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Abstract. In this paper, we propose a deterministic algorithm for primality testing and primes search in a given
integer interval. The algorithm use a new primality test method, which replace modulo operator with elementary
arithmetic operations, hence a better efficiency than divisibility test. The algorithm is working; it generates a prime
base by an expansion process and is appropriate for a fast search for small primes (a dozen of digits). We propose a
filtering method to overcome memory constraints, and use the algorithm to expand much more the prime base and
find medium size primes (dozens of digits).
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1. Introduction

There are two major tasks related to prime numbers: first, one is to test whether a given number is prime or not and
the second one is to find all prime numbers between two given numbers [2]. In our research work, we tackle the two
problems.

We can prove that if an integer n is not a prime, n must have a factor greater than 1 and ≤
√

n. To test the primality
of n, the optimal deterministic method is to check only whether primes from 2 to

√
n are possible divisors for n; i.e.

check that n mod pi , 0 for each prime pi with condition pi2 < n [3].
We propose an original method to obtain n mod pi with only elementary arithmetic operations. The method do not

use modulo operator, hence an improved efficiency in comparison with the classical divisibility test. In the following,
we designate the method, by the acronym MRM (Modulo Relations Method). The proposed algorithm use the MRM
method.

A Prime Base (PB) is a complete suite of successive primes, starting with the first primes: {2, 3, 5, . . . , pm}.
The algorithm perform the following: generate efficiently a PB by a fast expansion process. In a second stage, the

algorithm search for primes in a given interval ≤ pm2, where pm is the last prime in the generated PB. The MRM
method and the algorithm are new.

The paper is organized as follows. Section 2, gives the mathematical preliminaries needed, and present the Modulo
Relations Method. Section 3 deals with the primes search algorithm. Finally, some concluding remarks are given.
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2. Preliminaries. MRM Method

Given a number n odd, we compute (n + 2) mod p, based on n mod p, with the following modulo relation:
If (n mod p + 2) < p, then (n + 2) mod p = n mod p + 2.
If (n mod p + 2) >= p, then (n + 2) mod p = n mod p + 2 − p.
With this relation, having obtained n mod p, we perform primality check of n, and then we reuse n mod p to get

(n + 2) mod p, by simple addition. In other words, we store modulo of last odd number, and reuse it to perform check
for next odd. We continue and repeat the same process, until end of search interval.

This Modulo Relations Method (MRM) has a double advantage:
* First, a simplification of modulo calculation (hence a better speed).
* Secondly, we obtain results that are more interesting: not only allow primality check of a single number, but

also reuse modulo to obtain the set of all primes included in the search interval.
To measure time efficiency, instead of running time (vary with length of search interval), we propose the following

ratio: Running time / number of primes found (or msec. per prime found).
Proof of modulo relation

- n1 and n2 are two positive integers with n1 < n2;
- n1 mod p: denotes n1 modulo p.
- Let: n1 mod p = m1 (m1 < p)→ n1 ≡ m1 (mod p).
- Let: n2 mod p = m2 (m2 < p)→ n2 ≡ m2 (mod p).

The congruence relation is compatible with addition [4, 6], this means:
If n1 ≡ m1 (mod p) and n2 ≡ m2 (mod p), then: n1 + n2 ≡ m1 + m2 (mod p);
Which is equivalent to:
[n1 + n2] ≡ [(n1 mod p) + (n2 mod p)] (mod p) (m1 < p) and (m2 < p)→ [m1 + m2] < 2p→ [m1 + m2 − p] < p.
Two cases:

* If [m1 + m2] < p→ (n1 + n2) mod p = m1 + m2⇔ (n1 + n2) mod p = n1 mod p + n2 mod p.
* If [m1 + m2] ≥ p→ then 0 ≤ (m1 + m2) − p < p→ (n1 + n2) mod p = n1 mod p + n2 mod p − p.

In the particular case where n2 = 2, we have: 2 mod p = 2 for any p > 2 (for p = 2, since n1 odd, we have:
n1 mod p = (n1 + 2) mod p = 1).

We write the preceding results for n2 = 2, we obtain the relation:
If [n1 mod p + 2] < p then (n1 + 2) mod p = n1 mod p + 2.
If [n1 mod p + 2] ≥ p then (n1 + 2) mod p = n1 mod p + 2 − p.

3. Algorithm for Prime Search and Primality Check

3.1. Method to generate a prime base by expansion. As mentioned earlier, a prime base is a complete suite of
primes {2, 3, . . . , pm}. To generate the base, we start with an initial base that contains a reduced number of primes
(minimal base: {2, 3}). If at a given stage, the base is {2, 3, . . . , pi}, at next stage we perform the search algorithm to
find all primes in interval [pi+2, pi2]. Found primes are append to the base: so we expand the prime base. We continue
and iterate expansion process, until reach RAM limit. Beyond RAM limit, we can save the prime base to hard disk.

