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ASYMPTOTIC BEHAVIOUR OF RESONANCE EIGENVALUES
OF THE SCHRODINGER OPERATOR WITH A MATRIX
POTENTIAL

SEDEF KARAKILIC, SETENAY AKDUMAN, AND DIDEM COSKAN

ABSTRACT. We will discuss the asymptotic behaviour of the eigenvalues of a
Schrodinger operator with a matrix potential defined by the Neumann bound-
ary condition in L (F), where F is a d-dimensional rectangle and the potential
is an m X m matrix with m > 2, d > 2, when the eigenvalues belong to the
resonance domain, roughly speaking they lie near the planes of diffraction.

1. INTRODUCTION

In this paper, we consider the Schrodinger operator with a matrix potential V()
defined by the differential expression

Lé=-A¢+Vo (1)
and the Neumann boundary condition
¢
it = 2
on ‘QF 0, ( )

in LY (F) where F is the d dimensional rectangle F' = [0, a1] X [0, az2] X ... X [0, aq],
OF is the boundary of F', m > 2,d > 2, % denotes differentiation along the outward
normal of the boundary 0F, A is a diagonal m x m matrix whose diagonal elements
are the scalar Laplace operators A = %;—i-%;—&—. ) '+%i2 ,x = (x1,22,...,24) €
R4,V is a real valued symmetric matrix V(z) = (v;(2)),4,5 = 1,2,...,m,v;;(z) €
Ly(F), that is, VT (z) = V(x).

We denote the operator defined by (1)-(2) by L(V), the eigenvalues and the
corresponding eigenfunctions of L(V') by Ay and ¥y, respectively.

The eigenvalues of the operator L(0) which is defined by the differential ex-

pression (1) when V(z) = 0 and the boundary condition (2) are |y|?, and the
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corresponding eigenspaces are E., = span{®. 1(z), @ 2(x),..., 2, m(z)}, where
T+0
o= (N e
r+o MT Mo ngm
- = T e Ry e ZY U0 k=1,2,....d),
= AL M e 2t U o) )
®,i(x) = (0,...,0,uy(x),0,...,0),5=1,2,...,m,

. : _ nim N . ngmw
and the non-zero component of @, ;(z) is u,(z) = cos"Lra1c0s"2 T3 - - - cos i xy,

which stands in the jth component. In particular, ug(z) = 1 when v = (0,0,...,0).

0

It can be easily calculated that the norm of u, (), v € %, in Ly(F) is \/‘l‘lg—fl),

where p(F') is the measure of the d-dimensional parallelepiped F', |A,| is the number

of vectors in A, = {a:(al,az,...,ad)eg: lax| = [, kzl,?,...,d}, g =
{(%,%,%) ng €7, k=1,2,...,d}.

From now on, {.,.) and (.,.) will denote the inner products in L3*(F') and Ly (F),
respectively.
Since {uv(x)}veﬂ is a complete system in Lo(F'), for any g(x) in Lo(F) we
2
have

@) = 3 @) )

In our study, it is convenient to use the equivalent decomposition (see [9])

q(x) = Z Gy uy (), (4)

where ¢, = ﬁ(q(m), u~(x)) for the sake of simplicity. That is, the decomposition
and are equivalent for any d > 2. Thus, according to , each matrix element
v;j(x) € La(F) of the matrix V(z) can be written in its Fourier series expansion

vig(@) = Y vijyuy (), (5)

e
vijy = L (v, uy) = oy [ vi(@)uy (2)d and vijo = e [ vi(@)da i, j =
1,2,....,m.

