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Abstract. Our aim is to introduce the vector-valued weighted variable exponent Lebesgue spaces. We discuss
two different type of Hölder inequalities in this spaces. We will also show that every elements of vector-valued
weighted variable exponent Lebesgue spaces are locally integrable. Hence we can define vector-valued weighted
variable exponent Sobolev spaces. Finally under some conditions we will investigate some basic properties of
vector-valued weighted variable exponent Sobolev spaces.
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1. Introduction

Spaces of weakly differentiable functions, so called Sobolev spaces, play an important role in modern Analysis.
Since their discovery by Sergei Sobolev in the 1930’s they have become the base for the study of many subjects such as
partial differentiable equations and calculus of variations. Vector-valued Lebesgue and Sobolev spaces are now widely
used in analysis, abstract evolution equations and in the theory of integral operators [1, 2, 11, 13, 14]. Also, the use
of theory of vector-valued Sobolev spaces can be applied for solutions of some elliptic partial differential equations,
new embedding results for weighted Sobolev spaces. The variable exponent Lebesgue space Lp(.)(Rn) and Sobolev
space Wk,p(.)(Rn) were introduced by Kováčik and Rákosnı́k [12] in 1991. Since 1991, variable exponent Lebesgue,
Sobolev, Besov, Triebel-Lizorkin, Lorentz, amalgam and Morrey spaces, have attracted many attentions (see [6,8,12]).
Vector-valued variable exponent Bochner-Lebesgue spaces Lp(.) (Rn, E) defined by Cheng and Xu [5] in 2013. They
proved dual space, the reflexivity, uniformly convexity and uniformly smoothness of Lp(.) (Rn, E). Furthermore, they
gave some properties of the Banach valued Bochner-Sobolev spaces with variable exponent. In this study, we focus on
vector-valued weighted variable exponent Lebesgue Lp(.)

ϑ
(Rn, E) and Sobolev spaces Wk,p(.)

ϑ
(Rn, E), and discuss some

basic properties, such as completeness, reflexive and uniformly convex.
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2. Definition and Preliminary Results

Definition 2.1. For a measurable function p : Rn → [1,∞) (called a variable exponent on Rn), we put

p− = essinf
x∈Rn

p(x), p+ = esssup
x∈Rn

p(x).

The variable exponent Lebesgue spaces Lp(.)(Rn) consist of all measurable functions f such that %p(.)(λ f ) < ∞ for some
λ > 0, equipped with the Luxemburg norm

‖ f ‖p(.) = inf
{
λ > 0 : %p(.)(

f
λ

) ≤ 1
}

,

where
%p(.)( f ) =

∫
Rn

| f (x)|p(x) dx.

If p+ < ∞, then f ∈ Lp(.)(Rn) iff %p(.)( f ) < ∞. The space
(
Lp(.)(Rn), ‖.‖p(.)

)
is a Banach space. If p(.) = p is a constant

function, then the norm ‖.‖p(.) coincides with the usual Lebesgue norm ‖.‖p [6, 8, 12]. In this paper we assume that
p+ < ∞.

A positive, measurable and locally integrable function ϑ : Rn → (0,∞) is called a weight function. The weighted
modular is defined by

%p(.),ϑ( f ) =

∫
Rn

| f (x)|p(x) ϑ(x)dx.

The weighted variable exponent Lebesgue space Lp(.)
ϑ

(Rn) consists of all measurable functions f on Rn for which

‖ f ‖p(.),ϑ =
∥∥∥∥ fϑ

1
p(.)

∥∥∥∥
p(.)

< ∞. The relations between the modular %p(.),ϑ(.) and ‖.‖p(.),ϑ are in the following:

min
{
%p(.),ϑ( f )

1
p− , %p(.),ϑ( f )

1
p+

}
≤ ‖ f ‖p(.),ϑ ≤ max

{
%p(.),ϑ( f )

1
p− , %p(.),ϑ( f )

1
p+

}
min

{
‖ f ‖p

+

p(.),ϑ , ‖ f ‖
p−

p(.),ϑ

}
≤ %p(.),ϑ( f ) ≤ max

{
‖ f ‖p

+

p(.),ϑ , ‖ f ‖
p−

p(.),ϑ

}
[3]. Moreover, if 0 < C ≤ ϑ, then we have Lp(.)

