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1. INTRODUCTION
Carbon Nanotubes (CNTs) have a potential about being a 
new functional material for engineering problems which 
could not be solved with traditional materials. With their 
superior physical properties, CNTs are an important candi-
date for engineering application in medical industry. Delive-
ring a drug to tissue or cell could be achieved with torsional 
movement of CNTs. An external effect like magnetic field 
can rotate the nanotube and release the medicine. Torsional 
modeling of CNTs in such applications has great importan-
ce.

CNTs can be modelled with continuum mechanic theo-
ries like nonlocal elasticity, strain gradient, modified couple 
stress, doublet mechanics or peridynamics theories. As a 
second approach, discrete models like molecular dynamics 
and lattice dynamics can be used. But, the classical continu-
um mechanics could not consider the size effect. Especially 
in nano dimension, size dependency gains much importan-
ce because of atomic interactions. Differently from classical 
continuum mechanics theory, Nonlocal Elasticity [1,2] con-
siders size dependencies.  

Peddieson et al. [3] firstly proposed the nonlocal Euler-Ber-
noulli beam model for CNTs. Wave propagation analysis in 
CNTs were carried out with using nonlocal models by [4–6]. 
Nonlocal constitutive relations of Eringen was reformulated 
by several researchers and various beam theories were ob-
tained in [7–9].

CNTs generally have modeled as an elastic structure but in 
reality viscous characteristics of CNTs have been seen. For 
more realistic approach, CNTs must be assumed as a viscoe-
lastic structure. In literature search, studies about viscoelas-
tic CNT modeling can be found but in majority of papers an 
elastic structure assumption have been considered. Ansari 
and Ajori [10] carried out the MD simulation of double-wal-
led Carbon and Boron-Nitride hybrid nanotubes. Static and 
dynamic analysis of nanorods [11], microbeams [12] and 
functionally graded Rayleigh beams [13] were investigated 
by researchers. Firstly Chang and Lee [14] modeled the non-
local model for viscoelastic CNTs with thermal and elastic 
foundation effects. Lei et al. [15] analyzed the dynamic be-
havior of viscoelastic Kelvin-Voigt CNTs with nonlocal Ti-
moshenko beam model. Avcar [16] studied the free vibrati-
on of axially loaded beams resting on Pasternak Foundation. 
Karlicic et al. [17] investigated axial magnetic field effect 
on dynamics of the nanocomposites which were consist of 
multiple viscoelastic nanotubes and polymer as a matrix 
material. Arani et al. [18] studied the dynamics of fluid con-
veying viscoelastic CNTs with two dimensional magnetic 
field effect. Farokhi and Gayesh [19] investigated the shear 
deformable viscoelastic microbeams with modified couple 
stress theory. Cajic et al. [20] proposed a fractional viscoe-
lastic model for CNT with attached particle problem. Ansari 
et al. [21] used the fractional order viscoelastic model with 
nonlocal Timoshenko beam model for free vibration of na-
notubes. Zhang et al. [22] made the free vibration analysis of 
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viscoelastic CNT embedded with viscoelastic media. Zhen 
and Zou [23] investigated the thermal and magnetic field 
effect on wave propagation in fluid conveying viscoelastic 
CNTs with using nonlocal strain gradient theory. Attia and 
Mahmoud [24]  modeled the surface effect and nonlocality 
in viscoelastic nanobeams with modified couple stress and 
nonlocal elasticity theory. Cajic et al. [25] studied the free 
damped vibration of fractional order viscoelastic CNTs em-
bedded in viscoelastic media with nonlocal elasticity model. 
Wang and Shen [26] used the nonlocal strain gradient the-
ory in nonlinear vibration analysis of axially moving viscoe-
lastic nanobeam. Naghinejad and Ovesy [27] used the finite 
element formulation and nonlocal integral elasticity in free 
vibration analysis of viscoelastic CNTs. Martin [28] propo-
sed a nonlocal fractional Zener model for dynamic analysis 
of viscoelastic nanotubes. Pavlovic et al. [29] studied the sta-
bility of viscoelastic CNTs with dynamic axial loadings using 
higher order nonlocal strain gradient theory. Farajpour et al. 
[30] investigated the effects of viscoelasticity and geometri-
cal imperfections on the nonlocal coupled linear and nonli-
near mechanics of CNTs.

Torsional static and dynamic analysis of CNTs have been in-
vestigated in several papers [31,32]. But, in all these studies 
viscous characteristic of structure has not been considered. 
In this study, torsional viscoelastic CNT model is presented 
with using two different material assumption: Maxwell and 
Kelvin-Voigt. Nonlocal elasticity is used in obtaining the go-
verning equation of motion and boundary conditions. Effect 
of viscoelasticity parameter and nonlocal parameter to the 
torsional dynamics of CNTs have been investigated. Accor-
ding to author’s best literature knowledge, present topic has 
not been studied yet.

