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Abstract. In this study, we define the concept of weak semi-local functions by using semi-open sets and semi-
closure operators in ideal topological spaces. We also introduce properties of weak semi-local functions and in-
vestigate the relationship between weak semi-local functions and predefined operators (local functions, semi-local
functions, semi-closure local functions and local closure functions).
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1. Introduction

Let (X, σ) be a topological space and the interior of any subset M of X is denoted by Int(M) and the closure of M
denoted by Cl(M). Levine [7] defined semi-open sets in topological spaces and he investigated the properties of semi-
open sets. Semi-open sets are defined as: Let (X, σ) be a topological space, any subset M of X is called semi-open;
if there exists any open set V of X such that V ⊆ M ⊆ Cl(V). Also, Levine gave a theorem that equivalents to the
definition of semi-open set in [7], a subset M in topological space (X, σ) is semi-open set if and only if M ⊆ Cl(Int(M)).
The collection of all semi-open subsets of X is denoted by S O(X).The family of semi-open neighborhoods of any point
x is denoted by S O(X, x). Mathematically, S O(X, x) = {U ∈ S O(X) : x ∈ U}. The complement of a semi-open set is
called semi-closed set [2]. Equivalenty, a subset M is semi-closed if and only if Int(Cl(M)) ⊆ M. The intersection of
all semi-closed sets of X containing of M ⊆ X is the semi-closure of M and is denoted by sCl(M). The union of all
semi-open subsets of M is called the semi-interior of M and is denoted by sInt(M). If M is any subset in a topological
space, Int(M) ⊆ sInt(M). So, every open subset of any topological space is semi-open set.

Velicko defined the concept of θ-open set in [9]. A subset M is said to be θ-open in topological spaces, if every
point in M has an open neigbourhood whose closure is contained in M. The θ-interior of M in topological spaces is
the union of all θ-open subsets of M and is denoted by Intθ(M). The complement of a θ-open set is said to be θ-closed.
A point x ∈ X is said to be in θ-closure of a subset M ⊆ X [9], if for every open neigbourhood U of x, Cl(U) ∩M , ∅.
θ-closure set of a subset M ⊆ X denoted by Clθ(M) and Clθ(M) = {x ∈ X : Cl(U)∩M , ∅, for every U ∈ σ(x)}, where
σ(x) = {U ∈ σ : x ∈ U}.
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Ideal and local function were first defined and gave properties by Kuratowski [6]. Vaidyanathaswamy obtained a
new topology with the aid of local function and Kuratowski closure operator [8]. Jankovic and Hamlet introduced more
properties of concept of ideal in topological spaces [4]. Khan and Noiri defined a semi-local function M∗(Λ, σ) by using
semi-open sets in [5]. Also,in [1] an approximation of the local function has been done by Al-Omari and Noiri, with
the help of closure operator of topological spaces. Later, Islam and Modak introduced another approximation of local
function with the help of semi-closure operator of topological spaces and it is called semi-closure local function [3].

Definition 1.1 ( [6]). Let Λ be any non-empty class of subsets of X. If Λ satisfies the following axioms, Λ is called an
ideal on X.

(1) M ∈ Λ and N ⊆ M implies N ∈ Λ (heredity property)
(2) M,N ∈ Λ implies M ∪ N ∈ Λ (finite additivity property)

Let (X, σ) be a topological space and an ideal Λ on X. Then (X, σ,Λ) is called an ideal topological space.It can also
be said that if there is both a topological structure σ and an ideal Λ on the X, (X, σ,Λ) is called ideal topological space.
If an ideal on X does not contain X, it is called proper ideal. ∅ and P(X) (powerset of X) are ideals on X. All ideals on
X forms a class of sets that is a poset (partially ordered set) according to the subset relation. So, ∅ and P(X) are called
minimal ideal and maximal ideal, respectively.