ϑ
(Rn) ↪→ Lp(.)(Rn), since one easily sees that

C
∫
Rn

| f (x)|p(x) dx ≤
∫
Rn

| f (x)|p(x) ϑ(x)dx

and C ‖ f ‖p(.) ≤ ‖ f ‖p(.),ϑ.

Theorem 2.2. Let 1
p(.) + 1

q(.) = 1 and ϑ∗ = ϑ1−q(.). Then for f ∈ Lp(.)
ϑ

(Rn) and g ∈ Lq(.)
ϑ∗

(Rn), we have f g ∈ L1(Rn) and∫
Rn

| f (x)g(x)| dx ≤ C ‖ f ‖Lp(.)
ϑ

(Rn) ‖g‖Lq(.)
ϑ∗

(Rn) ,

where ϑ∗ = ϑ1−q(.).

Proof. By the Hölder inequality for variable exponent Lebesgue spaces, we get∫
Rn

| f (x)g(x)| dx =

∫
Rn

| f (x)g(x)|ϑ(x)
1

p(x)−
1

p(x) dx

≤ C
∥∥∥∥ fϑ

1
p(.)

∥∥∥∥
p(.)

∥∥∥∥gϑ−
1

p(.)

∥∥∥∥
q(.)

for some C > 0. That is the desired result. �

So the dual space of Lp(.)
ϑ

(Rn) is Lq(.)
ϑ∗

(Rn), where 1
p(.) + 1

q(.) = 1 and ϑ∗ = ϑ1−q(.).

Let (E, ‖.‖E) be a Banach space and E∗ its dual space.

Definition 2.3 ( [9]). A function f : Rn → E is Bochner (or strongly) measurable if there exists a sequence { fn} of

simple functions fn : Rn → E such that fn(x)
E
→ f (x) as n→ ∞ for almost all x ∈ Rn.
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Definition 2.4 ( [9]). A measurable function f : Rn → E is called Bochner integrable if there exists a sequence of
simple functions { fn} such that

lim
n→∞

∫
Rn

‖ fn − f ‖E dx = 0

for almost all x ∈ Rn.

Theorem 2.5 (Bochner’s Theorem [9]). A measurable function f : Rn → E is Bochner integrable if and only if∫
Rn

‖ f ‖E dx < ∞, that is, ‖ f ‖E is Lebesgue integrable.

Definition 2.6 ( [5, 9]). Let (Ω,Σ, µ) be a measure space. Then a function F : Σ→ E is called a vector measure, if for

all sequences (An) of pairwise disjoint members of Σ such that
∞⋃

n=1
An ∈ Σ and F

(
∞⋃

n=1
An

)
=
∞∑

n=1
F (An) , where the series

converges in the norm topology of E.
Let F : Σ→ E be a vector measure. The variation of F is the function ‖F‖ : Σ→ [0,∞] defined by

‖F‖ (A) = sup
π

∞∑
B∈π

‖F (B)‖E ,

where the supremum is taken over all finite disjoint partitions π of A. If ‖F‖ (Ω) < ∞, then F is called a measure of
bounded variation.

Definition 2.7 ( [5, 9]). A Banach space E has the Radon-Nikodym property (RNP) with respect to (Ω,Σ, µ) if for
each vector measure F : Σ → E of bounded variation, which is absolutely continuous with respect to µ, there exists a
function g ∈ L1 (Ω, E) such that

F(A) =

∫
A

gdµ

for all A ∈ Σ.

Definition 2.8. Let ϑ be a weight function and 1 < p− ≤ p(x) ≤ p+ < ∞. The weighted variable exponent Bochner-
Lebesgue space Lp(.)

ϑ
(Rn, E) stands for all (equivalence classes of) E-valued Bochner integrable functions f on Rn such

that
Lp(.)
ϑ

(Rn, E) =
{
f : ‖ f ‖p(.),ϑ,E < ∞

}
,

where

‖ f ‖p(.),ϑ,E =
∥∥∥∥ fϑ

1
p(.)

∥∥∥∥
p(.),E

= inf
{
λ > 0 : %p(.),ϑ,E(

f
λ

) ≤ 1
}

and

%p(.),ϑ,E( f ) =

∫
Rn

‖ f (x)‖p(x)
E ϑ(x)dx.