2. ANALYSIS
A viscoelastic CNT of length L and diameter d is considered 
in clamped-clamped and clamped-free boundary conditions 
(Figure 1). Governing equation of motion for torsional be-
havior of hollow rod can be written as  [33]torsional statics 
and dynamics of Carbon Nanotubes (CNTs:
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where R1 and R2 are the inner and outer radius of CNT, res-

pectively.

2.1. Nonlocal Elasticity Theory
The general differential form of the nonlocal constitute rela-
tion can be given as [1,2]:
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where τkl is the nonlocal stress tensor, εrr is the sum of nor-
mal strains rr 11 22 33f f f f= + +^ h , δkl is the kronecker delta, εkl 
is the strain tensor, υ is the Poisson’s ratio, μ=(e0a)2 is called 
the nonlocal parameter, a is an internal characteristic length 
and e0 is a constant. e0 is very important for the validity of 
nonlocal models. Eringen [1,2] determined this parameter 
with matching the dispersion curves based on the atomic 
models.

For the torsional deformation of uniform CNT, Eq. (3) can 
be written in one dimensional form:

 
x

G1 2

22
n x c- =a k   (4)

where γ is the shear strain, τ is the shear stress of CNT. The 
shear stress and torque resultants are expressed as:
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By using the Eqs. (4-5), the constitute relation can be obta-
ined as:
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If Eq. (6b) is inserted into Eq. (1) one obtains:
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Eq. (7) is the nonlocal governing equation of motion for the 
torsional deformation of elastic CNT. If the nonlocal para-
meter is chosen as zero (n=0) in Eq. (7), the classical conti-
nuum mechanics equation is obtained. In the present study 
two different viscoelastic material type have been used in 
the analysis: Maxwell and Kelvin Voigt materials.

2.2. Maxwell Type Viscoelastic Material
Maxwell viscoelasticity model consist of serially connected 
purely viscous damper and elastic spring (Figure 2a). The 
stress-strain relation according to Maxwell viscoelastic ma-
terial can be interpreted as [34]: 
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Figure 1. Viscoelastic CNTs: a)C-C and b)C-F



92  European Mechanical Science (2020), 4(3): 90-95 
 doi: https://doi.org/10.26701/ems.669495

Torsional Vibration Analysis of Carbon Nanotubes Using Maxwell and Kelvin-Voigt Type Viscoelastic Material Models

Figure 2. Modeling of Viscoelastic Materials: a) Maxwell and b) Kelvin-Vo-
igt

where η is the dimensionless viscoelastic parameter. If Eq. 
(8) puts into nonlocal shear stress and torque relations, tor-
sional governing equation of motion for the Maxwell visco-
elastic CNT can be obtained as:
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Angular deformation of the Maxwell viscoelastic CNT can 
be assumed as below:

,x t x e t
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where φ1(x) is the amplitude of torsional displacement and 
λ is the characteristic parameter. If Eq. (9) is reorganized 
according to dimensionless parameter x L

x=rc m assumption, 
governing equation of motion turns into the non-dimen-
sional form as below: 
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where Ω is the coefficient of characteristic parameter de-
fined as:
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If Eq. (11) is reorganized, one obtains:
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Solution of the differential equation (13) can be expressed 
as:
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where C1 and C2 are the integration constants which can be 
defined using boundary conditions. In the present study, 
clamped-clamped (C-C) and clamped-free (C-F) boundary 
conditions are considered. If the elastic CNT boundary con-
ditions in [33]torsional statics and dynamics of Carbon Na-
notubes (CNTs reformulated according to Maxwell viscoe-
lastic material, boundary conditions for the present problem 
are interpreted as:

( )
x
x L L

C C
0 0 0

0
"

"

i

i

= =
= =

-
] g 3   (15a) 

x

x GI x t I
x t

I
x t

C F
0 0 0

1 0P P P

2

2

3

3

4
"

" 2 2
2

2 2
2

2 2
2

i

h
i
nt

i
nht

i
= =

= - - = -r

] g
4    (15b)

If the boundary conditions in Eqs. (15a) and (15b) are writ-
ten in matrix form, homogenous system of linear equations 
could be solved for the characteristic parameter (λ) which is 
the eigen-value of present problem. Its imaginary part can 
be defined as the non-dimensional damping (NDD) and 
real part can be defined as the non-dimensional frequency 
(NDF) of viscoelastic CNT, respectively. Integration con-
stants (C1 and C2) which are eigen-vector of present prob-
lem, can be determined if the linear systems of equations 
are solved for the corresponding characteristic parameter.

