Proceedings of International Conference on Mathematics and Mathematics Education (ICMME 2019) Turk. J. Math. Comput. Sci. 11(Special Issue)(2019) 137–140 © MatDer https://dergipark.org.tr/tjmcs http://tjmcs.matder.org.tr

Weak Semi-Local Functions in Ideal Topological Spaces

Ferit Yalaz^{1,*}, Aynur Keskin Kaymakci¹

¹Department of Mathematics, Faculty of Sciences, Selcuk University, 42003, Konya, Turkey.

Received: 01-09-2019 • Accepted: 12-10-2019

ABSTRACT. In this study, we define the concept of weak semi-local functions by using semi-open sets and semiclosure operators in ideal topological spaces. We also introduce properties of weak semi-local functions and investigate the relationship between weak semi-local functions and predefined operators (local functions, semi-local functions, semi-closure local functions and local closure functions).

2010 AMS Classification: 54A05, 54A99.

Keywords: Ideal topological space, local function, semi-local function, semi-closure local function, weak semi-local function.

1. INTRODUCTION

Let (X, σ) be a topological space and the interior of any subset M of X is denoted by Int(M) and the closure of M denoted by Cl(M). Levine [7] defined semi-open sets in topological spaces and he investigated the properties of semi-open sets. Semi-open sets are defined as: Let (X, σ) be a topological space, any subset M of X is called semi-open; if there exists any open set V of X such that $V \subseteq M \subseteq Cl(V)$. Also, Levine gave a theorem that equivalents to the definition of semi-open set in [7], a subset M in topological space (X, σ) is semi-open set if and only if $M \subseteq Cl(Int(M))$. The collection of all semi-open subsets of X is denoted by SO(X). The family of semi-open neighborhoods of any point x is denoted by SO(X, x). Mathematically, $SO(X, x) = \{U \in SO(X) : x \in U\}$. The complement of a semi-open set is called semi-open set G is denoted by $SO(X, x) = \{U \in SO(X) : x \in U\}$. The union of all semi-open set is called set [2]. Equivalent, a subset M is semi-closed if and only if $Int(Cl(M)) \subseteq M$. The intersection of all semi-open subsets of M is called the semi-interior of M and is denoted by SO(M). The union of all semi-open subsets of M is called the semi-interior of M and is denoted by SInt(M). If M is any subset in a topological space, $Int(M) \subseteq sInt(M)$. So, every open subset of any topological space is semi-open set.

Velicko defined the concept of θ -open set in [9]. A subset M is said to be θ -open in topological spaces, if every point in M has an open neigbourhood whose closure is contained in M. The θ -interior of M in topological spaces is the union of all θ -open subsets of M and is denoted by $Int_{\theta}(M)$. The complement of a θ -open set is said to be θ -closed. A point $x \in X$ is said to be in θ -closure of a subset $M \subseteq X$ [9], if for every open neigbourhood U of x, $Cl(U) \cap M \neq \emptyset$. θ -closure set of a subset $M \subseteq X$ denoted by $Cl_{\theta}(M)$ and $Cl_{\theta}(M) = \{x \in X : Cl(U) \cap M \neq \emptyset$, for every $U \in \sigma_{(x)}\}$, where $\sigma_{(x)} = \{U \in \sigma : x \in U\}$.

*Corresponding Author

Email addresses: ferit.yalaz@selcuk.edu.tr (F. Yalaz), akeskin@selcuk.edu.tr (A. Keskin Kaymakci)

Ideal and local function were first defined and gave properties by Kuratowski [6]. Vaidyanathaswamy obtained a new topology with the aid of local function and Kuratowski closure operator [8]. Jankovic and Hamlet introduced more properties of concept of ideal in topological spaces [4]. Khan and Noiri defined a semi-local function $M_*(\Lambda, \sigma)$ by using semi-open sets in [5]. Also, in [1] an approximation of the local function has been done by Al-Omari and Noiri, with the help of closure operator of topological spaces. Later, Islam and Modak introduced another approximation of local function with the help of semi-closure operator of topological spaces and it is called semi-closure local function [3].

