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1. Introduction

The concept of controllability plays a major role in both finite and infinte dimensional spaces for systems repre-
sented by ordinary differential equations and partial differential equations. One of the basic qualitative behaviours of
a dynamical system is the controllability. The problem of controllability is to show the existence of control function,
which steers the solution of the system from its initial state to final state, where the initial and final states may vary over
the entire space. Conceived by Kalman, the controllability concept has been studied extensively in the fields of finite
and infinite-dimensional systems. If a system cannot be controlled completely then different types of controllability
can be defined such as approximate, null, local null and local approximate null controllability. For more details the
reader may refer to [3, 12, 13, 17, 18] and references therein.

Balachandran et al. [7] discussed the controllability of neutral functional integrodifferential systems in Banach
spaces by using semigroup theory and the Nussbaum fixed point theorem. Recently, Balachandran et al. [5, 6], derived
sufficient conditions for controllability of stochastic integrodifferential systems in finite dimensional spaces.

Recently, Park et al. [16] investigated the controllability of impulsive neutral integrodifferential systems with infinite
delay in Banach spaces using Schauder-fixed point theorem. Very recently, [4,10] established the existence, uniqueness
and asymptotic behaviours of mild solutions to a class of impulsive neutral stochastic integrodifferential equations
driven by a fractional Brownian motion with delays. Moreover, several upcoming researchers have keen interest to
study the solvation of control problems in the field of stochastic systems. Through the survey of literature it reeveals
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that a very little work has been done for the fractional Brownian motion in stochastic control problems. Chen [9]
concerned the approximate controllability for semilinear stochastic equations with fractional Brownian motion. Several
researchers reported the use of fractional Brownian motion in stochastic integrodifferential equations (see refer to
[1,2,14,15,17] and references therein). Moreover, the controllability of neutral impulsive stochastic integrodifferential
systems with infinite delay is an untreated topic in the literature so far. Thus, we will make the first attempt to study
such problem in this paper.

The goal of present research work is to focus the study of the controllability of neutral impulsive stochastic inte-
grodifferential equations of the form:

d
[
x(t) − g(t, xt,

∫ t

0
a1(t, s, xs))

]
=

[
Ax(t) − g(t, xt,

∫ t

0
a1(t, s, xs))ds

]
dt + f (t, xt,

∫ t

0
a2(t, s, xs)ds)dt

+ Bu(t)dt +

[∫ t

0
γ(t − s)

[
x(s) − g(s, xs,

∫ s

0
a1(s, r, xr)dr)

]
ds

]
dt

+ σ(t, xt,

∫ t

0
a3(t, s, xs)ds)dw(t), t ∈ I = [0,T ], t , tk, (1.1)

∆x
∣∣∣
t−tk

= x(t+k ) − x(t−k ) = Ik(x(t−k )), k = 1, ...,m, m ∈ N, (1.2)

x(t) = ϕ(t) ∈ L0
2(Ω,Bh), for a.e. t ∈ (−∞, 0]. (1.3)

Here, A is the infinitesimal generator of a strongly continuous semigroup (T (t))t≥0 of bounded linear operators in
a Hilbert space X; and the control function u(·) takes values in L2([0,T ],U), the Hilbert space of admissible control
functions for a separable Hilbert space U; and B is a bounded linear operator from U into X. The history xt : (−∞, 0]→
X, xt(θ) = x(t + θ), belongs to an abstract phase space Bh defined axiomatically, and f , g : [0,T ] × Bh × X → X,
a1, a2, a3 : D ×Bh → X, σ : [0,T ] ×Bh × X → L0

2(Y,X), are appropriate functions, where L0
2(Y,X) denotes the

space of all Q-Hilbert-Schmit operators from Y into X and D = {(s, t) ∈ I × I : s < t}. Moreover, the fixed moments of
time tk satisfy 0 < t1 < t2 < ... < tm < T , x(t−k ) and x(t+k ) represent the left and right limits of x(t) at time tk respectively.
∆x(tk) denotes the jump in the state x at time tk with I : X→ X determining the size of the jump.