Definition 1.2 ( [6]). Let M be any subset of an ideal topological space (X, σ,Λ). Then,

M∗(Λ, σ) = {x ∈ X : (U ∩ M) < Λ for every U ∈ σ(x)}

is said to be the local function of M with respect to an ideal Λ and a topology σ on X.

Definition 1.3 ( [5]). Let M be any subset of an ideal topological space (X, σ,Λ). Then,

M∗(Λ, σ) = {x ∈ X : (U ∩ M) < Λ for every U ∈ S O(X, x)}

is said to be the semi-local function of M with respect to an ideal Λ and a topology σ on X.

Lemma 1.4 ( [5]). Let M be any subset of an ideal topological space (X, σ,Λ). Then,

M∗(Λ, σ) ⊆ M∗(Λ, σ)

for every subset M of X.

Definition 1.5 ( [1]). Let M be any subset of an ideal topological space (X, σ,Λ). Then,

Γ(M)(Λ, σ) = {x ∈ X : (Cl(U) ∩ M) < Λ for every U ∈ σ(x)}

is said to be the local closure function of M with respect to an ideal Λ and a topology σ on X.

Definition 1.6 ( [3]). Let M be any subset of an ideal topological space (X, σ,Λ). Then,

γ(M)(Λ, σ) = {x ∈ X : (sCl(U) ∩ M) < Λ for every U ∈ σ(x)}

is said to be the semi-closure local function of M with respect to an ideal Λ and a topology σ on X.

Lemma 1.7 ( [3]). Let (X, σ,Λ) be an ideal topological space and for a subset M of X. Then,

M∗(Λ, σ) ⊆ γ(M)(Λ, σ) ⊆ Γ(M)(Λ, σ)

for every subset M of X.

2. Weak Semi-Local Function

Definition 2.1. Let M be a subset of an ideal topological space (X, σ,Λ). We define the following operator:

ξ(M)(Λ, σ) = {x ∈ X : (sCl(U) ∩ M) < Λ for every U ∈ S O(X, x)},

is called the weak semi-local function of M with respect to an ideal Λ and a topology σ on X. If there is no confusion,
we sometimes write ξ(M) instead of ξ(M)(Λ, σ).

We will give examples and a lemma showing the relationship between weak semi-local functions and other opera-
tors.
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Lemma 2.2. Let (X, σ,Λ) be an ideal topological space, let M be a subset of X. Then following property is hold:

M∗(Λ, σ) ⊆ ξ(M)(Λ, σ) ⊆ γ(M)(Λ, σ) ⊆ Γ(M)(Λ, σ).

Proof. Let x ∈ M∗(Λ, σ). Then, (U ∩ M) < Λ for every U ∈ S O(X, x). Since (U ∩ M) ⊆ (sCl(U) ∩ M) and the
definition of ideal, (sCl(U) ∩ M) < Λ. Hence, x ∈ ξ(M)(Λ, σ) and M∗(Λ, σ) ⊆ ξ(M)(Λ, σ). Again, let x ∈ ξ(M)(Λ, σ).
Then, (sCl(U)∩M) < Λ for every U ∈ S O(X, x). Since σ(x) ⊆ S O(X, x), x ∈ γ(M)(Λ, σ). Consequently, ξ(M)(Λ, σ) ⊆
γ(M)(Λ, σ). Moreover, ξ(M)(Λ, σ) ⊆ γ(M)(Λ, σ) ⊆ Γ(M)(Λ, σ) from Lemma 1.7. �

Example 2.3. Let X = {x, y, z, t} σ = {X,∅, {x}, {z}, {x, z}, {x, t}, {x, y, z}, {x, z, t}}, with Λ = {∅, {y}}. If M = {y, t}, then

M∗(Λ, σ) = {t},

ξ(M)(Λ, σ) = {x, t},

γ(M)(Λ, σ) = {x, y, t}

and additionally, M∗(Λ, σ) = {t} ⊆ ξ(M)(Λ, σ).