2.3. Kelvin-Voigt Type Viscoelastic Material
Kelvin-Voigt viscoelasticity consist of parallel connected 
purely viscous damper and elastic spring (Fig. (2b)). The 
stress-strain relation according to Kelvin-Voigt viscoelastic 
material can be interpreted as [34]:
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If Eq. (16) inserted into nonlocal shear stress and torque re-
lations, torsional governing equation of motion for the Kel-
vin-Voigt viscoelastic CNT can be obtained as:
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If Eq. (17) is reorganized using dimensionless parameter  
and angular deformation assumption in Eq. (10), governing 
equation of motion turns into the non-dimensional form as 
below: 
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After reorganization of Eq. (18), one obtains:
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Solution of the differential equation in Eq. (19) can be exp-
ressed as:
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where C3 and C4 are the integration constants which should 
be defined for boundary conditions. Clamped-clamped (C-
C) and clamped-free (C-F) boundary conditions are refor-
mulated according to Kelvin-Voigt viscoelastic material as 
below:
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If the boundary conditions in Eq. (22a) and (22b) are writ-
ten in matrix form, homogenous systems of linear equations 
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could be solved for the characteristic parameter (λ) which 
is the eigen-value of present problem. Integration constants 
which are eigen-vector of present problem, can be determi-
ned if the matrix form is solved for the obtained characte-
ristic parameter. Damping ratio could be used as a characte-
ristic value for viscoelastic structure and can be formulated 
using NDD and NDF values as below:

NDF NDD
NDD
2 2p =
+

  (23)

3. NUMERICAL RESULTS AND DISCUSSION
In this section, torsional vibration analysis of viscoelastic 
CNTs carried out for various values of nonlocal parameter, 
viscoelasticity parameter and damping ratio. Validation of 
present torsional nonlocal elastic rod model has been inves-
tigated by present author in [33]torsional statics and dyna-
mics of Carbon Nanotubes (CNTs with comparing the tor-
sional one-dimensional Lattice Dynamics wave propagation 
results.

In Figs. (3) and (4), nonlocal effect on NDF and NDD of 
viscoelastic carbon nanotube in C-C and C-F boundary con-
ditions can be seen, respectively. Maxwell material damping 
characteristics is not affected by nonlocality but stiffness of 
structure reduces and frequency decreases with nonlocal 
parameter. In Kelvin-Voigt material assumption, damping is 
decreasing with nonlocal effect and frequency firstly incre-
ases and then decreases with nonlocal parameter effect. Be-
cause of the fully clamped boundary condition on both ends, 
stiffness of nanotube slightly increases and then increasing 
nonlocal parameter shows softening effect on structure.

Figure 3. Nonlocal effect on NDF and NDD of C-C nanotube (η=0.5)

Figure 4. Nonlocal effect on NDF and NDD of C-F nanotube (η=0.5)

Figure 5. Viscoelastic parameter effect on NDF and NDD of C-C nanotube 
(µ=1nm2)

Dimensionles viscoelastic parameter effect on dynamics of 
viscoelastic nanotube is shown in Figs. (5) and (6). In Kel-
vin-Voigt material assumption, frequency decreases with 
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enhancing viscoelastic parameter. Damping of Kelvin-Voi-
gt material increases in linear variation characteristics until 
the frequency drops to zero. In torsional buckling situation, 
because structural stability loss occurs and no waves pro-
pagates through structure, damping increases quadratical-
ly. Maxwell material shows different behaviour due to se-
rial connection of viscous damper and spring in modeling. 
Frequency starts from zero and increases with viscoelastic 
parameter until the elastic structure modelling frequency.

Damping of nanotube firstly increases when the frequency 
is zero. Then with increasing viscoelastic parameter, frequ-
ency enhances and damping reduces at this time.

In Fig. (7), variation of damping ratio with  viscoelastic pa-
rameter is depicted. Maxwell material’s damping ratio dec-
reases and reversely, Kelvin-Voigt material’s damping ratio 
increases with enhancing viscoelastic parameter. Nonlocal 
effect enhances the damping ratio in Maxwell material and 
reduces in Kelvin-Voigt material case.

4. CONCLUSION
Present study deals with the torsional dynamic analysis of 
viscoelastic carbon nanotubes which have been considered 
as Maxwell and Kelvin-Voigt type viscoelasticity. Governing 
equation of motion and boundary conditions are obtained 
with Nonlocal Elasticity Theory. Analytical solution of go-
verning differential equation of motion solved for clam-
ped-clamped and clamped-free boundary cases. Viscoelas-
tic and nonlocal parameters effect on torsional dynamics 
of viscoelastic CNT are investigated. Results of the present 
study can be concluded as:

• Maxwell and Kelvin-Voigt type viscoelastic material 
assumptions have reverse characteristics due to serial 
or parallel connection modeling.

• Viscoelastic parameter enhances the elasticity of 
structure and reduces the damping characteristics in 
Maxwell material.

• Frequency and damping of Kelvin-Voigt material 
decreases and increases with respect to viscoelasticity 
parameter.

• Nonlocality shows a softening effect on Kelvin-Voigt 
material and strengthen effect on Maxwell material.

Present results could be useful for modeling torsional nano 
devices and products.
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