2. Preliminaries

Let X, Y be real separable Hilbert spaces and L(Y,X) be the space of bounded linear operators mapping Y into
X. Let (Ω,=,P) be a complete probability space with an increasing right continuous family

{
=t

}
t≥0 of complete sub

σ algebra of =. Let {w(t) : t ≥ 0} denote a Y-valued Wiener process defined on the probability space (Ω,=,P) with
covariance operator Q, that is

E < w(t), x >Y< w(s), y >Y = (t ∧ s) < Qx, y >Y, for all x, y ∈ Y,

whare Q is a positive, self-adjoint, trace class operator on Y. We assume that there exists a complete orthonormal
system {ei}i≥1 in Y, a bounded sequence of non-negative real numbers λi such that Qei = λiei, i = 1, 2, ..., and a
sequence {βi}i≥1 of independent Brownian motions such that

〈w(t), e〉 =

∞∑
n=1

√
λi 〈ei, e〉 βi(t), e ∈ Y,

and =t = =w
t , where =w

t is the sigma algebra generated by {w(s) : 0 ≤ s ≤ t}. Let L0
2 = L2(Y0,X) denote the space of

all Hilbert-Schmidt operators from Y0 into X. It turns out to be a separable Hilbert space equipped with the norm

‖ζ‖2
L0

2
= tr

(
(ζQ

1
2 )(ζQ

1
2 )∗

)
for any ζ ∈ L0

2. Clearly for any bounded operators ζ ∈ L(Y,X) this norm reduces to

‖ζ‖2
L0

2
= tr (ζQζ∗) .

We assume that the phase space Bh is a linear space of functions mapping (−∞, 0] into X, endowed with a norm ‖·‖Bh
.

First, we present the abstract phase space Bh. Assume that h : (−∞, 0]→ [0,+∞) is a continuous function with

l =

∫ 0

−∞

h(s)ds < +∞.
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We define the abstract phase space Bh by Bh =
{
ζ : (−∞, 0]→ X for any τ > 0, (E ‖ζ‖2)1/2 is bounded and measurable

function [τ, 0] and
∫ 0
−∞

h(t) supt≤τ≤0(E ‖ζ(s)‖2)1/2dt < +∞
}
. If this space with the norm

‖ζ‖Bh
=

∫ 0

−∞

h(t) sup
t≤s≤0

(E ‖ζ‖2)1/2dt,

then it is clear that (Bh, ‖·‖Bh
) is a Banach space.

We now consider the space BD I [D and I stand for delay and impulse, respectively] given by BD I =
{
x : (−∞,T ]→

X : x|Ik ∈ C (Ik,X) and x(t+k ), x(t−k ) exist with x(t+k ) − x(t−k ), k − 1, 2, ...,m x0 − ϕ ∈ Bh and sup0≤t≤T E(‖x(t)‖2) < ∞
}
,

where x|Ik is the restriction of x to the interval Ik = (tk, tk+1], k = 1, 2, ...,m. Then the function ‖·‖Bh
to be a semi-norm

in BD I , it is defined by

‖x‖BDI
= ‖x0‖Bh

+ sup
0<t<T

(E(‖x(t)‖2))1/2.

The following lemma is a common property of phase spaces.

Lemma 2.1. Suppose x ∈ BD I , then for all t ∈ [0,T ], xt ∈ Bh and

l(E(‖x(t)‖2))
1
2 ≤ l sup

0≤s≤t
(E ‖x(s)‖2)

1
2 + ‖x0‖Bh

,

where l =
∫ 0
−∞

h(s)ds < ∞.