Example 2.4. Let X = {x, y, z, t}, σ = {X,∅, {t}, {x, z}, {x, z, t}} with Λ = {∅, {z}}. If M = {x, z}, then

ξ(M)(Λ, σ) = {x, z},

M∗(Λ, σ) = {x, y, z}

so, ξ(M)(Λ, σ) ⊆ M∗(Λ, σ).

Corollary 2.5. Local function and weak semi-local function can not be compared to each other according to the subset
relation, when considering Example 2.3 and Example 2.4.

Proposition 2.6. Let Λ and ∆ be two ideals on a set X. Also, let M and N be two subsets in a topological space (X, σ).
Then the following properties are hold:

(1) If M ⊆ N, then ξ(M) ⊆ ξ(N)
(2) If Λ ⊆ ∆, then ξ(M)(∆) ⊆ ξ(M)(Λ)
(3) ξ(M) = sCl(ξ(M)) ⊆ Clθ(M)
(4) If M ∈ Λ, then ξ(M) = ∅

Proof. (1) M ⊆ N and suppose that x < ξ(N). There exist a subset U ∈ S O(X, x) such that (sCl(U) ∩ N) ∈ Λ.
Because of the heredity of the ideal, (sCl(U) ∩ M) ∈ Λ and x < ξ(M). This proves that ξ(M) ⊆ ξ(N).

(2) Let x ∈ ξ(M)(∆). Then (sCl(U) ∩ M) < ∆ for every U ∈ S O(X, x). Since Λ ⊆ ∆, (sCl(U) ∩ M) < Λ and hence
x ∈ ξ(M)(Λ). Therefore, we have ξ(M)(∆) ⊆ ξ(M)(Λ).

(3) It is obvious that ξ(M) ⊆ sCl(ξ(M)). We only prove that sCl(ξ(M)) ⊆ ξ(M) .Let x ∈ sCl(ξ(M)). Then
ξ(M) ∩U , ∅ for every U ∈ S O(X, x).Therefore, there exist some y ∈ ξ(M) ∩U and U ∈ S O(X, y). Since y ∈
ξ(M), we have (sCl(U)∩M) < Λ and x ∈ ξ(M) from Definition 2.1. Hence, sCl(ξ(M)) ⊆ ξ(M). Consequently,
ξ(M) = sCl(ξ(M)). Again, let x ∈ ξ(M) = sCl(ξ(M)). (sCl(U) ∩ M) < Λ for every U ∈ S O(X, x). Since
σ(x) ⊆ S O(X, x) and sCl(U) ⊆ Cl(U), (Cl(U) ∩ M) < Λ for every U ∈ σ(x). So, x ∈ Clθ(M) .

(4) Let M ∈ Λ. Since X ∈ S O(X, x) for every x ∈ X, M ∩ X = M ∈ Λ and hence, ξ(M) = ∅. �

Lemma 2.7. Let M be any subset of an ideal topological space (X, σ,Λ). Then

(1) If W ∈ σθ, then W ∩ ξ(M) = W ∩ ξ(W ∩ M) ⊆ ξ(W ∩ M).
(2) If U ∈ σ, then U ∩ ξ(M) = U ∩ ξ(sCl(U) ∩ M) ⊆ ξ(sCl(U) ∩ M).

