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Abstract

In this paper, the conservation laws for a model with both quadratic and cubic nonlinearity

mt = bux +
1
2

a
[(

u2−u2
x

)
m
]

x
+

1
2

c(2m ·ux +mx ·u) ; m = u−uxx

are considered for the six cases of coefficients. By using a variational derivative approach,
conservation laws were constructed. The computations to derive multipliers and conserva-
tion law fluxes are conducted by using a Maple-based package which is called GeM.

1. Introduction

In this paper, we consider the conservation laws for the model

mt = bux +
1
2

a
[(

u2−u2
x

)
m
]

x
+

1
2

c(2m ·ux +mx ·u) ; m = u−uxx, (1.1)

where a, b and c are arbitrary constants. Eq. (1.1) models the one-way propagation of a fluid that lies on a horizontal flat bottom.
Conservation laws, indicating that a certain measurable property (as mass, momentum or charge) of an isolated physical system does not
change as the system evolves over time, are of fundamental importance in nonlinear science. The study of the conservation laws of the KdV
equation was a milestone in the exploration of some techniques that include Miura transformation, Lax pair, inverse scattering transform,
bi-Hamiltonian structures, for solving evolutionary equations [1]. Conservation laws have several applications in the field of differential
equations. For example, Lax [2] proved global existence theorems by using conservation laws, DiPerna [3] used extra conservation laws for
the decay of shock waves, and stability problems were considered by Benjamin. In [4], they were used for studying cracks and dislocations in
elasticity (for more information see [5]). The existence of solitons is also closely related to the existence of an infinite number of conservation
laws of partial differential equations and is a predictor of complete integrability.
There are many powerful methods used to find conservation laws such as Laplace’s direct technique [6], Noether’s theorem [7], the
characteristic form (also known as multiplier or integrating factor) given by Steudel [8]. In this paper, we use the multiplier approach among
these techniques to derive conservation laws and conserved quantities corresponding to the six different cases of coeffficients of Eq. (1.1).
The multiplier approach will be explained in detail in the next section.
The emergence of symbolic computational packages provides great satisfaction in the performance of complex and tedious calculations.
Over the past decades, researchers have focused on developing symbolic computational packages working with either Maple or Mathematica
which are based on different approaches to conservation laws. Many computational packages have recently been developed, and we can
classify these packages on the environment in which they work in two parts:

1. Packages which are based on Mathematica [9] environment: Goktas and Hereman developed condens.m [9], Adams and Hereman
developed TransPDEDensity.m [10], and Poole and Hereman developed ConservationLawsMD.m [11].

2. Packages which are based on Maple environment: Cheviakov developed GeM [12, 13], Anderson and Cheb-Terrab developed Vessiot
suite [14] , Rocha Filho and Figueiredo developed SADE [15].
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GeM package [12] will be used in the present paper to find the conservation laws of Eq. (1.1) in the six different cases of coeffficients.
GeM package is developed to find the conservation laws and symmetries of differential equations. There exists a determining system for
obtaining multipliers (and hence conservation laws) for any partial differential equation. To obtain symmetries, this package, firstly obtain an
overdetermined system of determining equations, afterwards this system is simplified by a Rif package routines, and then a Maple command
gives all symmetry generators of differential equations. For the conservation laws, GeM package firstly obtain a determining system for
multipliers, afterwards the obtained system is simplified by Rif package to get multipliers. Once the multipliers are obtained, the fluxes are
constructed by the direct method, homotopy methods or scaling symmetry formula.
Eq. (1.1) is studied in [16] where they mainly interested in peakon, weak kink ank kink-peakon interactional solutions. To show that Eq.
(1.1) is completely integrable, they present the Lax representation, bi-Hamiltonian structure and infinitely many conservation laws for Eq.
(1.1). In [16] the conservation laws are obtained explicitly only for b = 0,a 6= 0,c 6= 0 case.
According to the different cases of coefficients, Eq. (1.1) reduces to the following six cases:

1. Case (b 6= 0,a 6= 0,c 6= 0):
mt = bux +

1
2 a
[(

u2−u2
x
)

m
]

x +
1
2 c(2m ·ux +mx ·u), which is a linear combination of CH and mCH or generalized CH equation, see

(Qiao, Xia, and Li [e-print arXiv:1205.2028v3 (2012)]).
2. Case (b 6= 0,a = 0,c =−2):

mt = bux− (2mux +mxu),wich is a quadratic nonlinear equation.
3. Case (b 6= 0,a =−2,c = 0):

mt = bux−
[(

u2−u2
x
)

m
]

x, which is a cubic nonlinear equation.
4. Case (b = 0,a 6= 0,c 6= 0):

mt =
1
2 a
[
m
(
u2−u2

x
)]

x +
1
2 c(2mux +mxu), which known as FQXL model.