2.1. Partial integrodifferential equations in Banach spaces. In the present section, we recall some defintions and
properties needed in the sequel. In what follows, X will denote a Banach space, A and γ(t) are closed linear operators
on X. Y represents the Banach space D(A), the domain of operator A, equipped with the graph norm

|y|Y := |Ay| + |y| for y ∈ Y.

The notation C ([0,+∞); Y) stands for the space of all continuous functions from [0,+∞) into Y. We consider the
following Cauchy problem v′(t) = Av(t) +

∫ t

0
γ(t − s)v(s)ds for t ≥ 0,

v(0) = v0 ∈ X.
(2.1)

Definition 2.2 ( [11]). A resolvent operator for equation (2.1) is a bounded linear operator valued function R(t) ∈ L(X)
for t ≥ 0, satisfying the following properties:
(i) R(0) = I and ‖R(t)‖ ≤ Meλt for some constants M and β.
(ii) For each x ∈ X, R(t)x is strongly continuous for t ≥ 0.
(iii) For x ∈ Y, R(·)x ∈ C 1([0,+∞); X)

⋂
C ([0,+∞); Y) and

R
′

(t)x = AR(t)x +

∫ t

0
γ(t − s)R(s)xds = R(t)Ax +

∫ t

0
R(t − s)B(s)xds for t ≥ 0.

For additional details on resolvent operators, we refer the reader to [11]. In what follows we suppose the following
assumptions:
(H1) A is the infintesimal generator of a C0-semigroup (R(t))t≥0 on X.
(H2) For all t ≥ 0, γ(t) is a continuous linear operator from (Y, |·|Y) into (X, |·|X). Moreover, there exists an integrable
function C : [0,+∞)→ R+ such that for any y ∈ Y, y→ γ(t)y belongs to W1,1([0,+∞); X) and∣∣∣∣∣ d

dt
γ(t)(t)y

∣∣∣∣∣
X
≤ C (t) |y|Y for y ∈ Y and t ≥ 0.

Theorem 2.3. Assume that hypotheses (H1) and (H2) hold. Then equation (2.1) admits a resolvent operator (R(t))t≥0.

Theorem 2.4. Assume that hypotheses (H1) and (H2) hold. Let R(t) be a compact operator for t > 0. Then, the
corresponding resolvent operator R(t) of equation (2.1) is continuous for t > 0 in the operator norm, for all t0 > 0, it
holds that limh→0 ‖R(t0 + h) − R(t0)‖ = 0.
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In the sequel, we recall some results on existence of solutions for the following integrodifferential equationv′(t) = Av(t) +

∫ t

0
γ(t − s)v(s)ds + q(t) for t ≥ 0,

v(0) = v0 ∈ X.
(2.2)

where q : [0,+∞[→ X is a continuous function.

Definition 2.5. A continuous function v : [0,+∞)→ X is said to be a strict solution of equation (2.2) if
(i) v ∈ C 1([0,+∞); X)

⋂
C ([0,+∞); Y),

(ii) v satisfies equation (2.2) for t ≥ 0.

Remark 2.6. From this definition we deduce that v(t) ∈ D(A), and the function γ(t − s)v(s) is integrable, for all t > 0
and s ∈ [0,+∞).

Theorem 2.7. Assume that (H1)-(H2) hold. If v is a strict solution of equation (2.2), then the following variation of
constants formula holds

v(t) = R(t)v0 +

∫ t

0
R(t − s)q(s)ds for t ≥ 0.

Definition 2.8. An X-valued process {x(t) : t ∈ (−∞,T ]} is a mild solution of (1.1)-(1.3) if
1. x(t) is measurable for each t > 0, x(t) = ϕ(t) on (∞, 0],

∆x
∣∣∣
t−tk

= Ik(x(t−k )), k = 1, 2, ...m

the restriction of x(·) to [0,T ] = {t1, t2, ...tm} is continuous.
2. For every 0 ≤ s ≤ t, the process x satisfies the following integral equation

x(t) = R(t)
[
ϕ(0) − g(0, ϕ, 0)