We assume that [ > % +d+ 3 and the Fourier coefficients v;;, of v;;(x)
satisfy

D o1+ ) < oo, (6)
vET

for each 7,5 = 1,2,...,m. Let p be a large parameter, p > 1 and « be a positive
number with 0 < a < ﬁ then for ['(p*) ={y€ 5 :0< |y[ <p*}and p=1—d
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the condition (6] implies that

v (x Z VijyU~ (x) + O(p~P). (7)

Y€ (p™)

Here O(p~P%) is a function in Lo(F') with norm of order p~P*. Furthermore, by
@, we have

Mij =Y |vijy| < 00, (8)

r
€T

foralli,j=1,2,...,m
Notice that, if a function g(z) is sufficiently smooth(q(z) € W4(F)) and the

support of Vg(z) = ((%?1, aangﬂ ceey (%qd) is contained in the interior of the domain

F, then ¢(z) satisfies condition (6] (See [7]). There is also another class of functions
q(z), such that g(x) € Wi(F),

which is periodic with respect to a lattice
Q = {(miai,meas,...,mqaq) :mp € Z, k=1,2,...,d}

and thus it also satisfies condition @

As in [I7]-[22], we divide R? into two domains: Resonance and Non-resonance
domains. In order to define these domains, let us introduce the following sets:

Let 0 < a< ﬁlm, a,=3%a, k=1,2,...,d -1 and

Vi(p™) = {zeR': |[aP~|z+b]*| <p™}
Eip™p) = |J Velo™)
beT (pp™)
U(p™,p) = R\ Ei(p™,p)

k
Ex(p™,p) = U (ﬂ Vi(p“’“)>

Y1, V25 YR EL(PP*) \i=1

where b # 0, v, # 0,4 =1,2,...,k and the intersection ﬂ V,,(p**) in Ej is taken

OVer Yq,%s; - - -,V Which are linearly independent Vectors ‘and the length of 7, is not
greater than the length of the other vector in I' [ v, R. The set U(p**, p) is said to be
a non-resonance domain, and the eigenvalue |y|? is called a non-resonance eigenvalue
if y € U(p**, p). The domains V4(p™1), for b € I'(pp®) are called resonance domains
and the eigenvalue |y|? is a resonance eigenvalue if v € V4 (p™).
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As noted in [20]-]21], the domain V;(p®t) \ E», called a single resonance domain,
has asymptotically full measure on V;(p®), that is,

1 (Va(p®) \ E2) N B(q))
1 (Va(pr) N B(q))

where B(p) = {x €R”: |z|= p}, if

— 1, as p — o0,

200 —ag + (d+3)a< 1, as>2a, (9)

hold. Since 0 < a < ﬁ, the conditions in @ hold.

In most cases, it is important to know the asymptotic behavior of the eigenvalues
of the Schrodinger operator L(V'). In this paper, [3] and [§], we construct the
asymptotic formulas in the high energy region for eigenvalues of the operator L(V).

In [3], we obtain the asymptotic formulas of arbitrary order for the eigenvalue
of L(V) corresponding to the non-resonance eigenvalues |y|?> of L(0) in arbitrary
dimension d > 2.

In [8], we constructed the high energy asymptotics of arbitrary order for the
eigenvalue of L(V) corresponding to resonance eigenvalue |y|? when v belongs to
the special single resonance domains V5(p®*) \ Ea, where § is from {ej,ea,...,eq}

and61=(all,O,...,O),...,ed:(O,...,i),dzz

In this paper, we study the case for which |y|? is a resonance eigenvalue. More
k

precisely, in Theorem ([)) and (2) of Section(2), we assume that v € (] V4, (p**))\
i=1

Eyi1, k=1,2,...,d—1and v ¢ V,, (p*) for k = 1,2,...,d and prove that the
corresponding eigenvalue of L(V) is close to the sum of the eigenvalue of the matrix
Vo and the eigenvalue of the matrix C = C(7,v4,...,7;) (See )

In Section(3), this time we assume that v € V5(p™)\ B2, § € 5 \{e1, €2,...,ea},
that is, 7 is in a single resonance domain and we prove the main result Theorem
(7) which gives a connection between the eigenvalues of L(V') corresponding to a
single resonance domain and the eigenvalues of the Sturm-Liouville operators.

Note that, the case 6 = ¢;, © = 1,2,...,d, was considered in [§], by a different
but simpler method and better formulas were obtained.