Definition 1.1 ([6]). Let Λ be any non-empty class of subsets of *X*. If Λ satisfies the following axioms, Λ is called an ideal on *X*.

- (1) $M \in \Lambda$ and $N \subseteq M$ implies $N \in \Lambda$ (heredity property)
- (2) $M, N \in \Lambda$ implies $M \cup N \in \Lambda$ (finite additivity property)

Let (X, σ) be a topological space and an ideal Λ on X. Then (X, σ, Λ) is called an ideal topological space. It can also be said that if there is both a topological structure σ and an ideal Λ on the X, (X, σ, Λ) is called ideal topological space. If an ideal on X does not contain X, it is called proper ideal. \emptyset and P(X) (powerset of X) are ideals on X. All ideals on X forms a class of sets that is a poset (partially ordered set) according to the subset relation. So, \emptyset and P(X) are called minimal ideal and maximal ideal, respectively.

Definition 1.2 ([6]). Let *M* be any subset of an ideal topological space (X, σ, Λ) . Then,

 $M^*(\Lambda, \sigma) = \{x \in X : (U \cap M) \notin \Lambda \text{ for every } U \in \sigma_{(x)}\}$

is said to be the local function of M with respect to an ideal Λ and a topology σ on X.

Definition 1.3 ([5]). Let *M* be any subset of an ideal topological space (X, σ, Λ) . Then,

 $M_*(\Lambda, \sigma) = \{x \in X : (U \cap M) \notin \Lambda \text{ for every } U \in SO(X, x)\}$

is said to be the semi-local function of M with respect to an ideal A and a topology σ on X.

Lemma 1.4 ([5]). Let M be any subset of an ideal topological space (X, σ, Λ) . Then,

 $M_*(\Lambda,\sigma) \subseteq M^*(\Lambda,\sigma)$

for every subset M of X.

Definition 1.5 ([1]). Let *M* be any subset of an ideal topological space (X, σ, Λ) . Then,

$$\Gamma(M)(\Lambda, \sigma) = \{x \in X : (Cl(U) \cap M) \notin \Lambda \text{ for every } U \in \sigma_{(x)}\}$$

is said to be the local closure function of M with respect to an ideal Λ and a topology σ on X.

Definition 1.6 ([3]). Let M be any subset of an ideal topological space (X, σ, Λ) . Then,

$$\gamma(M)(\Lambda, \sigma) = \{x \in X : (sCl(U) \cap M) \notin \Lambda \text{ for every } U \in \sigma_{(x)}\}$$

is said to be the semi-closure local function of M with respect to an ideal A and a topology σ on X.

Lemma 1.7 ([3]). Let (X, σ, Λ) be an ideal topological space and for a subset M of X. Then,

$$M^*(\Lambda,\sigma) \subseteq \gamma(M)(\Lambda,\sigma) \subseteq \Gamma(M)(\Lambda,\sigma)$$

for every subset M of X.

2. WEAK SEMI-LOCAL FUNCTION

Definition 2.1. Let *M* be a subset of an ideal topological space (X, σ, Λ) . We define the following operator:

$$\xi(M)(\Lambda, \sigma) = \{x \in X : (sCl(U) \cap M) \notin \Lambda \text{ for every } U \in SO(X, x)\},\$$

is called the weak semi-local function of *M* with respect to an ideal Λ and a topology σ on *X*. If there is no confusion, we sometimes write $\xi(M)$ instead of $\xi(M)(\Lambda, \sigma)$.