]
+ g(t, xt,

∫ t

0
a1(t, s, xs)ds) +

∫ t

0
R(t − s)Bu(s)ds

+

∫ t

0
R(t − s) f (s, xs,

∫ s

0
a2(s, r, xr)dr)ds +

∫ t

0
R(t − s)σ(s, xs,

∫ s

0
a3(s, r, xr)dr)dw(s)

+
∑

0<tk<t

R(t − tk)Ik(x(t−k )), P − a.s. (2.3)

3. Controllability Result

Definition 3.1. System (1.1)-(1.3) is said to be controllable on the interval (−∞,T ] if for every initial stochastic process
ϕ defined on (−∞,T ], there exists a stochastic control u ∈ L2([0,T ]; U) such that the mild solution x(·) of (1.1)-(1.3)
satisfies x(T ) = x1.

In order to establish the controllability of (1.1)-(1.3), we impose the following hypotheses:

(H3) There exist constants M ≥ 1 such that ‖R(t)‖2 ≤ M.
(H4) The mapping g : I ×D ×Bh → X satisfies the following conditions

(i) The function a1 : D × Bh → X satisfies the following condition. There exists a constant k1 > 0, for
x1, x2 ∈ Bh such that

E
∥∥∥∥∥∥
∫ t

0
[a1(t, s, x1) − a1(t, s, x2)]ds

∥∥∥∥∥∥2

≤ k1 ‖x1 − x2‖
2
Bh

, (t, s) ∈ D ,

and

k̄1 = sup
(t,s)⊂D

∥∥∥∥∥∥
∫ t

0
a1(t, s, 0)ds

∥∥∥∥∥∥2

.
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(ii) g is a continuous function and there exists constants k2 > 0 such that for x1, x2 ∈ Bh, y1, y2 ∈ X and
satisfies for all t ∈ [0,T ]

E ‖g(t, x1, y1) − g(t, x2, y2)‖2 ≤ k2

[
‖x1 − x2‖

2
Bh

+ E ‖y1 − y2‖
2
]
,

lim
t→s

E ‖g(t, x1, y1) − g(t, x2, y2)‖2 = 0.

and

k̄2 = sup
t⊂[0,T ]

‖g(t, 0, 0)‖2 .

(H5) The mapping f : I ×Bh × X→ X satisfies the following Lipschitz conditions

(i) There exist positive constants k3, k̄3 for t ∈ [0,T ], x1, x2 ∈ Bh, y1, y2 ∈ X such that

E ‖ f (t, x1, y1) − f (t, x2, y2)‖2 ≤ k3

[
‖x1 − x2‖

2
Bh

+ E ‖y1 − y2‖
2
]
,

and

k̄3 = sup
t∈[0,T ]

‖ f (t, 0, 0)‖2 .

(ii) The function a2 : D ×Bh → X satisfies the following condition. There exists a constant k4 > 0, for
x1, x2 ∈ Bh such that

E
∥∥∥∥∥∥
∫ t

0
[a2(t, s, x1) − a2(t, s, x2)]ds

∥∥∥∥∥∥2

≤ k4 ‖x1 − x2‖
2
Bh

, (t, s) ∈ D ,

and

k̄4 = sup
(t,s)⊂D

∥∥∥∥∥∥
∫ t

0
a2(t, s, 0)ds

∥∥∥∥∥∥2

.

(H6) The mapping σ : I ×Bh × X→ L(Y,X) satisfies the following Lipschitz conditions

(i) There exist positive constants k5, k̄5 for t ∈ [0,T ], x1, x2 ∈ Bh, y1, y2 ∈ X such that

E ‖σ(t, x1, y1) − σ(t, x2, y2)‖2 ≤ k5

[
‖x1 − x2‖

2
Bh

+ E ‖y1 − y2‖
2
]
,

and

k̄5 = sup
t∈[0,T ]

‖ f (t, 0, 0)‖2 .

