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1Department of Mathematics, Faculty of Science, Tokat Gaziosmanpasa University, 60150, Tokat, Turkey.
2Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan.

3Department of Mathematics, Faculty of Science, Amasya University, 05100, Amasya, Turkey.

Received: 24-06-2019 • Accepted: 05-10-2019

Abstract. Sturm-Liouville type boundary-value problems arise in many engineering and scientific disciplines
as the mathematical modeling of systems and processes in the fields of chemistry, aerodynamics, electrodynamics
of complex medium or polymer rheology. For example the vibration of a homogeneous loaded strings, the earth’s
free oscillations, the interaction of atomic particles, sound, surface waves, heat transfer in a rod with heat capacity
concentrated at the ends, electromagnetic waves and gravitational waves can be solved using the Sturmian theory. A
large class of physical problems require the investigation of the Sturm-Liouville type problems with discontinuities.
Examples are vibration problems under various loads such as a vibrating string with a tip mass or heat conduction
through a liquid solid interface.
In this study we shall investigate some properties of the eigenfunctions of one discontinuous Sturm-Liouville Prob-
lem. We shall prove some preliminary results related to the basic solutions, Green’s function, resolvent operator
and selfadjointness of the considered problem. Particularly we shall present a new approach for constructing the
Green’s function which is not standard one generally found in textbooks. The obtained results are implemented to
the investigation of the basis properties of the system of eigenfunctions in modified Hilbert spaces. Finally, we shall
show that the eigenfunction expansion series regarding the convergence behaves in the same way as an ordinary
Fourier series.
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1. Introduction

The Sturmian theory is one of the most actual and extensively developing field in spectra theory of differential
operators. As a rule , the separation of variables method was applied on the two-order partial differential equation
to obtain a Sturm-Liouville problem for each independent variable. This method is a cornerstone in the study of
partial differential equations, appearing in physics and engineering. Some physical problems require the investigation
of the Sturm-Liouville type problems with the discontinuous coefficients and corresponding transmission conditions.
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Basically boundary-value problems with continuous coefficients and without interior singularities have been studied.
There is a quite substantial literature on such type problems (see, for example, [1,5–7,9,12–19]). In recent years, there
has been growing interest in boundary- value problems with discontinuous coefficients(see, for example, [2–4,8–11,19]
and references cited therein). In this study we shall investigate the folowing discontinuous Sturm-Liouville problem
which consists of Sturm-Liouville equation,

Θy := −y′′(x) + q(x)y(x) = λy(x) (1.1)

to hold on two disjoint intervals (a, c) and (c, b) , where discontinuity in y and y′ at the interior point of discontinuity
x = c are prescribed by so-called transmission conditions, given by

tc(y) := cos γy(c−) + sin γy(c+) = 0, 0 < γ < π (1.2)

tc(y′) = cos δy′(c−) + sin δy′(c+) = 0, 0 < δ < π (1.3)
together with the end-point boundary conditions, given by

θa(y) =:= cosαy(a) + sinαy′(a) = 0, 0 < α < π, (1.4)

θb(y) =:= cos βy(b) + sin βy′(b) = 0, 0 < β < π, (1.5)
where the coefficient q(x) is real-valued, continuous on [a, c)∪ ∈ (c, b] and has a finite limits q(c∓) = limx→c∓ q(x).
Note that, this type of eigenvalue problems arise in varied physical transfer problems. For example, in electrostatics
and magnetostatics the model problem which describes the heat transfer through an infinitely conductive layer is a
transmission problem.

2. Some Preliminary Results

At first, we shall prove some result related to the basic solutions, Green’s function, resolvent operator and selfad-
jointness of the considered problem which is not standard one generally found in textbooks. For this we shall introduce
a new inner product in the Hilbert space L2(a, c) ⊕ L2(c, b) and define a linear operator £ in this space such a way
that the considered problem can be interpreted as the seladjoint problem. Throughout in below we shall assume that,
cotα , 0, cot β , 0, cot γ > 0. In the Hilbert Space H = L2(a, c) ⊕ L2(c, b) let us define a new inner product by

< f , g >H := cos γ
∫ c−

a
f (x)g(x)dx +

1
cot δ

∫ b

c+

f (x)g(x)dx

for f , g ∈ L2(a, c) ⊕ L2(c, b).
Let us define a linear operator Λ : H → H by action low

Λ f = − f ′′ + q(x) f

on the domain D(Λ) consisting of all f ∈ H satisfying the conditions
D1) f f ′ inACloc(a, c) ⊕ ACloc(c, b) and there are finite left- and right-sides limits f (c∓) and f ′(c∓).
D2) The functions

f −(x) :=
{

f (x), for x ∈ [a, c)
f (c − 0), for x = c , f +(x) :=

{
f (x), for x ∈ (c, b]
f (c + 0), for x = c

are absolutely continuous in [a, c] and [c, b] respectively.
D3) Θ f − ∈ L2[a, c],Θ f + ∈ L2[c, b]
D4) θa(y) = θb(y) = tc(y) = tc(y′) = 0
Obviously, the problem (1.1) − (1.5) can be written in the operator equation form

Λ f = λ f , f ∈ D(Λ)

in the Hilbert space H.

Theorem 2.1. The operator Λ is densely defined( i.e. D(Λ) is dense in H) and symmetric in the Hilbert space H.