5. Case (b = 0,a =−2,c = 0) :
mt =−(2mux +mxu), which is known as Camassa -Holm equation (CH).

6. Case (b = 0,a = 0,c =−2):
mt =−

[(
u2−u2

x
)

m
]

x, which known as modified Camassa-Holm equation (mCH).

In the present paper, the conservation laws of the above six cases of the coefficients are computed explicitly using GeM Maple routines
which are based on multiplier method. The multipliers are used to make the system being studied get a divergence form, then by equating
this divergence to zero one can obtain a conservation law. For the convenience, these are explained in detail in Section 2. The computations
are performed in Section 3, and the results are summarized in the last section.

2. Basic concepts on the method proposed

To compute conserved densities and fluxes, we use a multiplier approach based on the fact that the Euler operator eliminates a total divergence.
Let u be dependent variable and t,x be independent variables.

1. Consider an nth-order partial differential equation

G(t,x,u,ut ,ux,utt ,utx, . . .) = 0. (2.1)

2. The standard Euler operator Eu is defined as

Eu =
δ

δu
=

∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
+D2

t
∂

∂utt
+D2

x
∂

∂uxx
− . . . .

where Dt and Dx are the total differentiation operators which are given by:

Dt =
∂

∂ t
+ut

∂

∂u
+utt

∂

∂ut
+utx

∂

∂ux
+ . . . ,

Dx =
∂

∂x
+ux

∂

∂u
+uxx

∂

∂ux
+uxt

∂

∂ut
+ . . . .

The Euler operator tests whether an expression is a total derivative without using any integration by parts [9].
3. A vector T = (T t ,T x) is defined as the conserved vector of (2.1) if DtT t +DxT x = 0 holds for all solutions of (2.1), where T t is

conserved density and T x is associated flux. The divergence expression DtT t +DxT x = 0 is called the local conservation law for (2.1).
4. A multiplier λ of (2.1) is a function on the solution space which satisfies

DtT t +DxT x = λG (2.2)

for any function u(x, t) [17, 18]. The multipliers may be chosen to depend on both the variables (independent and dependent) and
derivatives up to a certain order.

5. The multipliers may be determined by taking the variational derivative of (2.2)

δ

δu
(λG) = 0, (2.3)

where δ/δ s is the Euler operator defined as above. The conserved vectors can be derived using (2.2) after computing the multipliers
from (2.3).
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3. Multipliers and conservation laws for the six cases via GeM Maple Routines

In this section, we use a multiplier approach technique for deriving conservation laws and conserved quantities corresponding to the six cases
of Eq. (1.1) via Maple-based GeM package.
We start with the sixth case (b = 0,a = 0,c =−2). Consider the following model with both cubic and quadratic nonlinearity:

mt = bux +
1
2

a
[(

u2−u2
x

)
m
]

x
+

1
2

c(2m ·ux +mx ·u) ;m = u−uxx, (3.1)

By using the following Maple command
> restart : with(PDEtools) : declare(m(t,x),u(t,x)) :
> pde := di f f (m(t,x), t) − b ∗ di f f (u(t,x),x) − (1/2) ∗ a ∗ (di f f ((u(t,x)2 − (di f f (u(t,x),x))2) ∗ m(t,x),x)) − (1/2) ∗ c ∗ (2 ∗ m ∗
(di f f (u(t,x),x))+u∗ (di f f (m(t,x),x))) = 0 :
> m(t,x) = u(t,x)− (di f f (u(t,x),x,x)) :
>CH := eval(pde,{b = 0,a = 0,c =−2,m(t,x) = u(t,x)− (di f f (u(t,x),x,x))});

we can rewrite equation (3.1) as follows:

