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respectively. Then we give some bounds for the spectral norms of Kronecker and Hadamard
products of these matrices.

1. Introduction

The well-known Fibonacci and Lucas sequences are given by the following recursive equations: for n > 0,
Fo=0,F=1, Fup=Fhath

and
Ly=2,L =1, Lyyo = Lyt1+La,

respectively.
Many researchers gave various generalizations of the Fibonacci sequence in past fifty years. An interesting one, called bi—periodic Fibonacci
sequence, was introduced by Edson and Yayenie in [5] as follows:

aqn-1+qun—2, ifniseven;
‘]0:0741:17311(1%: (n22)7
bqn-1+¢qn—2, ifnisodd.

where a and b are nonzero real numbers. They obtained many identities for the sequence {g, },_. For instance, they gave the following
extended Binet formula

al=&m) o' — "
q”:<(ab)m> a—p> 1=z0)

where o0 = (ab +Va2b? +4ab> /2and B = (ab —Va?b? + 4ab> /2. Here, §(n) = n—2[%] is the parity function.
In [4], Bilgici gave a general form of the Lucas sequence similar to the generalized Fibonacci sequence {gy },,_ as follows:
al,_1+1,—2, ifnisodd;

lo=2,l1=a,and [, = (n>2),
bl,_1+1, o, ifniseven.
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where a and b are nonzero real numbers. He also derived many identities for the sequence {/,},_,. For example, he gave the following
extended Binet formula

a‘g(" . )
" ((ab)m> (@"+B"), (n>0).

The n x n r—circulant matrix, C,, associated with the numbers cg, ¢y, ...,c,_1 is of the form

Cjis jzi
Cij =
TCn+j—i J <t
that is
[} 1 € ot Cp2 Cp—|
rcp—1 o C1 T Cn—3 Cp—2
rcy—2 Ircp—1 €0 0 Cp—4  Cp-3
Cr =
ren rey  rcg - co cl
req rep res s rcp—1 co

For r = 1, the r—circulant matrix C, reduces to circulant matrix C , i.e.,

co ] Cy ot Cp-2 Cp—1
Cn—1 €0 C1 vt Cp—3 Cp2
Ch—2 Cp—1 €0 * Cp—d4 Cp-3
C=
) c3 ¢4 - o cq
€1 2 [ I €0

Circulant matrices, r—circulant matrices, and their versions have been studied in many papers. For example, in [20], Solak found some
bounds for the spectral norms of circulant matrices with the Fibonacci and Lucas number entries. Afterwards, Shen and Cen [16]
developed Solak’s results. Later, many researchers studied different types of these matrices. For more details, we refer the interested reader
to [1-3,6,8,9,12,15,17-19,21-23,25].

In [10], Kizilates and Tuglu defined the n x n geometric circulant matrix, Cy+, associated with the numbers cg,cy,...,c,—1 as

€0 C1 (&) o Cp—2 Cp—]

SCp—1 o 1 3 Cp2

2
$7Cp—2  SCh—] 40] o Cn—4 Cp-3
Cy =
"2y "3y ey - co cl
s7lep $2e, s"3es oo seuo co

They calculated bounds for the spectral norms of geometric circulant matrices with the generalized Fibonacci numbers and hyperharmonic
Fibonacci numbers. Same authors [11] also found the norms of geometric and symmetric geometric circulant matrices with the Tribonacci
numbers. In [13], Kome and Yazlik presented some bounds for the spectral norms of the r-circulant matrices with the bi—periodic Fibonacci
and Lucas numbers.

The purpose of this paper is to find some new upper and lower bounds for the spectral norms of the geometric circulant matrices with the
bi-periodic Fibonacci numbers and bi—periodic Lucas numbers, respectively.

Now we need the following definitions and lemmas to derive new bounds.

The Euclidean (Frobenius) norm of matrix A (A = (a[ J-) be any m x n matrix) is defined as

m n 5
Y ) Jaii|

i=1j=1

IAllg =

Let A¥ is conjugate transpose of the matrix A. Then the spectral norm of matrix A is defined as
All, = Ai (AHA).
IAll =" / max 2; (A%A)

The following inequality [7] holds:

1
—= lAllg <11All; < l|Allg (1.1)
\/ﬁ
Lemma 1.1 ( [7]). LetA = (a,-j) and B = (bij) be any m x n matrices and let A o B is the Hadamard product of A and B. Then

[AcBlly < [[All,[IBI], -
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Lemma 1.2 ([14]). Let A = (aij) and B = (bij) be any m x n matrices. Then

[AoBl, < ri(A)c1(B)

Zlau\ and ¢ ( :lg;g\/Zlsz!

