
(αjk)1(βjk)N−1

0

...

0

0

...

0

(
2
2

)
(αjk)2(βjk)0

· · ·
(

N
2

)
(αjk)2(βjk)N−2

...

. . .
...

0 · · ·
(

N
N

)
(αjk)N(βjk)0


.

3. Bell Matrix Collocation Method

Firstly, the system (1.1) by using (2.4) and (2.5) for i,j =1,2,. . . ,J can be written in the following matrix form

m∑
k=0

PkY(k)(αk x + βk) =G(x) (3.1)

where

Y(k)(αk x + βk) =


y(k)

1 (α1k x + β1k)
y(k)

2 (α2k x + β2k)
...

y(k)
jk (α jk x + β jk)

 =


X (x)µ

(
α1k, β1k

)
MkSA1

X (x)µ
(
α2k, β2k

)
MkSA2

...

X (x)µ
(
αjk, βjk

)
M

k
SAJ

 = X (x)µ (αk, βk) (M)
k
SA,

µ (αk, βk) =


µ (αk, βk) 0 · · · 0

0 µ (αk, βk) · · · 0
...
0

...
0

. . .

· · ·

...
µ (αk, βk)

 , M
k

=


Mk 0 · · · 0
0 Mk · · · 0
...
0

...
0

. . .

· · ·

...

Mk

 ,

X (x) =


X (x) 0 · · · 0

0 X (x) · · · 0
...
0

...
0

. . .

· · ·

...
X (x)

 , S =


S 0 · · · 0
0 S · · · 0
...
0

...
0

. . .

· · ·

...
S

 ,

Pk(x) =


Pk

11(x) Pk
12(x) . . . Pk

1J(x)
Pk

21(x) Pk
22(x) . . . Pk

2J(x)
...

...
. . .

...
Pk

J1(x) Pk
J2(x) . . . Pk

JJ(x)

 , G(x) =


g1(x)
g2(x)
...

gJ(x)

 A=


A1
A2
...

AJ

 .
The collocation points xt are defined by [11]

xt = a +
b − a

N
t , t = 0, 1, ...,N. (3.2)

and by using the points (3.2), it is obtained the system of the matrix equations
m∑

k=0

Pk(xt)X (xt)µ
∗ (αk, βk) (M)

k
SA=G(xt) (3.3)
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where

Pk =


Pk (x0) 0 · · · 0

0 Pk (x1) · · · 0
...
0

...
0

. . .

· · ·

...
Pk (xN)

 , µ
∗ (αk, βk) =


µ (αk, βk)
µ (αk, βk)

...
µ (αk, βk)

 ,

X =


X (x0) 0 · · · 0

0 X (x1) · · · 0
...
0

...
0

. . .

· · ·

...

X (xN)

 , G=


G(x0)
G (x1)
...

G(xN)

 .
The fundamental matrix Eq. (3.3) for (1.1) corresponds to a system of k(N + 1) algebraic equation for the k(N + 1)
unknown Bell coefficients

WA=G or [W;G] (3.4)

where

W=

 m∑
k=0

Pk(xt)X (xt)µ
∗(αk, βk)(M)

k
S

 .
By using the relations (2.4), we get the matrix form of the conditions (1.2) forj = 1, 2, ..., J, k = 0, 1, ...,m − 1 as
follows: 

y(k)
1 (a)

y(k)
2 (a)
...

y(k)
jk (a)

 =


X(a)MkS 0 · · · 0

0 X(a)MkS · · · 0
...
0

...
0

. . .

· · ·

...

X(a)MkS




A1
A2
...

AJ

 =


λ1k

λ2k
...
λJk


or briefly

UkA = λk or [U;λk] , j = 0, 1 , . . . , m − 1. (3.5)

Therefore, the rows of the matrix (3.5) are replaced by last rows of the matrix (3.4), we obtain the new augmented
matrix

W̃A=G̃ or
[
W̃;G̃

]
. (3.6)

If rank(̃W) = rank
[
W̃ ; G̃

]
= k(N + 1) ,then we can write

A=(̃W)
−1

G̃ .

Thus the matrix A is uniquely determined and the Eq. (1.1) under the coefficient equation (1.2) has unique solution.This
solution is given by truncated Bell series

y j(x) � y j,N (x) =

N∑
n=0

a jnBn (x) .

4. Residual Error Analysis

We can easily check the accuracy of the obtained solutions as follows. Since the truncated Bell series (1.3) is approxi-
mate solution of the system (1.1), using the residual correction method [5, 7, 9, 13].
Firstly, the residual function of the method can be defined as

RiN(x) = L[yiN(x)] − gi(x) i = 1, 2, ..., k (4.1)

where L
[
yiN(x)

]
� gi(x)and yiN(x), i = 0, 1, 2, ..., k are the Bell polynomial solutions (1.3) of the problems (1.1) - (1.2).

