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Abstract. In 1971, integral form of spherical curve in 3-dimensional Euclidean space was given in [3]. The
explicit characterization of the spherical curves in n-dimensional Euclidean space was given in [12]. Morever, the
position vector of spherical curves in Euclidean 3-space was determined in [10]. In the present work, a) it is given
the system of differential equations of the spherical curves in 3-dimensional Euclidean space; b) it is shown that the
numerical solutions of this system of differential equations are obtained in the truncated Taylor series form by using
Taylor matris collocation method; c) an example together with error analysis are given to demonstrate the validity
and applicability of present method.

2010 AMS Classification: 53A04, 34A30, 65L05, 65G99.

Keywords: Spherical curves, Taylor matrix collocation method, residual error analysis.

1. Introduction

Curves are used in many fields such as mechanics, kinematics and differential geometry. In differential geometry, the
Frenet formulas express the kinematic properties of a particle along a continuous differentible curve in 3-dimensional
Euclidean space, or the geometric properties of the curve itself irrespective of any motion. Therefore, in principle,
every geometric problem about curves can be solved by means of the Frenet formulas. Important classes of Frenet
curves are helices curves, spherical curves, and rectifying curves [4, 7, 13, 21].

A curve which lie upon a sphere is a called a spherical curve. In books on elementary differential geometry, the
condition for a curve to be a spherical curve is usually given in the form

1
κ
τ +

[
1
τ

(
1
κ

)′]′
= 0 (1.1)

where κ and τ are its first curvature function and second curvature function, respectively. Obviously, condition Eq.
(1.1) has a meaning only if κ and τ are nowhere zero, and it is only under this precondition that Eq. (1.1) is a necessary
and sufficient condition for a curve to be a spherical curve [8, 19]. In 1963, Wong developed a more comprehensive
formula for a curve to be a spherical curve [20]. Then, Breuer and Gottlieb gave a solution for the differential equation
which characterized the spherical curves in 3-dimensional Euclidean space and they obtained the equivalent of the
radius of curvature of the curve in terms of its torsion [3]. Thereafter, in 1974, Özdamar and Hacısalihoğlu gave certain
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characterizations for the spherical curves in n-dimensional Euclidean space [15]. Afterwards, in 1989, Sezer gave a
differential and an integral characterization for the spherical curves in 4-dimensional Euclidean space [16].

In recent years, Sezer et al. developed matrix collocation methods based on Taylor [1], Lucas [5], Hermite [2] and
Bernstein [14] polynomials to find the approximate solutions of third order linear differential equations with variable
coefficients characterizing spherical curve.

In this study, we present that the position vector of a curve lying on a sphere satisfies a linear system of differential
equation with variable coefficient. Then, we obtain the approximate solutions of this system of differential equation by
using Taylor matrix collocation method.

2. Preliminaries

In this section, we briefly introduce some fundamental concepts on differential geometry of the spherical curves in
3-dimensional Euclidean space.

In 3-dimensional Euclidean space scalar product is given by

〈 , 〉 = dx2
1 + dx2

2 + dx2
3

where (x1, x2, x3) is rectangular coordinate system in E3. The norm of the vector ~x ∈ E3 is described by ‖~x‖ =
√
〈~x, ~x〉

[11, 14].

Definition 2.1 ( [13]). Let α : I → R3 be a unit speed curve, so |α′(s)| = 1 for each s in I.

Definition 2.2 ( [9]). Let α : I → R3 be a unit speed curve with κ(s) > 0. Then

~t = α′, ~n =
~t′

κ
, ~b = ~t × ~n

are called the unit tangent vector field, the principal normal vector field and the binormal vector field, respectively. The
triple (~t, ~n, ~b) is called the Frenet frame field on α.