Lemma 1.3 ([7]). LetA = (aij) and B = (bij) be any m x n matrices and let A ® B is the Kronecker product of A and B. Then

where

[A@Bll, = [|All2 1Bl -

2. Main Results

£0) 40 &)
Theorem 2.1. Let F = Cy+ ((%) * qo, (%) 2 Gy (%) 2 qn,1> be an n x n geometric circulant matrix where a and b are nonzero

positive real numbers and s € C. Then

(i) If |s| > 1, we have

2n—2
dn—19n |S| — 1\ gn-1qn
S e, <s :
b H HZ H < |S|271 b

(if) If |s| < 1, we have

slvab_ | 202 s b +2) Pl e (BP0 [0 e,
by/ab+4 Is|* = |52 (ab+2) + 1 sPe1 )RS b

£(0) &) E(n—1)
Proof. If we consider the definition of F = Cy ((%) T g0, (4) 7 qryen (8) 72 qn,1> , then we have the following matrix:

£O) [0} e En=1)

(5) 7 a0 (5) " @ ()@ o (5) 7
En £0) &) E(n-2)

s(8) 7 @t (5) 7 a0 (5) * @ B) 7 an2

F=

§(n-2) E(n-1) £(0) E(n=3)

SHT ae sET a (B a (57 ans
£ @ £3) £0)

SHE) e PG e G e e (5) 7

Thus we get the Euclidean norm of the matrix F as
n—1 n—1
a\ &) k|2 ra\&W)
IFIE =Y =0 (5) ad+ Lkl (5) a
k=0 b k=1 b

(i) If |s| > 1, from [24, Theorem 2.3], we obtain

n—1

||F\|E>Zn o (4" qﬁZ (5"
:",;(Z)

_ nQn—l‘]n
Y
So we have

9n—19n

1
—||F|lg >

dn—19n
<||F
o <,

that is
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Now, let us choose the matrices
q0 1 1 1
s q0 1 1 1
2
A=| s s q0 1 2.1
snfl Sn72 Sn73 s qo
and
£0) & £ §n=1)
(%) % 0 (5) e () 87
E(n-1) £(0) ) E(n-2)
() % -t (5) 7 a0 (5)7 @ (5) * a2
B= e ) PN o E) 22
(5) > q (5) > gn-1 (Z) > q0 b qn—-3
5.(1) £ C.(3) £(0)
a\ s a\ a)“z a)“z
(3) * @ (5) 2 a2 (§)* a3 (5) * 40

) n—1 ok |S|2n72_1
r1(A) = max g5+ S|t =8|y ———
(4) = max i+ P by P

and
n n—1
2 a\$k) 2 qn—149n
ci1(B)= max| Y |y Y (5) a=
Isj=n{ i3 =0 b b

By Lemma 1.2, we get

2n—2
qn—19n |S| —1 qn—149n
I < F, < s < )"

(if) If |s| < 1, then we have

||F\|,2§ ZZ_Z;)("—k) snik‘z (%)5(k>CI%+nik snik‘z (g)é(k)q%

k=1
50 2
n—1 a\-z
2 b 9k
:I’l|S| n Z (b) T
k=0 Is|

k k k
_ an‘s‘Zn nil az +nil ﬁ2 72n71 -1
blab+4) \ S \IslPab ) o\ |s]ab =\ Isl?
_anls] 2|S|2"+2—|s|2"(ab+2)—|s|212n+12,,,272 s — (—1)"
) :

b(ab+4 Is|* = |s]? (ab+2) + 1 Is]>+1

Therefore we obtain the following lower bound:

bab+4 Is|* = |s]? (ab+2)+1 Is|* +1

In the meantime, let the matrices A and B be given in (2.1) and (2.2) such that F = A o B. Then we have

Is|vab | 2|5 — |s*" (ab+2) — [s lon+ b2 s = (=1)"
-2 <|IFll,-

and

n
2
01(3):@%\/;%! =

Combining the above equations, we get the following inequality:

Vab | 2|s/PT2 = s (ab+2) — |s|? by + Lo s = (=1)" —1)gn
Is| Va Is| [sI™" (ab+2) = |s|" b+ lop—2 (I = (=1) <|IFl, < (n=1)gn-19n

by/ab+4 Is|* = |s? (ab+2)+1 Is| +1

b
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) §2)

Theorem 2.2. Let L= Cy (%) 2 107(%) 2

l,

real numbers and s € C. Then

(i) If |s| > 1, we have

S(®F

10)
l,,,l) be an n x n geometric circulant matrix where a and b are nonzero positive

li—1ly+2a

‘2n_1

bi—1ly+2a

(if) If |s| < 1, we have

|s
< |[L|], <
"2, < <|s|21

)

b

|s| v ab

205> — |s*" (ab +2) — |s|* b + b2

b Is|* = |s]? (ab+2) +1

Proof. Firstly, we have the following matrix:

¢) £0Q)

2n n
s = (-1 n
2(" ( ))<||L2< " hyerby +20)

\s\z—i-l

() lo () * i (5) * & () *
& 0] 0] 1)
s(5) 7 b () * lo () = h §) 7 2
L=
1) & 50} En-2)
SE) T 2 s(5) Tl (5) 7 ho )7 s
N e £ o)
STHE) T T (E) e ST (E) 7 b (3) " o
Thus we get the Euclidean norm of the matrix L as
n—1 n—1
2 a 5<k+1> 2 —k 2 a 5(k+1> 2
121 = X (=4 (%) i+ LA G R
(i) If |s| > 1, from [13, Theorem 2.1], we get
n—1 n—1
2 a §<k+]> 2 a §<k+]> 2
Il = Y -0 () g+ Lk(5) 8
n—1
a §(k+l) 2
=n¥ (3) i
k=0
n
:Z(l,,,ll,,—i-Za).
So we obtain
1 L1l +2a
L > g e T
7 Ille >/
that is
Li—1l,+2a
— < ||L|}5.
222 <,
In the meantime, let us choose the matrices
1 1 e 11
s 1 1 1
2
sn;l Sn;2 sn;S s 1
and
HO) £2) £06) §n)
(5) 7 (5)*h (5L () *
&(n) 40 £ E(n=1)
(5) 2t (5) 7 (§) 7@ (5) 7 b
D= (2.4)
£03) &(n) £() &(n-2)
(5) 2L ()2t (5)7 b (5) = hs
£ ) tu &)
(5) "2 (3
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such that L = C o D. Therefore we have

and

[l +2a
Ve

n
2
C‘(D)_@é’iﬂ/izl|d’1’ =

By Lemma 1.2, we obtain

2n
both 20y, < (B (b2
b Is]* =1 b

(ii) If |s| < 1, then we get

snik‘z (Z)g(kH)llerZZ;k s"*"lz (g>r§(k+1)lz

n—1
LIz > Y (n—k)
k=0

b k
E(k+1) 2
n—1 (g) 7]
2 k
=nls|™ Z . 3
k=0 Is|

k k k
2n [ n—1 2 n—1 2 n—1
= +) +2Y | —=
b = \Is*ab = \s*ab o \ sl

_ans® (205" — |5 (@b +2) s bt b |5~ (=1)"
b Is|* = |s|? (ab+2) +1 s> +1

Thus we get the following inequality:

|s| Vb 2\s\2"+2—\s\zn(ab+2)—|S|212n+12n—2+2 |5|2n_(_1)n <L
b Is|* = |5 (ab+2) + 1 s +1 B

In the meantime, let the matrices C and D be given in (2.3) and (2.4) such that L = C o D. Then we have

and

b

”il (a)&(kﬂ)l]%

[l—1ln+2a
—

Combining the above equations, we have the following inequality:

k=0

51V | 2522 — s (@b +2) |5l ban +hona _ [ 18 = (=1)" z
4 2 +2 2 < ”LHZ </ (lnflln'i'za)'
b Is|" —|s|” (ab+2)+1 s]=+1 b
O

Corollary 2.3. Let a and b be nonzero positive real numbers and the matrices F and L be as in Theorem 2.1 and Theorem 2.2, respectively.

(i) If|s| > 1, then we have

N _
IFoLll, < |27|\/(|s|2" 2 1) (15" = 1) 10 11+ 200,
b(|s| _1)

(&) If |s| < 1, then we have

1
”F OLHZ < Z \/}’l (I’l - 1)%—1% (lnflln + 2“)'
Proof. The proof follows from Lemma 1.1, Theorem 2.1 and Theorem 2.2. O

Corollary 2.4. Let a and b be nonzero positive real numbers and the matrices F and L be as in Theorem 2.1 and Theorem 2.2, respectively.



108

Universal Journal of Mathematics and Applications

(i) If|s| > 1, then we have

1
”F®L”2 Z Z\/qnfl%l (lnflln+2a)

and

S _
1P Ll < e [ 1) (157 1) g 110+ 20)
b(m _1)

(if) If|s| <1, then we have

2 242 | 20 2 2 m gy 2
||F®L||22b“‘” <2s| s/ (ab+2) — Is lzn+lzn2> _4<|s| ( 1))

Vab+4 Is|* = |s]* (@b +2) + 1 s +1
and
1
”F®L”2 < Z\/n (n=1)gp—1gn (ln—11x + 2a).

Proof. The proof follows from Lemma 1.3, Theorem 2.1 and Theorem 2.2. O
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