(ii) The function a3 : D ×Bh → X satisfies the following condition. There exists a constant k6 > 0, for
x1, x2 ∈ Bh such that

E
∥∥∥∥∥∥
∫ t

0
[a3(t, s, x1) − a3(t, s, x2)]ds

∥∥∥∥∥∥2

≤ k6 ‖x1 − x2‖
2
Bh

, (t, s) ∈ D ,

and

k̄6 = sup
(t,s)⊂D

∥∥∥∥∥∥
∫ t

0
a3(t, s, 0)ds

∥∥∥∥∥∥2

.

(H7) The impulses functions Ik for k = 1, 2, ...,m, satisfies the following condition. There exists positive constants
Mk, M̃k such that

‖Ik(x) − Ik(y)‖2 ≤ Mk ‖x − y‖2 and ‖Ik(x)‖2 ≤ M̃k f orall x, y ∈ Bh.

(H8) The linear operator W from U into X defined by

Wu =

∫ T

0
R(T − s)Bu(s)ds

has an inverse operator W−1 that takes values inL2([0,T ],U) ker W, where kerW =
{
x ∈ L2([0,T ],U) : Wx = 0

}
.
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(H9) There exists a constant λ > 0 such that

λ = 10l2
(
1 + 4MMbMWT 2

) [
k2(1 + 2k1) + MT 2k3(1 + k4) + Mcpk5(1 + k6) + mM

m∑
k=1

Mk

]
< 1.

The main result of this paper is given in the next theorem.

Theorem 3.2. Suppose that (H1)-(H9) hold. Then, the system (1.1)-(1.3) is controllable on (−∞,T ] provide that

6l2
(
1 + 7MMbMWT 2

) [
8[k2(1 + 2k1)] + 8MT 2[k3(1 + 2k4)] + 8Mcp[k5(1 + 2k6)]

]
< 1. (3.1)

Proof. Using (H8) for an arbitrary function x(·), define the control

ux(t) = W−1
[
x1 − R(T )

[
ϕ(0) − g(0, x0, 0)

]
− g(T, xT ,

∫ T

0
a1(T, s, xs)ds))

+

∫ T

0
R(T − s) f (s, xs,

∫ s

0
a2(s, r, xr)dr)ds +

∫ t

0
R(t − s)σ(s, xs,

∫ s

0
a3(s, r, xr)dr)dw(s)

+
∑

0<tk<t

R(T − tk)Ik(x(t−k ))
]
(t).

Now, put the control u(·) into the stochastic control system (2.4) and obtain a nonlinear operator Γ on BD I given by

Γ(x)(t) =



ϕ(t), for t ∈ (−∞, 0],

R(t)
[
ϕ(0) − g(0, ϕ, 0)

]
+ g(t, xt,

∫ t

0
a1(t, s, xs)ds) +

∫ t

0
R(t − s)Bux(s)ds

+

∫ t

0
R(t − s) f (s, xs,

∫ s

0
a2(s, r, xr)dr)ds +

∫ t

0
R(t − s)σ(s, xs,

∫ s

0
a3(s, r, xr)dr)dw(s)

+
∑

0<tk<t R(t − tk)Ik(x(t−k )), if t ∈ [0,T ].

Then it is clear that to prove the existence of mild solutions to equations (1.1)-(1.3) is equivalent to find a fixed point
for the operator. Clearly, Γx(T ) = x1, which means that the control u steers the system grom the initial state ϕ to x1 in
time T , provided we can obtain a fixed point of the operator Γ which implies that the system in contrillable.

Let y : (−∞,T ]→ X be the function defined by

y(t) =

ϕ(t), if t ∈ (−∞, 0],
R(t)ϕ(0), if t ∈ [0,T ].

then, y0 = ϕ. For each function z ∈ BD I , set

x(t) = z(t) + y(t).