Theorem 2.3 ( [13]). α : I → E3 is a unit speed curve with curvature κ > 0 and torsion τ, then

~t ′ = κ~n
~n′ = −κ~t + τ~b
~b′ = −τ~n

. (2.1)

3. Spherical Curves

Let α(s) be the position vector on a sphere with the origin center and radius r. We assume α(s) is suitably smooth
curve. (~t, ~n, ~b) will denote as usual, the moving trihedral of the curve and κ, τ the curvature and torsion, recpectively.
It is known (see, for instance [1, 2, 5, 14]) that α(s) satisfies a third order differential equation (in s) with coefficients
involving κ and τ. However, as we shall see, a simplier equation is possible when α lies on a sphere centered at origin.
Since (~t, ~n, ~b) is an orthonormal system, we may write

α(s) = λ1(s)~t(s) + λ2(s)~n(s) + λ3(s)~b(s).

Theorem 3.1 ( [10]). The position vector of the spherical curve in Euclidean 3-space is the equation where

λ1(s) = 0, λ2(s) = −
1
κ(s)

, λ3(s) =

(
−

1
κ(s)

)′ 1
τ(s)

.

Theorem 3.2 ( [12]). Let α : I ⊂ R→ E3 be a spherical curve. If the curvatures of α and radius of the sphere are κ, τ
and r, respectively, then (

1
κ(s)

)2

+

(
1
τ(s)

(
1
κ(s)

)′)2

= r2, (κ , 0, τ , 0, r , 0).

Theorem 3.3. The system of differential equations characterizing a unit speed spherical curve in Euclidean 3-space is

λ′1(s) = κ(s)λ2(s) + 1,
λ′2(s) = −κ(s)λ1(s) + τ(s)λ3(s),
λ′3(s) = −τ(s)λ2(s).

(3.1)
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Proof. Let α(s) be a unit speed spherical curve in Euclidean 3-space. The position vector of spherical curve can be
written as

α(s) = λ1(s)~t(s) + λ2(s)~n(s) + λ3(s)~b(s).
If we derivate this equation both sides with respect to s, then we get

α′(s) = λ′1(s)~t(s) + λ1(s)~t ′(s) + λ′2(s)~n(s) + λ2(s)~n′(s) + λ′3(s)~b(s) + λ3(s)~b′(s). (3.2)

By substituting Eq. (2.1) into Eq. (3.2), we obtain

~t(s) = λ′1(s)~t(s) + λ1(s)κ(s)~n(s) + λ′2(s)~n(s) + λ2(s)
(
−κ(s)~t(s) + τ(s)~b(s)

)
+ λ′3(s)~b(s)

+λ3(s)
(
−τ(s)~n(s)

)
.

(3.3)

Thus, from Eq. (3.3), we can write the following system of differential equations

λ′1(s) = κ(s)λ2(s) + 1,
λ′2(s) = −κ(s)λ1(s) + τ(s)λ3(s),
λ′3(s) = −τ(s)λ2(s).

�

4. TaylorMatrix CollocationMethod

In this study, we consider the system of differential equations (3.1)

λ′1(s) = κ(s)λ2(s) + 1
λ′2(s) = −κ(s)λ1(s) + τ(s)λ3(s)
λ′3(s) = −τ(s)λ2(s)

, a ≤ s ≤ b

under the initial conditions
λ1(a) = µ1, λ2(a) = µ2, λ3(a) = µ3 (4.1)

where µ1, µ2 and µ3 are real constants. We use Taylor matrix collocation method for obtaining the approximate
solutions of the system of differential equations. We assume the approximate solution of problem (3.1) and (4.1) in the
truncated Taylor series form [6, 17, 18]

λi(s) � λi,N(s) =

N∑
k=0

ai,k sk, (i = 1, 2, 3); (4.2)

where λi,N(s), (i = 1, 2, 3) are the approximate solutions of Eq. (3.1); N is chosen as any positive integer such that
N ≥ 2. On the other hand, we can write Eq. (4.2) in the matrix form

λi,N(s) = X(s)Ai, (i = 1, 2, 3); (4.3)

X(s) =
[

1 s · · · sN
]
, Ai =

[
ai,0 ai,1 · · · ai,N

]T
.

Therefore, matrices λi,N(s), (i = 1, 2, 3) can be expressed as

Λ(s) = X(s)A;

Λ(s) =
[
λ1,N(s) λ2,N(s) λ3,N(s)

]
, X(s) =


X(s) 0 · · · 0

0 X(s) · · · 0
...

...
. . .

...
0 0 · · · X(s)

 , A =
[

A1 A2 · · · AN

]T
.