2. ASYMPTOTIC FORMULAS FOR THE EIGENVALUES IN THE RESONANCE
DoMAIN

We assume that v ¢ V., (p**) for k = 1,2,...,d, and |y|? is a resonance eigen-
k

value of the operator L(0), that is, v € ([ V5, (p™*)) \ Exq1, k = 1,2,...,d — 1,
a7 1

=
such that | v |~ p where | v |~ p means that | 7 | and p are asymptotically equal,
that is, there exist ¢y, ¢y satisfying the inequality c1p <| v |[< cap, ¢;, 1 =1,2,3,. ..
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are positive real constants which do not depend on p. To obtain the asymptotic for-
mulas for the eigenvalues of L(V) corresponding to |y|? we use the binding formula
(see (9) in [3])

Ay = Y)W, @y ) = (TN, VP, ). (10)
Now, we decompose V' (x)®., ;(x) with respect to the basis {‘bw,ﬂ-(x)}w,eg)izl,gw,m.
By definition of ®, ;(z), it is obvious that
V(2)®y,5(z) = (vij(@)uy (), . . ., vmj(z)uy (2)). (11)
Substituting the decomposition (7)) of v;(z) in (LI)), we get
V(@)@ (2) = (Y vgtig(@)uy (@), D Vimjasti(@)us () +0(p7P%).
Y/€L(p) /€L (p)

Since 7 does not belong to the domains V,, (p®1), for each k = 1,2, ...d, we may
use the following equation

Yo vigptg(@)uy (@) = Y ity ()
€L (p) €L (p)
which is proved in [9] (see equation (18) in [9]), and obtain
V(z)®y;(x) = ( Z V1 Uy () - - Z Umjryrty—y (7)) + O(p~P%)

vl (p>) vl (p*)

Yo > 0 v ®yani(@) + O, (12)
i=1 el (p*)
Substituting into , we obtain
<UpN, VO, ; >
(Av=17)

m

<Vv ,(I) —y1i > —pa
Z Z vij»y/(AN_—"yﬂTé)-l-O(p pey (13)
i=1 e (pe) N=

<VUpn,®,;>=

for every vector v € g, satisfying the condition

1
[ A= 7 Pl 5o

Letting p; = [p%l], that is, p; is the integer part of p—;l, we define the following
sets
k 1.
Bk(’717727 e J’ch) = {b b= Zniﬁ}/ivni € 7, |b| < §p§ak+1}7
i=1

Bk(ﬁ)/) = 7+ Bk(717727' N ’Vk) = {7+ b : b € Bk(717723 e a’)/k)},
Bi(v,p1) = Bi(v) + L(p1p”).
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Let h,, 7 = 1,2,...,b; denote the vectors of By(7,p1), by the number of the
vectors in By (y,p1). By its definition, it can easily be obtained that by = O(p%?’da),
since ay = 3¥a, 2 < k < d. We define the mby, x mby, matrix C = C(v,71,---,7%)
by

9 -
‘hl‘ [_ ‘/0 Vhlth e Vhlfhbk
2
Vhomry B2l T=Vo -+ Vi,
C = : , (14)
2
Vhbk*hl Vvhb,c —hso to |hbk| I-v
where Vj,__p,., 7,§ = 1,2,...,bg are the m X m matrices defined by
Vllh,—he  V12h,—he *°°  Vlmh,—he
V21h, —he  V22h,—he *°°  V2mh,—he
‘/h,-—hg = . (15)
UmlhT—hg 'Um2h7—h§ T Ummh.r—hg

Writing equation for all h, € Br(y,p1), 7= 1,2,...;bg and j = 1,2,...,m,
we get

(AN - |h7—|2) < lIjNaq)hTJ' >= Z Z Vij~yr < \I/N, ‘I)hﬂ__»y/ﬂ' > +O(p7pa). (16)

i=1y/el(p*)