The following properties proved by Cheng and Xu [5];
(i) f ∈ Lp(.)

ϑ
(Rn, E)⇔ ‖ f (.)‖p(.)

E ∈ L1
ϑ

(Rn)⇔ ‖ f (.)‖E ∈ Lp(.)
ϑ

(Rn) .
(ii) Lp(.)

ϑ
(Rn, E) is a generalization of the Lp

ϑ
(Rn, E) spaces.

(iii) If E = R or C, then Lp(.)
ϑ

(Rn,R) = Lp(.)
ϑ

(Rn) .

Theorem 2.9. Lp(.)
ϑ

(Rn, E) is a Banach space with respect to ‖.‖p(.),ϑ,E .

Proof. Let
(
u j

)
be a Cauchy sequence in Lp(.)

ϑ
(Rn, E). Then,

(
u jϑ

1
p(.)

)
is a Cauchy sequence in the Banach space

Lp(.)(Rn, E) in [7] due to ∥∥∥u j − u jp
∥∥∥

p(.),ϑ,E =
∥∥∥∥(u j − u jp

)
ϑ

1
p(.)

∥∥∥∥
p(.),E

→ 0,

so it converges to some u in Lp(.)(Rn, E). Consequently,
(
u j

)
converges to uϑ−

1
p(.) in Lp(.)

ϑ
(Rn, E). �
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Theorem 2.10 (Hölder’s Inequality, scalar-valued case). Let 1
p(.) + 1

q(.) = 1 and ϑ∗ = ϑ1−q(.). Then for f ∈ Lp(.)
ϑ

(Rn, E)

and g ∈ Lq(.)
ϑ∗

(Rn,R) we have f g ∈ L1 (Rn, E) and Hölder inequality implies

‖ f g‖1,E ≤ C ‖ f ‖p(.),ϑ,E ‖g‖q(.),ϑ∗

for some C > 0.

Proof. By the Hölder inequality for variable exponent Lebesgue spaces, we get∫
Rn

‖ f (x)g(x)‖E dx =

∫
Rn

‖ f (x)‖E |g(x)| dx

=

∫
Rn

‖ f (x)‖E |g(x)|ϑ(x)
1

p(x)−
1

p(x) dx

≤ C
∥∥∥∥ fϑ

1
p(.)

∥∥∥∥
p(.),E

∥∥∥∥gϑ−
1

p(.)

∥∥∥∥
q(.)

for some C > 0. The proof is completed. �

The following Lemma for variable exponent case can be used to prove the Theorem 2.12.

Lemma 2.11. If p > 1, q > 1 and 1
p + 1

q = 1, then for any positive real numbers r and s we have

rs ≤
rp

p
+

sq

q
.

Proof. Define a function k by k(t) = tp

p + t−q

q for all t > 0. Then the derivative of k is k′(t) = tp−1 − t−q−1. Now k′(1) = 0,
so k has a critical point at t = 1. Furthermore, it is clear that if t > 1 then k′(t) > 0, whereas if 0 < t < 1 then k′(t) < 0.
Thus k has an absolute minimum t = 1. But k(1) = 1, so for every t > 0 we have 1 ≤ tp

p + t−q

q . Setting t = r
1
q /s

1
p we

obtain 1 ≤ r
p
q

ps + s
q
p

qr , so that rs ≤ rp

p + sq

q . �

Theorem 2.12 (Hölder’s Inequality, dual-valued case). Let 1
p(.) + 1

q(.) = 1 and ϑ∗ = ϑ1−q(.). Then for f ∈ Lp(.)
ϑ

(Rn, E)

and g ∈ Lq(.)
ϑ∗

(Rn, E∗) the dual pair < f (.), g(.) >∈ L1 (Rn,R) and Hölder inequality implies

‖< f , g >‖1,R ≤ C ‖ f ‖p(.),ϑ,E ‖g‖q(.),ϑ∗,E∗

for some C > 0, where E∗ has the Radon-Nikodym Property (RNP).

Proof. Let g ∈ Lq(.)
ϑ∗

(Rn, E∗) and let (gn) be a sequence of simple functions in Lq(.)
ϑ∗

(Rn, E∗) converging to g a.e. Suppose
f ∈ Lp(.)