We will give examples and a lemma showing the relationship between weak semi-local functions and other operators. **Lemma 2.2.** Let (X, σ, Λ) be an ideal topological space, let M be a subset of X. Then following property is hold:

$$M_*(\Lambda,\sigma) \subseteq \xi(M)(\Lambda,\sigma) \subseteq \gamma(M)(\Lambda,\sigma) \subseteq \Gamma(M)(\Lambda,\sigma).$$

Proof. Let $x \in M_*(\Lambda, \sigma)$. Then, $(U \cap M) \notin \Lambda$ for every $U \in SO(X, x)$. Since $(U \cap M) \subseteq (sCl(U) \cap M)$ and the definition of ideal, $(sCl(U) \cap M) \notin \Lambda$. Hence, $x \in \xi(M)(\Lambda, \sigma)$ and $M_*(\Lambda, \sigma) \subseteq \xi(M)(\Lambda, \sigma)$. Again, let $x \in \xi(M)(\Lambda, \sigma)$. Then, $(sCl(U) \cap M) \notin \Lambda$ for every $U \in SO(X, x)$. Since $\sigma_{(x)} \subseteq SO(X, x)$, $x \in \gamma(M)(\Lambda, \sigma)$. Consequently, $\xi(M)(\Lambda, \sigma) \subseteq \gamma(M)(\Lambda, \sigma) \subseteq \Gamma(M)(\Lambda, \sigma)$ from Lemma 1.7.

Example 2.3. Let $X = \{x, y, z, t\}$ $\sigma = \{X, \emptyset, \{x\}, \{z\}, \{x, z\}, \{x, t\}, \{x, y, z\}, \{x, z, t\}\}$, with $\Lambda = \{\emptyset, \{y\}\}$. If $M = \{y, t\}$, then

$$M_*(\Lambda, \sigma) = \{t\},$$

$$\xi(M)(\Lambda, \sigma) = \{x, t\},$$

$$\gamma(M)(\Lambda, \sigma) = \{x, y, t\}$$

and additionally, $M^*(\Lambda, \sigma) = \{t\} \subseteq \xi(M)(\Lambda, \sigma)$.

Example 2.4. Let $X = \{x, y, z, t\}, \sigma = \{X, \emptyset, \{t\}, \{x, z\}, \{x, z, t\}\}$ with $\Lambda = \{\emptyset, \{z\}\}$. If $M = \{x, z\}$, then

$$\xi(M)(\Lambda,\sigma) = \{x, z\},\$$
$$M^*(\Lambda,\sigma) = \{x, y, z\}$$

so, $\xi(M)(\Lambda, \sigma) \subseteq M^*(\Lambda, \sigma)$.

Corollary 2.5. Local function and weak semi-local function can not be compared to each other according to the subset relation, when considering Example 2.3 and Example 2.4.

Proposition 2.6. Let Λ and Δ be two ideals on a set X. Also, let M and N be two subsets in a topological space (X, σ) . Then the following properties are hold:

- (1) If $M \subseteq N$, then $\xi(M) \subseteq \xi(N)$
- (2) If $\Lambda \subseteq \Delta$, then $\xi(M)(\Delta) \subseteq \xi(M)(\Lambda)$
- (3) $\xi(M) = sCl(\xi(M)) \subseteq Cl_{\theta}(M)$
- (4) If $M \in \Lambda$, then $\xi(M) = \emptyset$
- *Proof.* (1) $M \subseteq N$ and suppose that $x \notin \xi(N)$. There exist a subset $U \in SO(X, x)$ such that $(sCl(U) \cap N) \in \Lambda$. Because of the heredity of the ideal, $(sCl(U) \cap M) \in \Lambda$ and $x \notin \xi(M)$. This proves that $\xi(M) \subseteq \xi(N)$.
 - (2) Let $x \in \xi(M)(\Delta)$. Then $(sCl(U) \cap M) \notin \Delta$ for every $U \in SO(X, x)$. Since $\Lambda \subseteq \Delta$, $(sCl(U) \cap M) \notin \Lambda$ and hence $x \in \xi(M)(\Lambda)$. Therefore, we have $\xi(M)(\Delta) \subseteq \xi(M)(\Lambda)$.
 - (3) It is obvious that $\xi(M) \subseteq sCl(\xi(M))$. We only prove that $sCl(\xi(M)) \subseteq \xi(M)$. Let $x \in sCl(\xi(M))$. Then $\xi(M) \cap U \neq \emptyset$ for every $U \in SO(X, x)$. Therefore, there exist some $y \in \xi(M) \cap U$ and $U \in SO(X, y)$. Since $y \in \xi(M)$, we have $(sCl(U) \cap M) \notin \Lambda$ and $x \in \xi(M)$ from Definition 2.1. Hence, $sCl(\xi(M)) \subseteq \xi(M)$. Consequently, $\xi(M) = sCl(\xi(M))$. Again, let $x \in \xi(M) = sCl(\xi(M))$. $(sCl(U) \cap M) \notin \Lambda$ for every $U \in SO(X, x)$. Since $\sigma_{(x)} \subseteq SO(X, x)$ and $sCl(U) \subseteq Cl(U)$, $(Cl(U) \cap M) \notin \Lambda$ for every $U \in \sigma_{(x)}$. So, $x \in Cl_{\theta}(M)$.
 - (4) Let $M \in \Lambda$. Since $X \in SO(X, x)$ for every $x \in X$, $M \cap X = M \in \Lambda$ and hence, $\xi(M) = \emptyset$.