It is obvious that x satisfies the stochastic control system (2.4) if and only if z satisfies z0 = 0 and

z(t) = g(t, zt + yt,

∫ t

0
a1(t, s, zs + ys)ds) − R(t)g(0, ϕ, o) +

∫ t

0
R(t − s)Bz+y(s)ds

+

∫ t

0
R(t − s) f (s, zs + ys,

∫ s

0
a2(s, r, zr + yr)dr)ds

+

∫ t

0
R(t − s)σ(s, xs,

∫ s

0
a3(s, r, xr)dr)dw(s)

+
∑

0<tk<t

R(t − tk)Ik[z(t−k ) − y(t−k )], if t ∈ [0,T ],
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where

uz+y(t) = W−1
[
x1 − R(T )

[
ϕ(0) − g(0, z0 + y0, 0)

]
− g(T, zT + yT ,

∫ T

0
a1(T, s, zs + ys)ds)

−

∫ T

0
R(T − s) f (s, zs + ys,

∫ s

0
a2(s, r, zr + yr)dr)ds −

∫ t

0
R(t − s)σ(s, xs,

∫ s

0
a3(s, r, xr)dr)dw(s)

−
∑

0<tk<T

R(T − tk)Ik[z(t−k ) + y(t−k )]
]
(t).

Set

B0
D I = {z ∈ BD I : z0 = 0} ,

for any z ∈ B0
D I , we have

‖z‖B0
DI

= ‖z0‖Bh
+ sup

t∈[0,T ]
(E ‖z(t)‖2)

1
2 = sup

t∈[0,T ]
(E ‖z(t)‖2)

1
2 .

Then, (B0
D I , ‖·‖B0

DI
) is a Banach space. Define the operator Θ : B0

D I → B0
D I by

(Θz)(t) =



0 if t ∈ (−∞, 0],

g(t, zt + yt,

∫ t

0
a1(t, s, zs + ys)ds) − R(t)g(0, ϕ, o) +

∫ t

0
R(t − s)Bz+y(s)ds

+

∫ t

0
R(t − s) f (s, zs + ys,

∫ s

0
a2(s, r, zr + yr)dr)ds

+

∫ t

0
R(t − s)σ(s, xs,

∫ s

0
a3(s, r, xr)dr)dw(s)

+
∑

0<tk<t R(t − tk)Ik[z(t−k ) − y(t−k )], if t ∈ [0,T ].

Set

Bk =

{
z ∈ B0

D I : ‖z‖2
B0

DI
≤ k

}
, for some k ≥ 0,

then Bk ⊆ B0
D I is a bounded closed convex set, and for z ∈ Bk, we have

‖zt + yt‖BDI
≤ 2

(
‖zt‖

2
BDI

+ ‖yt‖
2
BDI

)
≤ 4

(
l2 sup

0≤s≤t
E ‖z(s)‖2 + ‖z0‖

2
Bh

+ l2 sup
0≤s≤t

E ‖y(s)‖2 + ‖y0‖
2
Bh

)
≤ 4l2

(
k + ME ‖ϕ(0)‖2

)
+ 4 ‖y‖2Bh

:= r∗.

Next,

E
∥∥∥uz+y

∥∥∥2
≤ 7MW

[
‖x1‖

2 + ME ‖ϕ(0)‖2 + 2M[k2 ‖y‖2Bh
+ k̄2] + 2[k2(1 + 2k1)r∗ + 2k2k̄1 + k̄2]

+ 2MT 2[k3(1 + 2k4)r∗ + 2k3k̄4 + k̄3] + 2Mcp[k5(1 + 2k6)r∗ + 2k5k̄6 + k̄5]

+ mM
m∑

k=1

M̃k

]
:= G

and

E
∥∥∥uz+y − uv+y

∥∥∥2
≤ 4MW

[
k2(1 + 2k1) + MT 2k3(1 + 2k4) + Mcpk5(1 + 2k6)