ϑ
(Rn, E) and define < f , g > (w) = g(w) ( f (w)) for w ∈ Rn. Certainly < f , gn > is measurable for each n, and

it is only slightly less evident that limn < f , gn >=< f , g > a.e. Consequently, < f , g > is measurable. Moreover, the
absolute value of the product < f , g > can be estimated by ‖ f ‖E ‖g‖E∗ . So we have∫

Rn

|< f (.), g(.) >| dx ≤

∫
Rn

‖ f ‖E ‖g‖E∗ dx

≤ C ‖ f ‖p(.),ϑ,E ‖g‖q(.),ϑ∗,E∗

by the Hölder inequality. �

Corollary 2.13. Let g ∈ Lq(.)
ϑ∗

(Rn, E∗) . Then the functional ϕg : Lp(.)
ϑ

(Rn, E)→ C, which is defined by

ϕg( f ) =

∫
Rn

< f (.), g(.) > dx,

is linear and continuous. Hence ϕg is a member of
(
Lp(.)
ϑ

(Rn, E)
)∗

whose norm is not greater than ‖g‖q(.),ϑ∗,E∗ , and we

have the embedding Lq(.)
ϑ∗

(Rn, E∗) ↪→
(
Lp(.)
ϑ

(Rn, E)
)∗
. Further for all g ∈ Lq(.)

ϑ∗
(Rn, E∗) it holds that

∥∥∥ϕg

∥∥∥(
Lp(.)
ϑ

(Rn,E)
)∗ ≤

C ‖g‖q(.),ϑ∗,E∗ hence this embedding is continuous. The reverse inequality
∥∥∥ϕg

∥∥∥(
Lp(.)
ϑ

(Rn,E)
)∗ ≥ C ‖g‖q(.),ϑ∗,E∗ was proved by

the following theorem.
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Theorem 2.14 ( [5]). If E∗ has the Radon-Nikodym Property (RNP), then the mapping g 7→ ϕg,
1

p(.) + 1
q(.) = 1,

Lq(.)
ϑ∗

(R, E∗)→ Lp(.)
ϑ

(R, E)∗ which is defined by

< ϕg, f >=

∫
Rn

< g, f > dx

for any f ∈ Lp(.)
ϑ

(Rn, E) is a linear isomorphism and

‖g‖q(.),ϑ∗,E∗ ≤
∥∥∥ϕg

∥∥∥(
Lp(.)
ϑ

(Rn,E)
)∗ ≤ 2 ‖g‖q(.),ϑ∗,E∗ ,

where ϑ∗ = ϑ1−q(.). Hence, the dual space Lp(.)
ϑ

(Rn, E)∗ is isometrically isomorphic to Lq(.)
ϑ∗

(Rn, E∗) , where E∗ has RNP.

Corollary 2.15. (i) If E is reflexive, then E∗ is also reflexive.
(ii) Every reflexive space has the Radon-Nikodym property.
(iii) If E is reflexive and 1 < p− ≤ p+ < ∞, then Lp(.)

ϑ
(Rn, E) is reflexive.

(iv) Let E be a Banach space such that E∗ has the Radon-Nikodym property, then Lp(.)
ϑ

(R, E)∗ � Lq(.)
ϑ∗

(R, E∗), where
1

p(.) + 1
q(.) = 1.

(v) If E is a uniformly convex Banach space and 1 < p− ≤ p+ < ∞, then Lp(.)
ϑ

(Rn, E) is also a uniformly convex [5].

The space L1
loc (Rn, E) consists of all (classes of ) all E-valued measurable functions f such that fχK ∈ L1 (Rn, E)

for any compact subset K ⊂ Rn. It is a topological vector space with the family of seminorms f 7→ ‖ fχK‖1,E .

Proposition 2.16. Let ϑ be a weight function and 1 < p− ≤ p(.) ≤ p+ < ∞. If ϑ−
1

p(.)−1 ∈ L1
loc (Rn), then Lp(.)

ϑ
(Rn, E) ↪→

L1
loc (Rn, E).