Then y jN(x)correspond the problem
∑m

k=0
∑J

j=1 Pk
i j(x)y(k)

j (α jk x + β jk) = gi(x) + RiN(x), i = 1, 2, ..., k
y(k)

j (a) = λ jk, j = 1, 2, ..., J, k = 0, 1, ...,m − 1

 .
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Furhermore ,the exact solution y j(x) and the approximate solution y jN (x) are called, the error function e jN(x) is
calculated by the following form

e jN(x) = y j(x) − y jN(x). (4.2)

From Eqs. (1.1), (1.2), (4.1) and (4.2), we obtain the system of the error differential equations
L[eiN(x)] = L[yi(x)] − L[yiN(x)] = −RiN(x)

and the error problem { ∑m
k=0

∑J
j=1 Pk

i j(x)e jN
(k)(α jk x + β jk) = −RiN(x) i = 1, 2, ..., k

e jN
(k)(a) = 0 ; j = 1, 2, ..., J and k = 0, 1, ...,m − 1

}
.

If e jN(x)→ 0 when N is sufficiently large enough,then the error decreases.

5. Numerical Examples

Example 1: First, we consider the system of linear delay-differential equations{
y(2)

1 + xy1(x − 1) + xy2(x) = −2 + 2x2 − x3

y(2)
2 + 2xy2(x − 1) + 2xy1(x) = 4x2 − 2x3

and the initial conditions y1(0) = 0, y2(0) = 1, y′1(0) = 1 and y′2(0) = 1with the exact solutions are y1(x) = x − x2 and
y2(x) = x + 1. For N = 2, the approximate solutions yi(x) by the truncated Bell series

y j,2 (x) =

2∑
n=0

a jnBn (x) , j = 1, 2

where k = 2, J = 2, g1 (x) = −2 + 2x2 − x3, g2 (x) 4x2 − 2x3, P0
11 = x, P0

12 = x, P2
11 = 1, P0

21 = 2x, P0
22 = 2x,

P2
22 = 1, α10 = 1, β10 = −1 and α20 = 1, β20 = −1.

By using (3.2) the collocation points for N = 2 is calculated as

{x0 = 0, 1/2, x1 = 1}

and from the (3.3) fundamental matrix equation is{
P0Xµ∗(αk, βk)(M)

0
S+P2X(M)

2
S
}

A=G

where

P0(x) =

[
x x

2x 2x

]
, P2(x) =

[
1 0
0 1

]
,

P0 =

 P0(0) 0 0
0 P0(1/2) 0
0 0 P0(1)

 , P1 =

 P1(0) 0 0
0 P1(1/2) 0
0 0 P1(1)

 ,
X(x) =

[
X(x) 0

0 X(x)

]
, X =


X(0) 0 0

0 X(1/2) 0
0 0 X(1)

 ,
M =

[
M 0
0 M

]
, M=

 0 1 0
0 0 2
0 0 0

 , S =

[
S 0
0 S

]
, S=

 1 0 0
0 1 1
0 0 1

 ,
µ∗ (αk, βk) =

 µ (αk, βk)
µ (αk, βk)
µ (αk, βk)

 , µ (αk, βk) =

[
µ (α1k, β1k) 0

0 µ (α2k, β2k)

]
,

µ (α1k, β1k) = µ (α2k, β2k) =

 1 −1 1
0 1 −2
0 0 1

 ,
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G =

 g(0)
g(1/2)
g(1)

 , g(0) =

[
−2

0

]
, g(1/2) =

[
−13/8

3/4

]
, g(1) =

[
0
2

]
,

A =

[
A1
A2

]
, A1 =

[
a10 a11

]T
, A2 =

[
a20 a21

]T
.

The augmented matrix for this fundamental matrix equation is calculated as

[W ; G] =



0 0 2 0 0 0 ; −2
0 0 0 0 0 0 ; 0

1/2 −1/4 15/8 1/2 −1/4 −1/8 ; −13/8
1 −1/2 −1/4 1 −1/2 7/4 ; 3/4
1 0 2 1 0 0 ; 0
2 0 0 2 0 2 ; 2


.

From Eq. (3.5), the matrix form for initial conditions is computated as

[U; λ] =


1 0 0 0 0 0 ; 0
0 0 0 1 0 0 ; 1
0 1 1 0 0 0 ; 1
0 0 0 1 1 1 ; 1

 .
Hence,the new augmented matrix based on conditions from system (4.1) can be obtained as follows

[
W̃ ; G̃

]
=



0 0 2 0 0 0 ; −2
0 0 0 0 0 0 ; 0
1 0 0 0 0 0 ; 0
0 0 0 1 0 0 ; 1
0 1 1 0 0 0 ; 1
0 0 0 0 1 1 ; 1


.

By solving this system, substituting the resulting unknown Bell coefficients matrix into Eq. (3.4) we obtain the exact
solutions for N = 2 as y1(x) = x − x2 and y2(x) = x + 1.