Proof. (1) Let x ∈ W ∩ ξ(M). This implies x ∈ W and x ∈ ξ(M). Since W ∈ σθ, there exist a subset L ∈ σ
such that x ∈ L ⊆ sCl(L) ⊆ Cl(L) ⊆ W. Consider the set V ∈ S O(X, x). Since the intersection of an open
and a semi-open set is semi-open, V ∩ L ∈ S O(X, x). sCl(V ∩ L) ∩ M < Λ, since x ∈ ξ(M). Therefore,
sCl(V ∩ L) ∩ M ⊆ sCl(V) ∩ (sCl(L) ∩ M) ⊆ sCl(V) ∩ (W ∩ M) < Λ and hence x ∈ ξ(W ∩ M). This show that
W ∩ ξ(M) ⊆ ξ(W ∩M) and W ∩ ξ(M) ⊆ W ∩ ξ(W ∩M). Morever, from Proposition 2.6 (1) ξ(W ∩M) ⊆ ξ(M)
and W ∩ ξ(W ∩ M) ⊆ W ∩ ξ(M). Consequently, W ∩ ξ(M) = W ∩ ξ(W ∩ M).
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(2) Suppose that x ∈ U ∩ ξ(M). In this case, x ∈ U and x ∈ ξ(M). Let V be any semi-open set containing x. So,
V ∩U ∈ S O(X, x). Since x ∈ ξ(M), sCl(V ∩U)∩M < Λ and sCl(V ∩U)∩M ⊆ (sCl(V)∩ (sCl(U)∩M)) < Λ.
Hence, x ∈ ξ(sCl(U) ∩ M) and ξ(M) ⊆ ξ(sCl(U) ∩ M). We can write U ∩ ξ(M) ⊆ U ∩ ξ(sCl(U) ∩ M). Since
sCl(U) ∩ M ⊆ M, ξ(sCl(U) ∩ M) ⊆ ξ(M) from Proposition 2.6 (1) and we can write U ∩ ξ(sCl(U) ∩ M) ⊆
U ∩ ξ(M) As a result, U ∩ ξ(M) = U ∩ ξ(sCl(U) ∩ M). �

Theorem 2.8. Let M and N be two subsets of ideal topological space (X, σ,Λ). Then the following properties are
hold:

(1) ξ(∅) = ∅
(2) ξ(M ∪ N) = ξ(M) ∪ ξ(N)

Proof. (1) This proof is obvious.
(2) Firstly, since M ⊆ (M ∪ N) and N ⊆ (M ∪ N), we have ξ(M) ∪ ξ(N) ⊆ ξ(M ∪ N) from Proposition (2.6) (1).

We only prove that ξ(M ∪ N) ⊆ ξ(M) ∪ ξ(N). Let x ∈ ξ(M ∪ N). Then, sCl(U) ∩ (M ∪ N) = (sCl(U) ∩ M) ∪
(sCl(U) ∩ N) < Λ for every U ∈ S O(X, x).Therefore, (sCl(U) ∩ M) < Λ or (sCl(U) ∩ N) < Λ. This implies
x ∈ ξ(M) or x ∈ ξ(N), hence x ∈ (ξ(M) ∪ ξ(N)).Moreover, we have ξ(M ∪ N) ⊆ ξ(M) ∪ ξ(N). Consequently,
we obtain ξ(M ∪ N) = ξ(M) ∪ ξ(N). �

Lemma 2.9. Let M and N be two subsets of ideal topological space (X, σ,Λ). Then ξ(M)\ξ(N) = ξ(M\N)\ξ(N) ⊆
ξ(M\N).

Proof. Since M = (M\N) ∪ (N ∩ M), we have ξ(M) = ξ(M\N) ∪ ξ(N ∩ M) from Theorem 2.8 (2) .Hence
ξ(M)\ξ(N) = [ξ(M\N) ∪ ξ(N ∩ M)] ∩ (X\ξ(N))

= [ξ(M\N) ∩ (X\ξ(N))] ∪ [ξ(N ∩ M) ∩ (X\ξ(N))]
= ξ(M\N) ∩ (X\ξ(N))
= ξ(M\N)\ξ(N) ⊆ ξ(M\N) �

Corollary 2.10. Let M and N be two subsets of an ideal topological space (X, σ,Λ). If N ∈ Λ, then ξ(M\N) = ξ(M) =

ξ(M ∪ N).

Proof. From Theorem 2.6 (4), ξ(N) = ∅ and from Lemma 2.9, ξ(M\N) = ξ(M). Since Theorem (2.8)(2) and Theorem
2.6 (4), ξ(M ∪ N) = ξ(M) ∪ ξ(N) = ξ(M). �

We have seen above that weak semi-local functions provides almost every property of local functions.
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