Proof. Suppose that f ∈ Lp(.)
ϑ

(Rn, E) and let K ⊂ Rn be any compact set. For 1
p(.) + 1

q(.) = 1, by using Hölder’s inequality
for variable exponent Lebesgue spaces [12], then there exists a AK > 0 such that

‖ f ‖L1
loc(Rn,E) = ‖ f ‖1,K,E =

∫
K

‖ f (x)‖E dx

=

∫
Rn

‖ f (x)‖E χK(x)ϑ(x)
1

p(x)−
1

p(x) dx

≤ AK

∥∥∥∥ fϑ
1

p(.)

∥∥∥∥
p(.),E

∥∥∥∥χKϑ
− 1

p(.)

∥∥∥∥
q(.)

≤ AK ‖ f ‖p(.),ϑ,E

∥∥∥∥χKϑ
− 1

p(.)

∥∥∥∥
q(.)

(2.1)

by Hölder’s inequality for scalar-valued case (Theorem 2.12). It is known that
∥∥∥∥χKϑ

− 1
p(.)

∥∥∥∥
q(.)

< ∞ if and only if

%q(.)(χKϑ
− 1

p(.) ) < ∞ for q+ < ∞. Since ϑ−
1

p(.)−1 ∈ L1
loc (Rn) , then we have

%q(.)(χKϑ
− 1

p(.) ) =

∫
Rn

∣∣∣∣χK(x)ϑ(x)−
1

p(.)

∣∣∣∣ dx =

∫
K

ϑ(x)−
1

p(x)−1 dx = BK < ∞. (2.2)

If we use (2.1) and (2.2), then the proof is completed. �

Remark 2.17. Let 1 < p− ≤ p(x) ≤ p+ < ∞ and ϑ−
1

p(.)−1 ∈ L1
loc (Rn) . Then every function in Lp(.)

ϑ
(Rn, E) has

distributional derivatives by Proposition 2.16.

3. Vector-Valued Weighted Variable Sobolev Spaces

Let α = (α1, α2, ..., αn) ∈ Nn
0 be a multi-index. Its length is defined as |α| = α1 + α2 + ... + αn. For another vector

z ∈ Rn we define zα := zα1
1 ...z

αn
n . as the multiplicity of α. Multi-indexes can be partially ordered via α ≤ β⇔ αk ≤ βk

for all k. Let Dk := ∂
∂xk
, then for a multi-index α we have

Dα = Dα
1 ...D

αn
n =

∂|α|

∂zα1
1 ...∂zαn

n
.
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Definition 3.1. Let C∞0 (Rn, E) (or D (Rn, E), test functions) denote the collection of E-valued infinitely differentiable
functions on Rn with compact support in Rn, that is,

C∞0 (Rn, E) =
{
ϕ ∈ C∞ (Rn, E) : suppϕ compact in Rn} .

The space C∞0 (Rn, E) is topologized in the following way: a sequence
(
ϕ j

)
⊂ C∞0 (Rn, E) is said to be convergent in

C∞0 (Rn, E) to ϕ ∈ C∞0 (Rn, E), ϕ j →
D
ϕ, if and only if there is a compact set K ⊂ Rn such that

suppϕ j ⊂ K , j ∈ N, suppϕ ⊂ K, (3.1)

and
Dαϕ j ⇒ Dαϕ (uniformly) for all α ∈ Nn

0 (3.2)

on K.

Definition 3.2. D′ (Rn, E) denote the collection of E-valued linear continuous functionals T over D (Rn, E), that is,

T : D (Rn, E)→ E, T : ϕ 7→ T (ϕ), ϕ ∈ D (Rn, E) ,

T (λ1ϕ1 + λ2ϕ2) = λ1T (ϕ1) + λ2T (ϕ2), λ1, λ2 ∈ C; ϕ1, ϕ2 ∈ D (Rn, E) ,

and
T (ϕ j)→ T (ϕ) for j→ ∞ whenever ϕ j →

D
ϕ, (3.3)

according to (3.1) and (3.2). T ∈ D′ (Rn, E) is called a distribution.

Corresponding to every u ∈ L1
loc (Rn, E) (all local integrable functions valued in E over Rn) there is a distribution

Tu ∈ D′ (Rn, E) defined by

Tu(ϕ) =< Tu, ϕ >=

∫
Rn

u(x)ϕ(x)dx, ϕ ∈ D (Rn,R) . (3.4)

(3.4) generates a one-to-one correspondence

u ∈ L1
loc (Rn, E)⇐⇒ Tu ∈ D′ (Rn, E) .