It is obviously seen that the relation between the matrix X(s) and its derivative X′(s) is

X′(s) = X(s)B (4.4)

where

B =



0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · N
0 0 0 · · · 0


.
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By substituting the relations (4.3) and (4.4), we obtain the following matrix relation

λ′i,N(s) = X(s)BAi. (4.5)

Therefore, the matrices λ′i,N(s), (i = 1, 2, 3) can be expressed as

Λ′(s) = X(s)BA; (4.6)

Λ′(s) =
[
λ′1,N(s) λ′2,N(s) λ′3,N(s)

]
, B =


B 0 · · · 0
0 B · · · 0
...

...
. . .

...
0 0 · · · B

 .
To find the approximate solution (4.2), we can use the collocation points defined by

sγ = a +
b − a

N
γ, γ = 0, 1, 2, ...,N. (4.7)

On the other hand, Eq. (3.1) can be written as follows;

3∑
j=1

1∑
k=0

Pk
i j(s)λ(k)

j (s) = gi(s), (i = 1, 2, 3). (4.8)

By substituting the relations (4.4)-(4.7) into Eq. (4.8), we have the fundamental matrix

1∑
k=0

PkB
k
XA = G⇒

{
P0X + P1BX

}
A = G. (4.9)

Here,

Pk =


Pk(s0) 0 · · · 0

0 Pk(s1) · · · 0
...

...
. . .

...
0 0 · · · Pk(sN)

 ; Pk(s) =


Pk

11(s) Pk
12(s) Pk

13(s)

Pk
21(s) Pk

22(s) Pk
23(s)

Pk
31(s) Pk

32(s) Pk
33(s)

 ,

X =
[

X(s0) X(s1) · · · X(sN)
]T
,

G =
[

G(s0) G(s1) · · · G(sN)
]T

; G =
[

g1(s) g2(s) g3(s)
]T
.

The matrix equation (4.9) can be written in the form

WA = G or
[

W; G
]

; W = P0X + P1BX. (4.10)

By using the conditions (4.1) and the relation (4.6), the matrix form for the conditions is obtained as

X(a)A = µ; µ =
[
µ1 µ2 µ3

]T
. (4.11)

Hence, the matrix equation (4.11) can be written in the form

MA = µ or
[

M;µ
]

; M = X(a). (4.12)

In order to obtain the solution of Eq. (3.1) under the initial conditions (4.1), following the augmented matrix is
constructed by replacing any rows of the matrix (4.10) with rows of matrix (4.12); so we have the new augmented
matrix

W̃A = G̃ or
[

W̃; G̃
]
.

If rank(W̃) = rank(W̃; G̃) = 3(N+1) , the solution of the augmented matrix
[

W̃; G̃
]

is A = (W̃)−1G̃ and A is uniquely
determined. In this way, the unknown coefficients are obtained and the approximate solutions λi,N(s), (i = 1, 2, 3) are
found in the form (4.2).
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5. Residual Error Estimation

Since the truncated Taylor series are the approximate solutions of Eq. (3.1), when the approximate solution λi,N(s),
(i = 1, 2, 3) and their derivatives are substituted in Eq. (3.1), the resulting equation must be satisfied approximately;
that is, for, a ≤ sγ ≤ b :

Ri,N(sγ) =

∣∣∣∣∣∣∣∣
3∑

j=1

1∑
k=0

Pk
i j(sγ)λ(k)

j,N(sγ) − gi(sγ)

∣∣∣∣∣∣∣∣ � 0, (i = 1, 2, 3)

and
Ri,N(sγ) ≤ 10−kγ (kγ ∈ Z+).