CH := ut −utxx +2(u−uxx)ux +u(ux−uxxx) = 0 (3.2)

where u = u(t,x) . We will explain the case (b = 0,a = 0,c =−2) in detail along with GeM Maple routines given in [12, 13]. Dependent
and independent variables and Eq. (3.2) can be defined in GeM by the following commands:
> read(”H:/gem32 12.mpl”) :
> with(linalg) : With(GeM);
> gem decl vars(indeps = [t,x],deps = [u(t,x)], f reeconst = [b,a,c]);
> gem decl eqs([di f f (u(t,x), t) − (di f f (u(t,x),x,x, t)) + ((2 ∗ (u(t,x) − (di f f (u(t,x),x,x)))) ∗ (di f f (u(t,x),x)) + (di f f (u(t,x),x) −
(di f f (u(t,x),x,x,x)))∗u(t,x)) = 0],solve f or = [di f f (u(t,x), t)]);

Let us take the multipliers as λ = λ (t,x,u,ut ,ux,uxx,uxxx). The Maple routines to be used in GeM for which the multipliers will be obtained
from are
> det CH := gem conslaw det eqs([t,x,u(t,x),di f f (u(t,x), t),di f f (u(t,x),x),di f f (u(t,x),x,x),di f f (u(t,x),x,x,x)]);
>CL CH mult := gem conslaw multipliers();
> simpli CH := DEtools[ri f simp](det CH,CL CH mult,mindim = 1);

For the simplified form of multipliers, the determining equations are

λuu =
3λuxx

2u−2uxx
,λuuxx =−

3λuxx

2u−2uxx
,λuxxuxx =

3λuxx

2u−2uxx
,λt = 0,λx = 0,λut = 0,λux = 0,λuxxx = 0 (3.3)

The following Maple command is used to solve the system (3.3)
> multipliers CH sol := pdsolve(simpli CH[Solved]);

which yields

λ (t,x,u,ut ,ux,uxx,uxxx) =− C2u+−C3+ −C1√
−u+uxx

.

Here −C1,−C2 and −C3 are arbitrary constants. There arise three linearly independent conservation laws from the following multipliers

λ
(1) = 1,λ (2) = u,λ (3) =

1√
−u+uxx

(3.4)

The next task is the construction of conservation laws from the multipliers given in (3.4). The direct method is used to compute the flux
expressions in the Maple command
> gem get CL f luxes(multipliers CH sol); .

We have the conservation law fluxes which are presented in the following table for the multipliers (3.4) :

Case Multiplier Fluxes
b = 0

λ (1) = 1
T t = u−uxx

a = 0 T x = 3
2 u2−uuxx− 1

2 u2
x

c =−2 λ (2) = u
T t = 1

2 u2−uuxx− 1
2 u2

x
T x = u3−uxxu2 +utux

λ (3) = 1√
−u+uxx

T t =−2
√
−u+uxx

T x =−2
√
−u+uxxu

The homotopy formulas will be employed for the fluxes since the multipliers do not contain arbitrary constants. The following Maple
command is used for first homotopy formula
> gem get CL f luxes(multipliers CH sol,method = ”Homotopy1”);

to get conservation law fluxes
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Case Multiplier Fluxes
b = 0

λ (1) = 1
T t = u−uxx

a = 0 T x = 3
2 u2−uuxx− 1

2 u2
x

c =−2 λ (2) = u
T t =

u(u−uxx)
2

T x = u3−uxxu2− 1
2 utxu+ 1

2 uxut

λ (3) = 1√
−u+uxx

T t =−2
√
−2u+2uxx

T x =−2u
√
−2u+2uxx

For second homotopy formula, the Maple command
> gem get CL f luxes(multipliers CH sol,method = ”Homotopy2”);

yields the expressions for conservation law fluxes which are presented in the following table :

Case Multiplier Fluxes
b = 0

λ (1) = 1
T t = u− uxx

3
a = 0 T x = 3

2 u2−uuxx− 1
2 u2

x − 2
3 utx

c =−2 λ (2) = u
T t = 1

2 u2− 1
3 uuxx +

1
6 u2

x
T x = u3−uxxu2− 2

3 uutx +
1
3 utux

λ (3) = 1√
−u+uxx

T t =−
2
√
−u+uxx

(
u3+(− 13uxx

6 −
uxxxx

6 )u2+

(
3u2

xx
2 + uxxuxxxx

6 − 5(ux− 3uxxx
5 )(ux−uxxx)

12

)
u+ (−2u2

xx+ux(ux−uxxx))uxx
6

)
(u−uxx)

3

T x =− 1
(u−uxx)3

(
2
√
−u+uxx

(
u4−3u3uxx +

(
3u2

xx− 5utx
6 + utxxx

6

)
u2− uxx(4uxxutx+(ux+uxx)ut−2utxxux)

6

))
Now, by repeating the previous processes for the cases (1,2,3,4 and 5), we find multipliers and conserved vectors using the direct method and
first homotopy method, which are given in Tables 1, 2, respectively.