Now we will show that Tu : D (Rn, E)→ E is continuous. For ϕ ∈ D (Rn,R), we have

‖Tu(ϕ)‖E ≤

∫
Rn

‖u(x)ϕ(x)‖E dx =

∫
Rn

‖u(x)‖E |ϕ(x)| dx

≤ sup
x∈K
|ϕ(x)|

∫
K

‖u(x)‖E dx < ∞,

where suppϕ ⊂ K and K ⊂ Rn is compact. Moreover, by (3.3) the proof is completed.

Remark 3.3. The chain of inclusions is obtained by the following way

D (Rn, E) ⊂ C∞ (Rn, E) ⊂ Lp(.)
ϑ,loc (Rn, E) ⊂ L1

loc (Rn, E) ⊂ D′ (Rn, E) .

Definition 3.4. Let α ∈ Nn
0 and T ∈ D′ (Rn, E). Then the distributional derivative DαT ∈ D′ (Rn, E) is given by

(DαT ) (ϕ) = (−1)|α| T (Dαϕ), ϕ ∈ D (Rn,R) .

We now define the weak derivative of a locally integrable function. Let u ∈ L1
loc (Rn, E). There may or may not exist

a function υα ∈ L1
loc (Rn, E) such that Tυα = DαTu in D′ (Rn, E). If such a υα exists, it is unique up to sets of measure

zero and it is called the weak derivative of u and is denoted by Dαu. Thus Dαu = υα in the weak (distributional) sense
provided υα ∈ L1

loc (Rn, E) satisfies ∫
Rn

u(x)Dαϕ(x)dx = (−1)|α|
∫
Rn

υα(x)ϕ(x)dx

for every ϕ ∈ D (Rn,R).
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Let 1 < p− ≤ p(.) ≤ p+ < ∞, ϑ−
1

p(.)−1 ∈ L1
loc (Rn) and k ∈ N. We define the vector-valued weighted variable Sobolev

spaces Wk,p(.)
ϑ

(Rn, E) by

Wk,p(.)
ϑ

(Rn, E) =
{
f ∈ Lp(.)

ϑ
(Rn, E) : Dα f ∈ Lp(.)

ϑ
(Rn, E), 0 ≤ |α| ≤ k

}
equipped with the norm

‖ f ‖k,p(.),ϑ,E =
∑

0≤|α|≤k

‖Dα f ‖p(.),ϑ,E .

Clearly, W0,p(.)
ϑ

(Rn, E) = Lp(.)
ϑ

(Rn, E). For any k, the continuous embedding Wk,p(.)
ϑ

(Rn, E) ↪→ Lp(.)
ϑ

(Rn, E) is valid.
It can be shown that Wk,p(.)

ϑ
(Rn) is a reflexive Banach space. Throughout this paper, we will always assume that

1 < p− ≤ p(x) ≤ p+ < ∞ and ϑ−
1

p(.)−1 ∈ L1
loc (Rn).

The space W1,p(.)
ϑ

(Rn, E) is defined by

W1,p(.)
ϑ

(Rn, E) =
{
f ∈ Lp(.)

ϑ
(Rn, E) : |∇ f | ∈ Lp(.)

ϑ
(Rn, E)

}
.

The function %1,p(.),ϑ,E : W1,p(.)
ϑ

(Rn, E) → [0,∞) is defined as %1,p(.),ϑ,E( f ) = %p(.),ϑ,E( f ) + %p(.),ϑ,E(∇ f ). The norm
‖ f ‖1,p(.),ϑ,E = ‖ f ‖p(.),ϑ,E + ‖∇ f ‖p(.),ϑ,E .

Now, we give some basic properties of Wk,p(.)
ϑ

(Rn, E).

Proposition 3.5. The space
(
Wk,p(.)
ϑ

(Rn, E) , ‖.‖k,p(.),ϑ,E

)
is a Banach space.

Proof. Let
(
u j

)
be a Cauchy sequence in Wk,p(.)

ϑ
(Rn, E). We show that there exists u ∈ Wk,p(.)