The expansion is very fast, the following example illustrates how the generation process works.
- Initial base contains the seven first primes {2, 3, 5, 7, 11, 13, 17}.
- After the first expansion, the base contains 61 primes,
- After second expansion, the base contains ≈ 4800 primes, and allows find primes up to 231 − 1.

3.2. Search algorithm. Goal of algorithm: find all primes in a given interval [n1, n2], where n1 odd. The delivered
result is an array of all primes found in interval [n1, n2]. We assume the knowledge of an initial PB.

Principle of the algorithm: we generate and use a PB {2, 3, . . . , pm}. For each odd number n in search interval, the
algorithm computes n mod pi for all primes pi (with condition pi2 < n2) and store the mi results in an array to be
reused for primality check of next odd number n + 2, we iterate for n + 2, n + 4, . . . .

Algorithm:
Step 0: initialization:

- Enter the set of primes of initial prime base.
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- Enter the start number of search interval (n1), and interval length (n2 − n1).
- Generate the PB to use in primes search (expansion method in Section 3.1).

Primes search iterations:
The logic of the algorithm imply two nested loops:

- Outer loop spans odd numbers in search interval, iterations start with n1 and move toward n2.
- Inner loop check perform primality check of each odd number n. The two loops perform the following:
* First iteration (outer loop): primality check for n = n1: inner loop compute n1 mod pi for all primes pi by

using modulo operator, and store the m results in a modulo-array. If n1 mod pi , 0 for all primes pi then n1 is
prime, and n1 added to an array of primes in interval [n1, n2].

* Next iterations: set n = n + 2, to move to next odd number. Inner loop compute (n + 2) mod pi, using relation
established by MRM method:

If (n mod pi + 2 < pi) then (n + 2) mod pi = n mod pi + 2.
Else If (n mod pi + 2 ≥ pi) then (n + 2) mod pi = n mod pi + 2 − pi.
Value (n + 2) mod pi replace value n mod pi in modulo-array. If (n + 2) mod pi , 0 for all pi then (n + 2) is

prime, and added to the array of primes in interval. Iterations continue for the next odd numbers. When either
loops terminate, primes-array contain all primes in interval [n1, n2].

The algorithm requires the storage in RAM of the PB, however the filtering process explained below allows over-
coming memory constraints. The algorithm use modulo operator only for first odd number in interval, for other num-
bers, an addition replace modulo operator. Time complexity of the classical divisibility algorithm is O (n

√
n/ log n) [3].

Since addition is much more efficient than modulo operation, time efficiency is improved notably.

3.3. Means to overcome memory constraints: Filtering process. Memory requirements are reasonable for small
numbers. For larger numbers we use the following filtering method to overcome memory constraints. The main idea of
the filtering process is to store the PB in a Database on hard disk, and divide the PB into successive subsets or segments
Sk. Instead of performing primality check as an entire task, we break it into sub-tasks Tk performed independently;
each sub-task requires segment Sk of PB in RAM. Each sub-task Tk perform the following:

- Process sequentially numbers of search interval (after excluding multiples of first primes).
- Check divisibility of the current number n by primes in segment Sk: the test n mod pi , 0 for all primes pi

with pi2 < n is replaced by n mod pi , 0 for primes pi with pi2 < n AND pi in segment Sk.
- Filter-out composites and keep in results array only numbers non-divisible by primes of segment Sk.

Sub tasks are independent from each other, and may be executed sequentially on a single workstation (WS), or in
parallel on a pool of networked WSs, sharing the primes Database. Each WS loads and keeps in RAM the primes in
segment Sk used for its sub-task Tk. Numbers shared by all result arrays delivered by all sub-tasks are primes. With
this approach, we can reach primes with several dozens of digits.

4. Conclusions

This paper propose a deterministic algorithm for primes search, and a new method to compute modulo. The pro-
posed method use congruence relations applied to successive odd numbers tested for primality, and results in a new
computing approach where divisions are replaced by additions. Unlike AKS algorithm [5], considered to have only
a theoretical interest but is not practical to implement on computers [1, 7], the proposed MRM method use a simple
mathematical formalism but have an obvious practical interest. The proposed algorithm offer an additional advantage;
it is not limited to testing the primality of a single number, but look for all prime numbers in a given integer range.

The algorithm is working (implemented with Java NetBeans platform). It generates a prime base containing the first
5000 primes, find all primes in a given interval, within the limit of 231, and is very fast. To find larger primes (some
dozens of digits), the program need simple changes: store found primes in a Database, use the Java BigInteger Class,
and use the filtering process described in Section 3.3.

To look for even bigger prime numbers, we have developed a second algorithm (will be presented in a future article),
that use another method for primality testing but works without a prime base, and is therefore applicable to find primes
with hundreds of digits.

Further work includes the following:
* Implementation of the filtering process, save the prime base in a database on hard disk.
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* Modify the Modulo Relations method to search specifically twin primes.
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