Similar system of equations for quasi-periodic boundary condition was investigated
in [19], [2I] and [22]. More recently, in [22], Lemma 2.2.1. states that for v €

k
(vﬂlv’h(pak)) \ Ek+1a h, € Bk(’%pl) and YY1 Y2005 Vs € P(pa)v if hy — 0l ¢
i=
k(7,p1) then
1 o
e L e R N e k(A (17)

for s=0,1,2,...,p1 — L.
Thus, if an eigenvalue Ay of L(V) satisfies

1 (a3
A = Pl < 5o, (15)
then by and , we have
1

Ay = [he =91 =71 = =P > ™ (19)

Now, we prove that if holds then
O(p™"*) = Z Z Vigyr < YN, Py —ryri > (20)

i=1  41Er(p®)

hr—y1¢ B (v,p1)
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for any j = 1,2,...,m. Here we remark that v/ # 0. If it were the case, then we
would have from h, — v/ ¢ By(~,p1) that h, ¢ Bg(v,p1) which is a contradiction.
So, to prove |. , we argue as Theorem 2.2.2 (a) of [22]: Since Ay satisfies the
inequality (1 y ([9) (for s = 0) we have | Ay— | by — 7 [?|> %p™++1. Using
this, in the equatlon 13)) instead of v we write h, — y/ to get

m

< Uy, Py, i1 > o
<UN, Pp,yrj >= E : E Vijy, _ L ﬂ/_ o 22 +O0(p™").  (21)
(An—|hr =1 ?)
= 1“/1€F(P )

Substituting this equation (21)) into the right hand side of , we obtain
Z Vijyr < YN, Pp s > =

Y/ET (p™)
hr —v1¢ By (v,p1)

Vijyr
Z An— | hy — |2 Z Z Vigig, < YN, Phy—yreyyin >

Y/E€L(p™) v1EL(pY)
hr =1 B (v,p1) hr V¢ By (v,p1)

+O(p™P%).

In this manner, iterating p; times, we get

m

E Vijyr < YN, Pp, s >= E E
~y1ET (p®) 11,82,00000p =1 ¥¥1572507py EL(PY)
hr—v/€By(v,p1) hr —v/€ B (v,p1)
VijyViginy -+ - Vigyipy —17,, < Uy, (th*W*’h*“'*'Yplﬂlm >
2 2 2
(AN—=T[hr =y P)YAN=[hr =y =71 [P) o (AN= [ he = =71 = =7, 1 P)
+0(p™"").

Taking norm of both sides of the last equality, using , the relation and the
fact that pyagy1 > pras > pa, we obtain

| > Vijyr < VN, Ppp—nri >|= O(p™P?),
HIET(pe)
hr—v/€B(v,p1)

which implies . Therefore, the equation becomes

(An — by | ) < Un, Py, ; >= Z Z Vijyr < UN, Pp i > +0(p 7).

Y/ET(p)
hr —y/€By (v,p1)

(22)
Since h; — ! € By(v,p1), using the notation he = h, — 7/, the decomposition
(22) can be written as

m

(AN - |h7—‘2) <VUpn,®p ; >= Z Z Vijh, —he < \I’N7‘1)}L§,i > +O(p7pa).
i=1 h,—heeT(p)

(23)
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Isolating the terms where h; — he = 0 in (23)), we get

(An — [h: ) < Uy, @p ;> = Z'Uijo <UpN,Pp, ;i >

i=1

m

i=1 hr—he€0(p®)
hr —hg#0

+ O(p™").

493

(24)