ϑ
(Rn, E) such that u j → u

in Wk,p(.)
ϑ

(Rn, E) as j → ∞. Then,
{
Dαu j

}
is a Cauchy sequences in Lp(.)

ϑ
(Rn, E) for 0 ≤ |α| ≤ k. Since Lp(.)

ϑ
(Rn, E) is a

Banach space there exist functions u and uα in Lp(.)
ϑ

(Rn, E) such that u j → u and Dαu j → uα in Lp(.)
ϑ

(Rn, E) as j → ∞.
Now we will show that uα = Dαu in the distributional sense on Rn for 0 ≤ |α| ≤ k. Since Lp(.)

ϑ
(Rn, E) ↪→ L1

loc (Rn, E)
by Proposition 2.16, then u j determines a distribution Tu j ∈ D′ (Rn, E). For any ϕ ∈ D (Rn,R) we have∥∥∥Tu j (ϕ) − Tu(ϕ)

∥∥∥
E ≤

∫
Rn

∥∥∥u j(x) − u(x)
∥∥∥

E |ϕ(x)| dx

≤ C
∥∥∥u j − u

∥∥∥
p(.),ϑ,E ‖ϕ‖q(.),ϑ∗

for some C > 0 by Theorem 2.12, where 1
p(.) + 1

q(.) = 1 and ϑ∗ = ϑ1−q(.). Hence Tu j (ϕ)→ Tu(ϕ) for every ϕ ∈ D (Rn,R)
as j→ ∞. Similarly, TDαu j (ϕ)→ Tuα (ϕ) for every ϕ ∈ D (Rn,R). It follows that

Tuα (ϕ) = lim
j→∞

TDαu j (ϕ) = lim
j→∞

(−1)|α| Tu j (D
αϕ)

= (−1)|α| Tu(Dαϕ)

for every ϕ ∈ D (Rn,R) . Thus uα = Dαu in the distributional sense on Rn for 0 ≤ |α| ≤ k, whence u ∈ Wk,p(.)
ϑ

(Rn, E).
Since lim j→∞

∥∥∥u j − u
∥∥∥

k,p(.),ϑ,E = 0, Wk,p(.)
ϑ

(Rn, E) is complete. �

We say that ϑ1 ≺ ϑ2 if and only if there exists a C > 0 such that ϑ1(x) ≤ Cϑ2(x) for all x ∈ Rn. Two weight functions
are called equivalent and written ϑ1 ≈ ϑ2, if ϑ1 ≺ ϑ2 and ϑ2 ≺ ϑ1.

Proposition 3.6. Let υ1 and υ2 be weight functions onRn. If υ1 ≺ υ2, then the embedding Wk,p(.)
ϑ2

(Rn, E) ↪→ Wk,p(.)
ϑ1

(Rn, E)
holds.

Proof. Since υ1 ≺ υ2, then there exists a C > 0 such that ϑ1(x) ≤ Cϑ2(x) for all x ∈ Rn. Hence we have Lp(.)
ϑ2

(Rn, E) ↪→

Lp(.)
ϑ1

(Rn, E) and Wk,p(.)
ϑ2

(Rn, E) ↪→ Wk,p(.)
ϑ1

(Rn, E). �

Corollary 3.7. If ϑ1 ≈ ϑ2, then Wk,p(.)
ϑ1

(Rn, E) = Wk,p(.)
ϑ2

(Rn, E) .

Theorem 3.8. Suppose that υ1 and υ2 are weight functions on Rn satisfying υ1 ≺ υ2 and k, t ∈ Z+ with k > t. Then the
embedding Wk,p(.)

ϑ2
(Rn, E) ↪→ W t,p(.)

ϑ1
(Rn, E) holds.
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Proof. Let f ∈ Wk,p(.)
ϑ2

(Rn, E) be given. Then we can write Dα f ∈ Lp(.)
ϑ2

(Rn, E) for 0 ≤ |α| ≤ k. Since υ1 ≺ υ2, then

Lp(.)
ϑ2

(Rn, E) ↪→ Lp(.)
ϑ1

(Rn, E) and there is a C > 0 such that

‖Dα f ‖p(.),ϑ1,E ≤ C ‖Dα f ‖p(.),ϑ2,E .