If max 10−kγ = 10−k is prescribed, then the truncation limit N is increased until the difference Ri,N(sγ) at each of the
points becomes smaller than the prescribed 10−k. On the other hand, by means of residual function Ri,N(s) and the
mean value of function

∣∣∣Ri,N(s)
∣∣∣ , the accuracy of the solution can be controlled and the error can be estimated. For this

aim, by using linear operator L and mean value theorem, the upper bound of the mean error RN can be estimated as
follows [2, 5, 6, 9, 11, 14, 18]:

Ri,N(s) = L
[
λi,N(s)

]
− gi(s); L

[
λi(s)

]
= gi(s), (i = 1, 2, 3)∣∣∣∣∣∣

∫ b

a
Ri,N(s)ds

∣∣∣∣∣∣ ≤
∫ b

a

∣∣∣Ri,N(s)
∣∣∣ ds, s ∈

[
a, b

]
Ri,N(s0) =

∫ b
a Ri,N(s)ds

(b − a)
; s0 ∈

[
a, b

]
from this relations ∣∣∣∣∣∣

∫ b

a
Ri,N(s)ds

∣∣∣∣∣∣ =
∣∣∣Ri,N(s0)

∣∣∣ |(b − a)|

∣∣∣Ri,N(s0)
∣∣∣ |(b − a)| ≤

∫ b

a

∣∣∣Ri,N(s)
∣∣∣ ds

∣∣∣Ri,N(s0)
∣∣∣ ≤ ∫ b

a

∣∣∣Ri,N(s)
∣∣∣ ds

(b − a)
= Ri,N .

Also, absolute error is used for measuring errors. If λi,N(s), (i = 1, 2, 3) is approximation to λi(s), (i = 1, 2, 3) , then
the absolute error is

ei,N(s) =
∣∣∣λi(s) − λi,N(s)

∣∣∣ , (i = 1, 2, 3).

6. Numerical Example

In this section, we give an example to illustrate the efficiency of the approximation method based on Taylor polyno-
mials used to find approximate solutions of the system of differential equations characterizing spherical curve.

Let us consider the curve α :
[
0, 3π

10

]
→ E3 given by

α(s) =

(
√

1 − s2 cos
(√

2 arcsin (s)
)

+
s sin

(√
2 arcsin (s)

)
√

2
,−
√

1 − s2 sin
(√

2 arcsin (s)
)

+
s cos

(√
2 arcsin (s)

)
√

2
, s
√

2

)
.

This curve is unit speed curve which lie on unit sphere. Curvature and torsion of the this curve are as follows

κ(s) =
1

√
1 − s2

, τ(s) = −
1

√
1 − s2

.

Spherical curve can be expressed as

α(s) = λ1(s)~t(s) + λ2(s)~n(s) + λ3(s)~b(s),

where λ1(s), λ2(s) and λ3(s) are the unknown functions. The system of differential equations characterizing this
spherical curve is

λ′1(s) = κ(s)λ2(s) + 1,
λ′2(s) = −κ(s)λ1(s) + τ(s)λ3(s),
λ′3(s) = −τ(s)λ2(s).
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Approximate solutions of this system of differential equations under the initial conditions

λ1(0) = 0, λ2(0) = −1, λ3(0) = 0

is calculated by using Taylor matris collocation method for N = 5, 10, 15, 20, 25, 30. For solving this problem, we
suppose λi,N(s) is approximated by the truncated Taylor series form

λi,N(s) =

N∑
k=0

ai,k sk, (i = 1, 2, 3).

The main matrix equation of α(s) with respect to Taylor matrix collocation method:{
P0X + P1BX

}
A = G.

Here

P0 =


P0(s0) 0 · · · 0

0 P0(s1) · · · 0
...

...
. . .

...
0 0 · · · P0(sN)

 , P1 =


P1(s0) 0 · · · 0

0 P1(s1) · · · 0
...

...
. . .

...
0 0 · · · P1(sN)

 , G =


G(s0)
G(s1)
...

G(sN)

 ;

P0(s) =


0 −κ(s) 0

κ(s) 0 −τ(s)

0 τ(s) 0

 , P1(s) =


1 0 0

0 1 0

0 0 1

 , G(s) =


1

0

0

 .
By using the procedure in Section 4, the fundamental matrix relations for the equation and conditions are computed
and then the Taylor coefficients are found. Numerical results can be seen in Figure 1-4 and Table 1-6.