Writing the equation forall j =1,2,...,m and for any 7 = 1,2,...,0bg, ,

we get the system of equations

by
[(AN - |h‘T|2)I - %]A(N, hT) = Z ‘/}LT—}LgA(N7 h’é) + O(p—poz), (25)
P
where I is an m x m identity matrix, Vj _j, is given by ,
O(p™) = (0(p™),...,0(p™"))
is an m x 1 vector and A(N, h¢) is the m x 1 vector
A(N7 hE) = (< \I]Ny (I)hg,l >, < \I/Na (I)hg,Z >, < \IINa (I)hg,m >) (26)
for any ¢ =1,2,...,bg. Letting Ay, = Ay — |h.|?, we have
Al —Vo  —Vu o cor =Vh, o
e dwal T o —vps [ AW ] T 06
P bt AN, By) O(p)
_Vhbk*hl _Vhbk*hz e )‘N,ka - VO A(N’ hbk) O(p*poz)’
(27)
We may write the system as
[ANI — CJA(N, hy,ha, ... h,) = O(p~P), (28)
where [ is an mby x mby, identity matrix, C' is given by , A(N,hy,ha,... hy,)
is the mb; x 1 vector
A(N,hy,ha, ..., hy, ) = (A(N,h1), A(N, hs),..., A(N, h,)) (29)
and the right side of the system is the mby x 1 vector whose norm is
|0(p™ ") = O(Vbkp™). (30)

Theorem 1. Let | v |? be a resonance eigenvalue of the operator L(0), that is,

k
ye (N V4, (p™)\ Exgr, k=1,2,...,d—1 where | v |~ p, and Ax an eigenvalue
1

1=
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of the operator L(V') for which holds and its corresponding eigenfunction ¥y
satisfies
|< (I)%j, Uy >|> C4pica. (31)
Then there exists an eigenvalue n4(v), 1 < s < mby of the matriz C' such that
Ay =n,(7) + O(p~ 7730,
Proof. Since is satisfied, holds. Then multiplying both sides of the equa-
tion by [AnT — C]71, then taking norm of both sides and by , we get
AN, b, oy b )| < ANT = €70 O(/bop™). (32)

Using the fact that 7 is one of hy, ha, ..., h; (See definition of By (v, p1)) and hence
by and , we obtain

csp~°* < |A(N, hi, ha, ... hy)| <|| [ANT — C) 71 || V/breop P2

Since [AnI—C]~! is symmetric matrix with the eigenvalues ﬁ

W),s:l,...,mbk,

we have

_1
max Ay —0,(0)|7! = [ANT = CI 71 [|> ercg by 2 p7 o,

5:1,.4.,mbk
where by, = O(p3"®), thus
min ‘ AN - 775(% )‘Z) ‘S Cgp—(p—C—%Sd)a’
s=1,2,...,mby,
and
d
An = 1,07, A;) + O(p~Pme= 3D
O

Theorem 2. Let |y|? be a resonance eigenvalue of the operator L(0), that is, v €
k

(N V5, (%) \ Erg1, k=1,2,...,d— 1 where |y| ~ p, n,(7) an eigenvalue of the

i=1

matriz C such that |ny(v) — |7|?| < £p**. Then there is an eigenvalue A of the
operator L(V') satisfying

Ay = 1,(7) + O(p Pt i3tat sy, (33)

Proof. By the general perturbation theory, there is an eigenvalue A 5 of the operator
L(V) such that [Ayx — |y[?| < $p*** holds. Thus one can use the system and
we prove the theorem for this eigenvalue Ay:

Let n,, s =1,2,...,mb; be an eigenvalue of the matrix C' and
0, = (01,0%,...,0% )b, x1 the corresponding normalized eigenvector, where
07 = (9;1,9§2, ey 0T ) mx1, T =1,2,...,br. Multiplying the equation by 0,
since C' is symmetric (see and (15)), we get

‘AN - nsHA(thlthv' . "hbk) : 95| = |O(p_pa) : 6S|' (34)
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By using b, = O(p%?’do‘), and the Cauchy Schwartz Inequality for the right
hand side of , we have
A = DA, B, ) - O] = O(p P83, (35)
So we need to prove that
VAN, by b, yy) - 05] > crop™ 7 (36)

from which the theorem follows.