Lemma 2.7. Let *M* be any subset of an ideal topological space (X, σ, Λ) . Then

(1) If $W \in \sigma_{\theta}$, then $W \cap \xi(M) = W \cap \xi(W \cap M) \subseteq \xi(W \cap M)$.

- (2) If $U \in \sigma$, then $U \cap \xi(M) = U \cap \xi(sCl(U) \cap M) \subseteq \xi(sCl(U) \cap M)$.
- *Proof.* (1) Let $x \in W \cap \xi(M)$. This implies $x \in W$ and $x \in \xi(M)$. Since $W \in \sigma_{\theta}$, there exist a subset $L \in \sigma$ such that $x \in L \subseteq sCl(L) \subseteq Cl(L) \subseteq W$. Consider the set $V \in SO(X, x)$. Since the intersection of an open and a semi-open set is semi-open, $V \cap L \in SO(X, x)$. $sCl(V \cap L) \cap M \notin \Lambda$, since $x \in \xi(M)$. Therefore, $sCl(V \cap L) \cap M \subseteq sCl(V) \cap (sCl(L) \cap M) \subseteq sCl(V) \cap (W \cap M) \notin \Lambda$ and hence $x \in \xi(W \cap M)$. This show that $W \cap \xi(M) \subseteq \xi(W \cap M)$ and $W \cap \xi(M) \subseteq W \cap \xi(W \cap M)$. Morever, from Proposition 2.6 (1) $\xi(W \cap M) \subseteq \xi(M)$ and $W \cap \xi(M) \subseteq W \cap \xi(M)$. Consequently, $W \cap \xi(M) = W \cap \xi(W \cap M)$.

(2) Suppose that $x \in U \cap \xi(M)$. In this case, $x \in U$ and $x \in \xi(M)$. Let *V* be any semi-open set containing *x*. So, $V \cap U \in SO(X, x)$. Since $x \in \xi(M)$, $sCl(V \cap U) \cap M \notin \Lambda$ and $sCl(V \cap U) \cap M \subseteq (sCl(V) \cap (sCl(U) \cap M)) \notin \Lambda$. Hence, $x \in \xi(sCl(U) \cap M)$ and $\xi(M) \subseteq \xi(sCl(U) \cap M)$. We can write $U \cap \xi(M) \subseteq U \cap \xi(sCl(U) \cap M)$. Since $sCl(U) \cap M \subseteq M$, $\xi(sCl(U) \cap M) \subseteq \xi(M)$ from Proposition 2.6 (1) and we can write $U \cap \xi(sCl(U) \cap M) \subseteq U \cap \xi(sCl(U) \cap M)$. $U \cap \xi(M)$ As a result, $U \cap \xi(M) = U \cap \xi(sCl(U) \cap M)$.

Theorem 2.8. Let *M* and *N* be two subsets of ideal topological space (X, σ, Λ) . Then the following properties are hold:

- (1) $\xi(\emptyset) = \emptyset$
- (2) $\xi(M \cup N) = \xi(M) \cup \xi(N)$

Proof. (1) This proof is obvious.