Figure 1. Comparison of analytical solution and approximate solutions
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The approximate solutions λi,5(s) (i = 1, 2, 3) is obtained as

λ1,5(s) = −2.613410227258 × 10−16 − 1.463344849233 × 10−16s − 0.0036205434120s2 + 0.016265409561s3

−0.0277239399594s4 + 0.0161267934050626s5,

λ2,5(s) = −1.00000000000000 + 4.738301313483 × 10−17s + 0.46182718521305s2 + 0.260289657037436s3

−0.48975648592404s4 + 0.52448584105127s5,

λ3,5(s) = −s − 0.00362054341205s2 + 0.0162654095610s3 − 0.02772393995942s4 + 0.01612679340506s5.

The approximate solutions λi,10(s) (i = 1, 2, 3) is obtained as

λ1,10(s) = 9.5766597921 × 10−15 − 2.33812646898 × 10−15s + 0.000574274057321s2 − 0.00856375956916s3

+0.063504398391s4 − 0.2748077702s5 + 0.73748787433s6 − 1.24431590117s7 + 1.2842693682s8

−0.74052407508445s9 + 0.182651283383836s10,

λ2,10(s) = −1.0000000000000 − 1.59510000875085 × 10−14s + 0.50941750155470s2 − 0.182679974295995s3

+1.708338410452s4 − 7.76012318598s5 + 23.3599011621s6 − 43.7819511775s7 + 50.393529766s8

−32.510754053442s9 + 9.1045094038588s10,

λ3,10(s) = −1.00000000000000s + 0.00057427405827708s2 − 0.0085637595843814s3 + 0.06350439849463s4

−0.274807770610470s5 + 0.737487875207460s6 − 1.2443159023993200s7 + 1.28426936933350s8

−0.74052407558578s9 + 0.1826512834866s10.

The approximate solutions λi,15(s) (i = 1, 2, 3) is obtained as

λ1,15(s) = −1.39607006931 × 10−12 − 4.575308656 × 10−13s − 0.000119203356871s2 + 0.00324950360028s3

−0.046441646884s4 + 0.415129021783s5 − 2.51655777469s6 + 10.81258303s7 − 33.737079157s8

+77.286305019s9 − 129.959379170s10 + 158.48012215s11 − 136.31402897s12 + 78.373211641s13

−27.0181446563461s14 + 4.2212591738136s15,

λ2,15(s) = −1.0000000000004 + 3.462406597727 × 10−15s + 0.497308708590039s2 + 0.091157420414001s3

−1.34244147356s4 + 14.3420090101s5 − 93.742548804s6 + 431.78096429s7 − 1437.437962542s8

+3505.6266918s9 − 6268.38776712s10 + 8126.59001975s11 − 7434.855439s12 + 4552.2107536s13

−1674.50052793038s14 + 280.001022366432s15,

λ3,15(s) = −1.00000000000s − 0.000119201070710364s2 + 0.0032494286064063s3 − 0.04644048709727s4

+0.415118222008017s5 − 2.516490995659360s6 + 10.812294512042s7 − 33.73618345241140s8

+77.28428016s9 − 129.95604117s10 + 158.47615246s11 − 136.310713148s12 + 78.371366541s13

−27.01753069243s14 + 4.2211667790255s15.
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The approximate solutions λi,20(s) (i = 1, 2, 3) is obtained as

λ1,20(s) = 4.02401118456 × 10−10 − 5.7950108780 × 10−11s + 0.0000298579019933s2 − 0.00122171833002s3

+0.02669897025s4 − 0.37460769291s5 + 3.67791381947s6 − 26.5574310329s7 + 145.5617424906s8

−618.29208988s9 + 2062.7224138s10 − 5447.21229599s11 + 11421.0183424s12 − 18982.0250242s13

+24843.5928134s14 − 25278.7059214s15 + 19573.0404136s16 − 11136.564398s17 + 4387.856794s18

−1069.05593892533s19 + 121.291818876649s20,

λ2,20(s) = −1.00000000005 − 2.85810163 × 10−14s + 0.50083215903s2 − 0.041201196627s3 + 1.12294081901s4

−15.12733826201s5 + 158.7606193073s6 − 1217.47757311s7 + 7066.55740376s8 − 31722.0613774s9

+111698.678553420s10 − 311047.81780954s11 + 687252.499694300s12 − 1.20307963815469 × 106s13