Using k, t ∈ Z+ with k > t, we have

‖Dα f ‖t,p(.),ϑ1,E ≤
∑

0≤|α|≤t

‖Dα f ‖p(.),ϑ1,E +
∑

t+1≤|α|≤k

‖Dα f ‖p(.),ϑ1,E

= C ‖Dα f ‖k,p(.),ϑ2,E .

That is the desired result. �

Theorem 3.9. Let p1(.), p2(.) be variable exponents satisfying p1(.) � p2(.). Then the embedding Wk,p2(.)
ϑ

(Rn, E) ↪→
Wk,p1(.)
ϑ

(Rn, E) holds.

Proof. Let f ∈ Wk,p2(.)
ϑ

(Rn, E) be given. So Dα f ∈ Lp2(.)
ϑ

(Rn, E) for 0 ≤ |α| ≤ k. It is known that, if the condition
p1(.) � p2(.) holds, then the embedding Lp2(.)

ϑ
(Rn, E) ↪→ Lp1(.)

ϑ
(Rn, E) is satisfied [7]. Similarly, it can be seen that

‖Dα f ‖p1(.),ϑ,E ≤ C ‖Dα f ‖p2(.),ϑ,E .

This completes the proof. �

Theorem 3.10. Let p1(.), p2(.) be variable exponents satisfying 1 < p−2 ≤ p2(.) ≤ p1(.) ≤ p+
1 < ∞ and

∥∥∥∥ϑ2
ϑ1

∥∥∥∥ p1(.)
p1(.)−p2(.) ,ϑ1

<

∞. Then the embedding Wk,p1(.)
ϑ1

(Rn, E) ↪→ Wk,p2(.)
ϑ2

(Rn, E) holds.

Proof. Suppose that f ∈ Wk,p1(.)
ϑ1

(Rn, E). It is known that Lp1(.)
ϑ1

(Rn, E) ↪→ Lp2(.)
ϑ2

(Rn, E) with
∥∥∥∥ϑ2
ϑ1

∥∥∥∥ p1(.)
p1(.)−p2(.) ,ϑ1

< ∞

(Theorem 5.1, [10]). Hence we have the embedding Wk,p1(.)
ϑ1

(Rn, E) ↪→ Wk,p2(.)
ϑ2

(Rn, E) . �

Theorem 3.11. Let p(.), q(.) be variable exponents on Rn. If the inclusion Wk,p(.)
ϑ1

(Rn, E) ⊂ Wk,q(.)
ϑ2

(Rn, E) holds for the

weights ϑ1 and ϑ2 if and only if the embedding Wk,p2(.)
ϑ1

(Rn, E) ↪→ Wk,p1(.)
ϑ2

(Rn, E) is satisfied.

Proof. The sufficient condition of the theorem is clear by the definition of continuous embedding. Now, assume that the
inclusion Wk,p(.)

ϑ1
(Rn, E) ⊂ Wk,q(.)

ϑ2
(Rn, E) is valid. Moreover, we define the sum norm |‖.‖| = ‖.‖k,p(.),ϑ1,E + ‖.‖k,p(.),ϑ2,E . It

is easy to see that
(
Wk,p(.)
ϑ1

(Rn, E) , |‖.‖|
)

is a Banach space. If we define the unit function I from
(
Wk,p(.)
ϑ1

(Rn, E) , |‖.‖|
)

into(
Wk,p(.)
ϑ1

(Rn, E) , ‖.‖k,p(.),ϑ1,E

)
, then the function I is continuous. Because we can obtain the inequality ‖I( f )‖k,p(.),ϑ1,E =

‖ f ‖k,p(.),ϑ1,E ≤ |‖ f ‖| . By Banach’s theorem I is a homeomorphism, see [4]. So the norms |‖.‖| and ‖.‖k,p(.),ϑ1,E are
equivalent. Thus, for every f ∈ Wk,p(.)

ϑ1
(Rn, E) there exists a k > 0 such that

|‖ f ‖| ≤ k ‖ f ‖k,p(.),ϑ1,E .

By the definition of the norm |‖.‖| we have

‖.‖k,p(.),ϑ2,E ≤ |‖ f ‖| ≤ k ‖ f ‖k,p(.),ϑ1,E . �
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