(2) Firstly, since $M \subseteq (M \cup N)$ and $N \subseteq (M \cup N)$, we have $\xi(M) \cup \xi(N) \subseteq \xi(M \cup N)$ from Proposition (2.6) (1). We only prove that $\xi(M \cup N) \subseteq \xi(M) \cup \xi(N)$. Let $x \in \xi(M \cup N)$. Then, $sCl(U) \cap (M \cup N) = (sCl(U) \cap M) \cup (sCl(U) \cap N) \notin \Lambda$ for every $U \in SO(X, x)$. Therefore, $(sCl(U) \cap M) \notin \Lambda$ or $(sCl(U) \cap N) \notin \Lambda$. This implies $x \in \xi(M)$ or $x \in \xi(N)$, hence $x \in (\xi(M) \cup \xi(N))$. Moreover, we have $\xi(M \cup N) \subseteq \xi(M) \cup \xi(N)$. Consequently, we obtain $\xi(M \cup N) = \xi(M) \cup \xi(N)$.

Lemma 2.9. Let *M* and *N* be two subsets of ideal topological space (X, σ, Λ) . Then $\xi(M) \setminus \xi(N) = \xi(M \setminus N) \setminus \xi(N) \subseteq \xi(M \setminus N)$.

Proof. Since $M = (M \setminus N) \cup (N \cap M)$, we have $\xi(M) = \xi(M \setminus N) \cup \xi(N \cap M)$ from Theorem 2.8 (2) .Hence $\xi(M) \setminus \xi(N) = [\xi(M \setminus N) \cup \xi(N \cap M)] \cap (X \setminus \xi(N))$ $= [\xi(M \setminus N) \cap (X \setminus \xi(N))] \cup [\xi(N \cap M) \cap (X \setminus \xi(N))]$ $= \xi(M \setminus N) \cap (X \setminus \xi(N))$ $= \xi(M \setminus N) \setminus \xi(N) \subseteq \xi(M \setminus N)$

Corollary 2.10. Let *M* and *N* be two subsets of an ideal topological space (X, σ, Λ) . If $N \in \Lambda$, then $\xi(M \setminus N) = \xi(M) = \xi(M \cup N)$.

Proof. From Theorem 2.6 (4), $\xi(N) = \emptyset$ and from Lemma 2.9, $\xi(M \setminus N) = \xi(M)$. Since Theorem (2.8)(2) and Theorem 2.6 (4), $\xi(M \cup N) = \xi(M) \cup \xi(N) = \xi(M)$.

We have seen above that weak semi-local functions provides almost every property of local functions.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this article.

ACKNOWLEDGEMENT

The first author would like to thank TUBITAK (The Scientific and Technological Research Council of Turkey) for their financial supports during his doctorate studies.

References

- [1] Al-Omari, A., Noiri, T., Local closure functions in ideal topological spaces, Novi Sad J. Math., 43(2013), 139–149. 1, 1.5
- [2] Crossley, S.G., Hildebrand S.K., Semi-closure, Texas J. Sci., 22(1971), 99-112. 1
- [3] Islam, M.M., Modak, S., Second approximation of local functions in ideal topological spaces, Acta Et Comment. Univ. Tart. De Math., 22(2018), 245–255. 1, 1.6, 1.7
- [4] Jankovic, D., Hamlet, T.R., New topologies from old via ideals. Amer. Math. Monthly, 97(1990), 295–310. 1
- [5] Khan, M., Noiri, T., Semi-local functions in ideal topological spaces, J. Adv. Res. Pure Math., 2(2012), 36–42. 1, 1.3, 1.4
- [6] Kuratowski, K., Topology I, Warszawa, 1933. 1, 1.1, 1.2
- [7] Levin, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Mon., 70(1963), 36-41.1
- [8] Vaidyanathswamy R., The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51–61. 1
- [9] Velicko, N.V., H-closed topological spaces, Amer. Math. Soc. Transl., 78(1968), 103–118. 1