+1.657823334002 × 106s14 − 1.7755190807 × 106s15 + 1.44675204469 × 106s16 − 866206.7483114s17

+359160.24913335s18 − 92110.715165560s19 + 11005.851810934s20,

λ3,20(s) = −0.99999999999998s + 0.0000369063463053581s2 − 0.00156771640430988s3 + 0.03499413661455s4

−0.498825874852s5 + 4.96267630935s6 − 36.2542441362s7 + 200.8109202117s8 − 861.1816368645s9

+2898.2058292s10 − 7714.05890928s11 + 16287.7298526s12 − 27237.15334589s13 + 35834.6429358s14

−36619.44351853s15 + 28449.804339s16 − 16226.8591928s17 + 6403.29615156s18 − 1561.12452927s19

+177.088098661405s20 .

The approximate solutions λi,25(s) (i = 1, 2, 3) is obtained as

λ1,25(s) = 2.89072292625 × 10−9 + 3.91396547092 × 10−11s + 6.933547437881 × 10−6s2 − 0.00044850875423s3

+0.0138320046214s4 − 0.2642766566702s5 + 3.46645679337s6 − 32.98190676s7 + 235.3267201151s8

−1285.38555863s9 + 5438.76749796s10 − 17906.1579196s11 + 45730.626523s12 − 89507.11585964s13

+131121.097173s14 − 139239.82350s15 + 110773.913640s16 − 108390.944873s17 + 211832.412329s18

−399901.550671s19 + 528130.35896s20 − 479231.14933s21 + 297640.5263436s22 − 121965.195933s23

+29882.9141276940s24 − 3328.8534109014s25,

λ2,25(s) = −0.99999999997883 − 1.3618760842433 × 10−9s + 0.49994078266185s2 + 0.00358303915682761s3

+0.019036123244s4 + 1.96056132294s5 − 25.0918350811s6 + 237.083423214s7 − 1702.21855902s8

+9534.48303221s9 − 42291.371888s10 + 149778.649726s11 − 424398.300546s12 + 957832.49438s13

−1.70015200352 × 106s14 + 2.3134842114 × 106s15 − 2.2940072256 × 106s16 + 1.47691429 × 106s17

−421026.09379s18 − 29646.5164313s19 − 310303.5132852s20 + 790592.7853s21 − 809195.846816s22

+457462.436669927s23 − 142330.83684636s24 + 19240.9994220730s25,

λ3,25(s) = −1.0000000000s + 0.0000221677245332501s2 − 0.00134278550417024s3 + 0.039106616139171s4

−0.70315121883s5 + 8.6250499285s6 − 76.0827826896s7 + 497.167448028s8 − 2440.689718968s9

+8990.461525s10 − 24243.14617609s11 + 43992.6428806s12 − 35814.5808002s13 − 64799.99707s14

+286665.023136400s15 − 493059.7423752900s16 + 369848.2792201800s17 + 288624.949488450s18

−1.2196390847836800 × 106s19 + 1.7980850869144800 × 106s20 − 1.64699408493708000 × 106s21

+1.01009556877158 × 106s22 − 407214.819440462s23 + 98290.708823136s24 − 10815.62014425s25.
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Table 1. Comparison of exact solution λ1(s) and approximate solutions λ1,N(s) for N = 5, 10, 15, 20, 25

s λ1(s) λ1,5(s) λ1,10(s) λ1,15(s) λ1,20(s) λ1,25(s)

0 0 0.000000 0.000000 0.000000 0.0000004 0.000000

3π
40 0 -0.000061 0.000002 0.000000 0.000000 0.000000

3π
20 0 -0.000094 0.000004 0.000000 0.000000 0.000000

9π
40 0 -0.000139 0.000006 0.000000 0.000000 0.000000

3π
10 0 0.000518 0.000069 0.000008 0.000001 0.000000

Table 2. Comparison of exact solution λ2(s) and approximate solutions λ2,N(s) for N = 5, 10, 15, 20, 25

s λ2(s) λ2,5(s) λ2,10(s) λ2,15(s) λ2,20(s) λ2,25(s)