Example 2: Let us consider the system of linear delay-differential equations{
y(2)

1 + xex−1y′1(x − 1) + y2(x) = ex + e−x − x
y(2)

2 + e−1−xy′2(x + 1) + y1(x) = ex + e−x + 1

and the initial conditions y1 (0) = 1, y2 (0) = 1, y′1 (0) = −1 and y′2 (0) = 1 with the exact solutions are
y1 (x) = e−x, y2 (x) = ex. From the (3.3) fundamental matrix equation is{

P0X(M)
0
S+P1Xµ∗(αk, βk)(M)

1
S + P2X(M)

2
S
}

A=G.

Therefore, necessary operations are calculated, we obtain the approximate solution by the Bell polynomials of the
problem for i = 1, 2 and N = 4, 5 and 6 respectively,

y1,4(x) = 1 − x + 0.5000x2 − 0.1671x3 + 0.0353x4,

y2,4(x) = 1 + x + 0.4986x2 + 0.1642x3 + 0.0590x4,

y1,5(x) = 1 − x + 0.5000x2 − 0.1672x3 + 0.0419x4 − 0.0069x5,

y2,5(x) = 1 + x + 0.4995x2 + 0.1669x3 + 0.0403x4 + 0.0120x5

and
y1,6(x) = 1 − x + 0.5000x2 − 0.1668x3 + 0.0419x4 − 0.0083x5 + 0.0011x6,

y2,6(x) = 1 + x + 0.4999x2 + 0.1665x3 + 0.0419x4 + 0.0080x5 + 0.0020x6.
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Table 1. Comparison of the absolute errors of y1(x) for N= 4, 5,6.
xi y(x) = e−xi |e4(xi)| |e5(xi)| |e6(xi)|
0 1 0 0 0
0.2 0.8187 1.1073e-05 3.5211e-06 6.9868e-07
0.4 0.6703 1.1077e-04 1.8862e-05 3.0924e-06
0.6 0.5488 3.3036e-04 3.3140e-05 4.2825e-06
0.8 0.4493 4.2528e-04 3.4116e-05 2.9028e-07
1 0.3679 3.2056e-04 7.9441e-05 2.0559e-05

Table 2. Comparison of the absolute errors of y2(x) for N= 4, 5,6.
xi y(x) = exi |e4(xi)| |e5(xi)| |e6(xi)|
0 1 0 0 0
0.2 1.2214 5.0758e-05 1.9238e-05 5.0302e-06
0.4 1.4918 2.9498e-05 6.8538e-05 2.1946e-05
0.6 1.8221 4.9080e-04 9.2400e-05 4.5168e-05
0.8 2.2255 0.0018 3.0912e-05 4.8960e-05
1 2.7183 0.0035 4.1817e-04 1.8172e-05

Figure 1. Numerical and Exact Solutions of y1(x) for N = 4,5,6
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Figure 2. Numerical and Exact Solutions of y2(x) for N = 4,5,6
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Figure 3. Residual Error Functions of y1(x) for N =4,5,6
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Figure 4. Numerical and Exact Solutions of y2(x) for N = 4,5,6
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Conclusion

In this study, a new method was developed by using Bell polynomials for the solution of systems of linear delay-
differential equations with variable coefficients. To illustrate the validity and applicability of this method, explanatory
examples were solved, and an error analysis based on the residual function was performed to show the accuracy of the
results. These comparisons and error estimates show that the proposed method is highly effective. We have calculated
the solutions with the help of MATLAB.
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[2] Başar, U., Sezer, M., Numerical Solution Based on Stirling Polynomials for Solving Generalized Linear Integro-Differential Equations with
Mixed Functional Arguments, Proceeding of 2. International University Industry Cooperation, R&D and Innovation Congress, (2018), 141–
148. 1

[3] Bell, E.T, Exponential polynomials, Ann. Math., 35(2)(1934), 258–277. 1
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[11] Mollaoğlu, T., Sezer, M., A numerical approach with residual error estimation for solution of high-order linear differential-difference equations
by using Gegenbauer polynomials, CBU J.of Sci., 13(1)(2017), 39–49. 3

[12] Oguz, C., Sezer, M., Oguz, A.D., Chelyshkov collocation approach to solve the systems of linear functional differential equations, NTMSCI,
3(4)(2015), 83–97. 1

[13] Oliveira, F.A., Collacation and residual correction, Numer. Math., 36(1980), 27–31. 4
[14] Saeed, R.K., Rahman B.M., Adomian decomposition method for solving system of delay differential equation, Australian Journal of Basic and

Applied Sciences, 4(8)(2010), 3613–3621. 1
[15] Sun, Y., Galip Ulsoy, A., Nelson, P.W., Solution of systems of linear delay differential equations via Laplace transformation, Proceedings of

the 45th IEEE Conference on Decision and Control, (2006), 13–15. 1
[16] Van Gorder, R.A., Recursive relations for Bell polynomials of arbitrary positive non-integer order, International Mathematical Forum,

5(37)(2010), 1819–1821. 1
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