Corollary 2.2. All eigenvalues of the operator Λ are real.

Remark 2.3. With no restriction of generality we can assume that all eigenfunctions of the problem (1.1) − (1.5) are
real-valued.



O.Sh. Mukhtarov, K. Aydemir, H. Olǧar, Turk. J. Math. Comput. Sci., 11(2)(2019), 107–111 109

Theorem 2.4. The set of eigenvalues of the operator Λ coincide with the set of eigenvalues of the problem (1.1)− (1.5).
operator Λ is densely defined( i.e. D(Λ) is dense in H) and symmetric in the Hilbert space H.

With a view to obtain the resolvent operator R(λ,Λ) := (λ − Λ)−1 we shall solve the operator

(λ − Λ)y = f

for f ∈ H. This equation is equivalent to the two interval differential equation

y′′ + (λ − q(x))y = f (x), x ∈ (a, b) ∪ (b, c) (2.1)

together with boundary-transmission conditions (1.2), (1.3), (1.4), (1.5). Let us u(x, λ) and υ(x, λ) be linear independent
solutions of the equation (1.1) and let ω(λ) = W(u(x, λ)υ(x, λ)) is the wronskian.

Theorem 2.5. Let λ be any complex number such that ω(λ) , 0. Then the inhomogeneous boundary-value- transmis-
sion problem (2.1), (1.2), (1.3), (1.4), (1.5) has a unique solution y = y(x, λ) given by

y(x, λ) = cos γ〈G(x, .; λ), f (.)〉L2(a,c) +
1

cot δ
〈G(x, .; λ), f (.)〉L2(c,b)

where

G(x, z; λ) =


υ(z,λ)u(x,λ)

ω(λ) f or a ≤ z ≤ x ≤ b, x, z , c

u(z,λ)υ(x,λ)
ω(λ) f or a ≤ x ≤ z ≤ b, x, z , c

is the corresponding Green’s function.

Theorem 2.6. All eigenvalues of the operator Λ are simple.

Theorem 2.7. The linear differential operator Λ is self adjoint in the Hilbert space H.

3. Main Results

Theorem 3.1. The zeros of ω(λ) coincide with the eigenvalues of the problem (1.1) − (1.5).

If λn, n = 1, 2, 3... are the eigenvalues of the operator Λ and un(x, λn) := y(x, λn) are the corresponding system of
eigenfunction, then

cos γ
∫ c−0

a
un(x)um(x)dx +

1
cot δ

∫
c+0

bun(x)um(x)dx = 0 f or n , m

It is easy to see that there are κn , 0 n = 0, 1, 2, .... such that

u(x, λn) = κnϑ(x, λn),

Then we have

ω′(λn) = ‖un‖
2
Hκn.

Let

φn(x) :=
1
‖un‖H

un(x)

we can define that

resλ=λn y(x, λ) =< f ,Φn >H φn(x) (3.1)

From (3.1) it follows easily that

resλ=λn R(λ,Λ) =< f , φn >H φn(x)

Hence

resλ=λn < R(λ,Λ) f , f > = < resλ=λn R(λ,Λ) f , f >=< f , φn >< φn, f >

= |〈 f , φn〉|
2
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Theorem 3.2. For f ∈ H we have the following modified Parseval’s equality

‖ f ‖2H =

∞∑
n=0

(cos γ
∫ c−0

a
f (x)φn(x)dx +

1
cot δ

∫ b

c+0
f (x)φn(x)dx)2

Theorem 3.3. Assume that the following conditions be satisfied:
(i) the function f (x) is continuously differentiable in each of intervals [a, c) and (c, b] with finite one-hand limits
f (c±), f ′(c±)
ii)the functions

f−(x) =

{
f (x), for a ≤ x < c
f (c−), for x = c , f−(x)

′

(x) =

{
f ′(x), for a ≤ x < c
f ′(c−), for x = c

are absolutely continuous on [a, c] and the functions

f+(x) =

{
f (x), for c < x ≤ b
f (c+), for x = c , f+(x)

′

(x) =

{
f ′(x), for c < x ≤ b
f ′(c+), for x = c

are absolutely continuous on [c, b]
iii)− f ′′ + q(x) f (x) ∈ H
iv)the function f (x) satisfied the both transmission conditions (1.2), (1.3) and (1.4). Then

f (x) =

∞∑
n=0

(cos γ
∫ c−0

a
f (x)φn(x)dx +

1
cot δ

∫ b

c+0
f (x)φn(x)dx)φn(x)

in the sense of uniform convergence on whole [a.c) ∪ (c, b].

Below for sake of simplicity we consider only the case where cot γ cot δ = 1. Then we can find that the next
asymptotic formula for the eigenvalues λn = S 2

n is true;

S n =
(n − 1)π

b − a
+ O(

1
n

)

Theorem 3.4. Let f ∈ H. Then the series
∞∑

n=0

< f , φn >H φn(x)

regarding the convergence behaves in the same way as an ordinary Fourier series in each of the separate intervals
(a, c) and (c, b). In particular it converges to 1

2 ( f (x+0)+ f (x−0)) if f (x) is of bounded variation in the neighbourhood
of x ∈ (a, c) ∪ (c, b).
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[10] Mukhtarov, O.Sh., Olǧar, H., Aydemir, K., Resolvent operator and spectrum of new type boundary value problems, Filomat, 29:7(2015),
1671–1680. 1
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