Case Multiplier Fluxes
b 6= 0

λ (1) = 1
T t = u−uxx

a 6= 0 T x =− au3

2 +
(2auxx−3c)u2

4 +
(2au2

x+2cuxx−4b)u
4 − (auxx− c

2 )u2
x

2

c 6= 0 λ (2) = u
T t = 1

2 u2−uuxx− 1
2 u2

x

T x =− 3au4

8 +
(4auxx−4c)u3

8 +
(2au2

x+4cuxx−4b)u2

8 − u2
x uxxau

2 +
ux(u3

x a+8ut)
8

λ (3) =
(−2u+2uxx)a−c√

(u−uxx)2a+cu−cuxx+b
T t =−2

√
(u−uxx)2a+ cu− cuxx +b

T x =
(
au2−au2

x + cu
)√

(u−uxx)2a+ cu− cuxx +b
b 6= 0

λ (1) = 1
T t = u−uxx

a = 0 T x = 3u2

2 +
(−2b−2uxx)u

2 − u2
x

2

c =−2. λ (2) = u
T t = 1

2 u2−uuxx− 1
2 u2

x

T x = u3 +
(−b−2uxx)u2

2 +utux

λ (3) = 2√
2b−4u+4uxx

T t =−
√

2b−4u+4uxx
T x =−

√
2b−4u+4uxxu

b 6= 0
λ (1) = 1

T t = u−uxx
a =−2 T x = u3−uxxu2 +

(
−u2

x −b
)

u+u2
xuxx

c = 0 λ (2) = u
T t = 1

2 u2−uuxx− 1
2 u2

x

T x = 3u4

4 −uxxu3 +
(−2u2

x−2b)u2

4 +u2
xuxxu− u4

x
4 +utux

λ (3) = −u+uxx√
2u2−4uuxx+2u2

xx−b
T t =−

√
2u2−4uuxx+2u2

xx−b
2

T x =− (u2−u2
x)
√

2u2−4uuxx+2u2
xx−b

2
b = 0

λ (1) = 1
T t = u−uxx

a 6= 0. T x =− au3

2 +
(2auxx−3c)u2

4 +
(2au2

x+2cuxx)u
4 − (auxx− c

2 )u2
x

2

c 6= 0 λ (2) = u
T t = 1

2 u2−uuxx− 1
2 u2

x

T x =− 3au4

8 +
(4auxx−4c)u3

8 +
(2au2

x+4cuxx)u2

8 − u2
x uxxau

2 +
ux(2u3

x a+8ut)
8

λ (3) =
(−2u+2uxx)a−c√

(u−uxx)((u−uxx)a+c)
T t =−2

√
(u−uxx)((u−uxx)a+ c)

T x =
√

(u−uxx)((u−uxx)a+ c)
(
au2−au2

x + cu
)

b = 0
λ (1) = 1

T t = u−uxx
a =−2 T x = (u−ux)(u+ux)(u−uxx)

c = 0 λ (2) = u
T t = 1

2 u2−uuxx− 1
2 u2

x

T x =− u4
x

4 −
u(u−2uxx)u2

x
2 +utux +

3u4

4 −uxxu3

λ (3) = 1
(u−uxx)2

T t =− 1
u−uxx

T x =
3u2−4uuxx+u2

x
u−uxx

Table 1: Multipliers and conserved vectors using direct method
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Case Multiplier Fluxes
b 6= 0