0 -1 -1.000000 -1.000000 -1.000000 -1.000000 -0.999999

3π
40 -0.971845 -0.972085 -0.971836 -0.971846 -0.971845 -0.971845

3π
20 -0.882006 -0.882169 -0.881998 -0.882006 -0.882005 -0.882006

9π
40 -0.707355 -0.707032 -0.707352 -0.707356 -0.707355 -0.707355

3π
10 -0.334269 -0.368271 -0.339344 -0.335284 -0.334497 -0.334343

Table 3. Comparison of exact solution λ3(s) and approximate solutions λ3,N(s) for N = 5, 10, 15, 20, 25

s λ3(s) λ3,5(s) λ3,10(s) λ3,15(s) λ3,20(s) λ3,25(s)

0 0 0 0 0 0 0

3π
40 -0.235619 -0.235681 -0.234617 -0.235620 -0.235619 -0.235619

3π
20 -0.471239 -0.471333 -0.471234 -0.471239 -0.471239 -0.471239

9π
40 -0.706858 -0.706998 -0.706852 -0.706859 -0.706858 -0.706858

3π
10 -0.942478 -0.941959 -0.942408 -0.942469 -0.942476 -0.942480
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Table 4. Upper bound of the error and the absolute error of the λ1,N(s) for N = 5, 10, 15, 20, 25

s e1,5(s) e1,10(s) e1,15(s) e1,20(s) e1,25(s)

0 2.61E-16 9.57E-15 1.39E-12 4.02E-10 2.89E-09

3π
40 6.19E-05 2.68E-06 2.91E-07 4.60E-08 1.80E-09

3π
20 9.42E-05 4.87E-06 5.35E-07 8.46E-08 6.42E-10

9π
40 1.39E-04 6.67E-06 7.33E-07 1.15E-07 3.32E-09

3π
10 5.18E-04 6.98E-05 8.96E-06 1.85E-06 3.59E-07

R1,N 4.04E-03 3.30E-04 4.60E-05 7.85E-06 1.20E-06

Table 5. Upper bound of the error and the absolute error of the λ2,N(s) for N = 5, 10, 15, 20, 25

s e2,5(s) e2,10(s) e2,15(s) e2,20(s) e2,25(s)

0 2.22E-16 1.33E-15 4.86E-13 5.86E-11 2.11E-11

3π
40 2.39E-04 9.39E-06 1.05E-06 1.67E-07 9.46E-09

3π
20 1.63E-04 7.77E-06 8.48E-07 1.34E-07 9.60E-09

9π
40 13.22E-04 3.04E-06 4.78E-07 7.39E-08 8.03E-09

3π
10 3.40E-02 5.07E-03 1.01E-03 2.28E-04 7.45E-05

R2,N 3.79E-02 5.51E-03 1.09E-03 2.45E-04 8.01E-05
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Table 6. Upper bound of the error and the absolute error of the λ3,N(s) for N = 5, 10, 15, 20, 25

s e3,5(s) e3,10(s) e3,15(s) e3,20(s) e3,25(s)

0 0 0 0 0 0

3π
40 6.19E-05 2.68E-06 2.91E-07 4.71E-08 1.12E-09

3π
20 9.42E-05 4.87E-06 5.35E-07 8.57E-08 1.36E-09

9π
40 1.39E-04 6.67E-06 7.33E-07 1.16E-07 4.03E-09

3π
10 5.18E-04 6.98E-05 8.96E-06 2.08E-06 2.53E-06

R3,N 4.04E-03 3.30E-04 4.60E-05 8.11E-06 3.15E-06

Figure 2. Comparison of absolute errors

Figure 3. Comparison of absolute errors
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Figure 4. Comparison of absolute errors

7. Conclusion

In the present study, we deal with a system of differential equation with variable coefficients which is characterizing
the curve that lies on a sphere. The approximate solutions of the this system of differential equation is obtained by
using Taylor matrix collocation method. Also, an error analysis technique based on residual function is developed for
our problem.

It is seen from Tables 1-6 and Figures 1-4 that the approximate solutions are close to the analytical solution when
the values of N are selected big enough. In other words, the numerical results show that the accuracy improves when
the values of N are increased.

This method can be extended to the system of differential equations of the spherical curves in Minkowski space but
some modifications are required.
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