+ mM
m∑

k=1

Mk

]
E ‖zt − vt‖

2
Bh

. (3.2)
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It is clear that the operator Γ has a fixed point if and only if Θ has one, so it turns to prove that Θ has a fixed point. Since
all functions involved in the operator are continuous therefore Θ is continuous. The proof will be given in following
steps.
Step 1: We claim that there exists a positive number k, such that Θ(x) ∈ Bk whenever x ∈ Bk. If it is not true, then
for each positive number k, there is a function zk(·) ∈ Bk, but Θ(zk) < Bk, that is E

∥∥∥Θ(zk)(t)
∥∥∥2
> k for some t ∈ [0,T ].

However, on the other hand, we have

k < E
∥∥∥Θ(zk)(t)

∥∥∥2

≤ 6
[
2M(k2 ‖y‖2Bh

+ k̄2) + 2[k2(1 + 2k1)r∗ + 2k2k̄1 + k̄2] + 2MT 2[k3(1 + 2k4)r∗ + 2k3k̄4 + k̄3]

+ 2Mcp[k5(1 + 2k6)r∗ + 2k5k̄6 + k̄5] + mM
m∑

k=1

M̃k + MMbT 2G

]
≤ 6

(
1 + 7MMbMWT 2

) [
2M(k2 ‖y‖2Bh

+ k̄2) + 2[k2(1 + 2k1)r∗ + 2k2k̄1 + k̄2] + 2MT 2[k3(1 + 2k4)r∗

+ 2k3k̄4 + k̄3] + 2Mcp[k5(1 + 2k6)r∗ + 2k5k̄6 + k̄5] + mM
m∑

k=1

M̃k + MMbT 2G

]
+ 7MMbMWT 2

(
‖x1‖

2 + ME ‖ϕ(0)‖2
)

≤ G̃ + 6
(
1 + 7MMbMWT 2

) [
2[k2(1 + 2k1)]r∗ + 2MT 2[k3(1 + 2k4)r∗] + 2Mcp[k5(1 + 2k6)r∗

]
,

where

G̃ = 6
(
1 + 7MMbMWT 2

) [
2M(k2 ‖y‖2Bh

+ k̄2) + 2[2k2k̄1 + k̄2] + 2MT 2[2k3k̄4 + k̄3]

+ 2Mcp[2k5k̄6 + k̄5] + mM
m∑

k=1

M̃k + 7MMbMWT 2
(
‖x1‖

2 + ME ‖ϕ(0)‖2
) ]

is independent of k. Dividing both sides by k and taking the limit as k → ∞, we get

6l2
(
1 + 7MMbMWT 2

) [
8[k2(1 + 2k1)] + 8MT 2[k3(1 + 2k4)] + 8Mcp[k5(1 + 2k6)]

]
≥ 1.

This contradicts (3.1). Hence for some positive k,

(Θ)(Bk) ⊆ Bk.

Step 2: Θ is a contraction. Let t ∈ [0,T ] and z1, z2 ∈ B0
D I , we have

E
∥∥∥Θz1(t) − Θz2(t)

∥∥∥2

≤ 5E
∥∥∥∥∥∥
∫ t

0
R(t − s)B[uz1+y(s) − uz2+y(s)]ds

∥∥∥∥∥∥2

+ 5E

∥∥∥∥∥∥∥ ∑
0<tk<t

R(T − tk)[Ik(z1(t−k ) + y(t−k )) − Ik(z2(t−k ) + y(t−k ))]