λ (1) = 1
T t = u−uxx

a 6= 0 T x =− au3

2 +
(2auxx−3c)u2

4 +
(2au2

x+2cuxx−4b)u
4 − (auxx− c

2 )u2
x

2

c 6= 0 λ (2) = u
T t =

u(u−uxx)
2

T x =− 3au4

8 +
(4auxx−4c)u3

8 +
(2au2

x+4cuxx−4b)u2

8 +
(−4u2

x uxxa−4utx)u
8 +

ux(u3
x a+4ut)

8

λ (3) =
(−2u+2uxx)a−c√

(u−uxx)2a+cu−cuxx+b
T t = 2

√
b−2

√
(u−uxx)2a+ cu− cuxx +b

T x =
(
au2−au2

x + cu
)√

(u−uxx)2a+ cu− cuxx +b
b 6= 0

λ (1) = 1
T t = u−uxx

a = 0 T x = 3u2

2 +
(−2b−2uxx)u

2 − u2
x

2

c =−2. λ (2) = u
T t =

u(u−uxx)
2

T x = u3 +
(−b−2uxx)u2

2 − uutx
2 + ut ux

2

λ (3) = 2√
2b−4u+4uxx

T t =
√

2
√

b−
√

2b−4u+4uxx
T x =−

√
2b−4u+4uxxu

b 6= 0
λ (1) = 1

T t = u−uxx
a =−2 T x = u3−uxxu2 +

(
−u2

x −b
)

u+u2
xuxx

c = 0 λ (2) = u
T t =

u(u−uxx)
2

T x = 3u4

4 −uxxu3 +
(−2u2

x−2b)u2

4 +
(4u2

x uxx−2utx)u
4 − u4

x
4 + ut ux

2

λ (3) = −u+uxx√
2u2−4uuxx+2uu2

xx−b
T t =

√
−b
2 −

√
2u2−4uuxx+2u2

xx−b
2

T x =
(u−ux)(u+ux)(−2u2+4uuxx−2u2

xx+b)
2
√

2u2−4uuxx+2u2
xx−b

b = 0
λ (1) = 1

T t = u−uxx

a 6= 0. T x =− au3

2 +
(2auxx−3c)u2

4 +
(2au2

x+2cuxx)u
4 − (auxx− c

2 )u2
x

2

c 6= 0 λ (2) = u
T t =

u(u−uxx)
2

T x =− 3au4

8 +
(4auxx−4c)u3

8 +
(2au2

x+4cuxx)u2

8 +
(−4au2

x uxx−4utx)u
8 +

ux(au3
x+4ut)
8

λ (3) =
(−2u+2uxx)a−c√
(u−uxx)2a+cu−cuxx

T t =−2
√
(u−uxx)2a+ cu− cuxx

T x =
(
au2−au2

x + cu
)√

(u−uxx)2a+ cu− cuxx
b = 0

λ (1) = 1
T t = u−uxx

a =−2 T x = u3−uxxu2−u2
xu+u2

xuxx

c = 0 λ (2) = u
T t =

u(u−uxx)
2

T x = 3u4

4 −uxxu3− u2
x u2

2 +
(8u2

x uxx−4utx)u
8 +

ux(−2u3
x+4ut)

8

λ (3) = 4u−4uxx√
−2(u−uxx)2

T t =−2
√
−2(u−uxx)2

T x =
(
−2u2 +2u2

x
)√
−2(u−uxx)2

Table 2: Multipliers and conserved vectors using the first homotopy formula

4. Conclusion

The conservation laws for Eq. (1.1) with both quadratic and cubic nonlinearity for the six cases of coefficients ((b 6= 0,a 6= 0,c 6= 0),(b 6=
0,a = 0,c = −2),(b 6= 0,a = −2,c = 0),(b = 0,a 6= 0,c 6= 0),(b = 0,a = −2,c = 0) and (b = 0,a = 0,c = −2)) are constructed via a
Maple package called GeM. The conservation laws ρt = Fx of Eq. (1.1) were obtained in [16]. But, they were given explicitly only for
b = 0,a 6= 0,c 6= 0 case. In the present paper, the conservation laws of all the above six cases are computed explicitly. Three multipliers are
obtained by defining the multipliers of the form λ = λ (t,x,u,ut ,ux,uxx,uxxx) in GeM Maple routines. More multipliers may be computed in
the case of including higher order derivatives in the multipliers. Direct method and homotopy formula are used to compute the fluxes for
each cases. The fluxes obtained here can be used to construct the solutions of Eq. (1.1).
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