∥∥∥∥∥∥∥
2

+ 5E
∥∥∥∥∥g(t, z1

t + yt,

∫ t

0
a1(t, s, z1

s + ys)ds) − g(t, z2
t + yt,

∫ t

0
a1(t, s, z2

s + ys)ds)
∥∥∥∥∥2

+ 5E
∥∥∥∥∥ ∫ t

0
R(t − s)[ f (s, z1

s + ys,

∫ s

0
a2(s, r, z1

r + yr)dr) − f (s, z2
s + ys,

∫ s

0
a2(s, r, z2

r + yr)dr)]ds
∥∥∥∥∥2

+ 5E
∥∥∥∥∥ ∫ t

0
R(t − s)[σ(s, z1

s + ys,

∫ s

0
a3(s, r, z1

r + yr)dr) − σ(s, z2
s + ys,

∫ s

0
a3(s, r, z2

r + yr)dr)]dw(s)
∥∥∥∥∥2
.
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On the other hand from (H1)-(H9) combined with (3.2), we obtain

E
∥∥∥Θz1(t) − Θz2(t)

∥∥∥2
≤ 5

(
1 + 4MMbMWT 2

) [
k2(1 + 2k1) + MT 2k3(1 + k4) + Mcpk5(1 + k6)

+ mM
m∑

k=1

Mk

]
E

∥∥∥z1
t − z2

t

∥∥∥2
Bh

≤ 10
(
1 + 4MMbMWT 2

) [
k2(1 + 2k1) + MT 2k3(1 + k4) + Mcpk5(1 + k6)

+ mM
m∑

k=1

Mk

]
×

{
l2 sup

0≤s≤t
E

∥∥∥z1(s) − z2(s)
∥∥∥2

+
∥∥∥z1

0 − z2
0

∥∥∥2
Bh

}
≤ λ sup

0≤s≤T
E

∥∥∥z1(s) − z2(s)
∥∥∥2

since (z1
0 = z2

0 = 0).

Taking supremum over t, ∥∥∥Θz1 − Θz2
∥∥∥
BDI

≤ λ
∥∥∥z1 − z2

∥∥∥
BDI

,

where

λ = 10l2
(
1 + 4MMbMWT 2

) [
k2(1 + 2k1) + MT 2k3(1 + k4) + Mcpk5(1 + k6) + mM

m∑
k=1

Mk

]
.

By condition (H9), we have λ < 1, hence Θ is a contraction mapping on B0
D I and therefore has a unique fixed point,

which is a mild solution of equation (1.1)-(1.3) on (−∞,T ]. Clearly, (Θx)(T ) = x1 which implies that the system
(1.1)-(1.3) is controllable on (−∞,T ]. This complete the proof. �

Remark 3.3. When the impulses disappear, that is Mk = M̃k = 0, k = 1, 2, ...,m then the system (1.1)-(1.3) reduces to
the following neutral stochastic integrodifferential equation:

d
[
x(t) − g(t, xt,

∫ t

0
a1(t, s, xs))

]
=

[
Ax(t) − g(t, xt,

∫ t

0
a1(t, s, xs))ds

]
dt + f (t, xt,

∫ t

0
a2(t, s, xs)ds)dt

+ Bu(t)dt +

[∫ t

0
γ(t − s)

[
x(s) − g(s, xs,

∫ s

0
a1(s, r, xr)dr)

]
ds

]
dt

+ σ(t, xt,

∫ t

0
a3(t, s, xs)ds)dw(t), t ∈ I = [0,T ], t , tk, (3.3)

x(t) = ϕ(t) ∈ L0
2(Ω,Bh), for a.e. t ∈ (−∞, 0]. (3.4)

where the operator A, g, f , σ, a1, a2 and a3 are defined as same as before. Here C =
{
x : (−∞,T ]→ X : x(t) is continuous

}
,

Banach space of all stochastic processes x(t) from (−∞,T ] into X , equipped with the supremum norm

‖φ‖2C = sup
s∈(−∞,T ]

E ‖φ(s)‖2 , for φ ∈ C .

By using the same technique in Theorem 3.2, we can easily deduce the following corollary.

Corollary 3.4. Suppose that (H1)-(H9) hold. Then, the system (3.3)-(3.4) is controllable on (−∞,T ] provide that the
condition (3.1) is satisfied.
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