For this purpose,we first consider the decomposition of the matrix C as C =
A + B, where

Vo Viiehs + Va,_n
ha |21 0 1—h2 1—hy,,
] Vha—h Vo o Vhg—hy,
A= T ) s = : .. :
0 hy, |71 ’ )
|he | Vi oti Vig,ona Vo
(37)

The eigenvalues and the corresponding eigenspaces of the matrix A are |h.|?> and
E; = span{e; : (T —1)m +1 < j < 7m}, respectively, where

{e; =(0,...,0,1,0,...,0)}7%
is the standard basis of R™*. Now, we use the following notation
Os(hrj)=0s-¢; =007, if (1—1)m+1<j<7m, (38)
fort=1,2,---  bg.
Multiplying (A + B)6s = n,0, by e;, since A and B are symmetric, we get
(ns = |hr[*)05(hr ;) = 05 - Be; (39)

and (T—1)m+1<j<tm,and 7=1,2,---  bg.
On the other hand, if we consider the sum of the elements in the i-th row of the
matrix B, by

b, m m
DD vihine < 3 Mg, (40)
==l i=1
for all ¢ = 1,2,...,m. Since B is a symmetric matrix and by , the sum of
m
elements in each row of B is less then M = max {>> M;;}, the eigenvalues of
i=1,2,..,m ;3

B are also less then M from which we have | B ||< M.
Thus, by 7 7 , we have

m

b
|A<N7h17 .- '?hbk) : 95| = ‘<wN7 ZZ‘QS(hT;j)(ﬁhT,ij (41)

=1 j=1



496 SEDEF KARAKILIC, SETENAY AKDUMAN, AND DIDEM COSKAN

which, together with Parseval’s relation, imply

1 = ||ZZ€ 0 ¢h7—,l ||

T7=11i=1

- Z |ZZ€ i) < Un, By >

N:An—|y2|>3p201 7=1i=1

+ b |ZZQ i) < UN, P > (42)

N:An—|y[2|<3p?er 7=1i=1

Now we estimate the first summation in the expression (42)):

bk m
Z | Z Z gs(h'r,i) < \IINaq)h.,,i > |2

N:An—[y]2[>3p21 T=1i=1

= Z | Z 29 T, <\IIN3(I>h >

NilAN =722 3020 miln,— | 2] <dpor =1

+ > D 0u(he ) < Uy, By > [

Ting—|ho 2|2 g por 1=1

< 2 > \ > Za 2i) <Un, By ;> 2

N:|AN—|V[2[= 5021 Ti|n,—|h-|?|<Fpo1 i=1

+ 9 Z \ Z ZG ci) < UN, Oy > 2 (43)

N:AN =122 5071 Tiln,—|he |22 gp>1 =1

Using Bessel’s inequality, Parseval’s relation, orthogonality of the functions ®;,_;(z),
T=1,2,...,bg,1=1,2,...,m, the binding formula and || B ||< M, we have

| > S 0s(heyi) < Un, @y ;> |2

NilAw =12 30201 i, — |22 31 =1

< || Z Ze T, (Dh.,.,i ||2

0 —|ho 2|2 g por 1=1

> Zw P @

Tiln— e 2|2 4 por i=1

S Z|'9 ﬁfl'lfow%. (44)

Tl —lhe 2|2 §p1 =1

| 2
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The assumption |n, — |y[?| < 2p™ of the theorem and |n, — |h-[*| < §p™ imply
that [[y|*> — |h-[*| < 2p**. So by the well-known formula

1 \h |2 |7| —(k
= n 4 O(p~ ke
Ay =P~ Ay |7|2{Z TR ol )}

for |[An — |v[?] > 3p%*, and ||7]? — |k, [*| < 1p?*1, using (9], we have

§ | § §9 ) <\IJN3(I)h z>|
N:JAN—y[2[>5p%01 7i|n,—|h.[?|<gpo1 i=1

m

<\I/,V‘b,”i>
S NI S e

NilAn =220 iln,—|he [2]<gpor i=1

E S TS D S g e e

N:|An—|v[2|>3p2e1 Tins—|h-|? \< po1 i=1
) <UN, VO i > |h 2 — 7] 5
D SRR S DR gLl : ol
NiJAw — 712> 321 7iln,—lhe 2| < koo i=1 Av =D An =Dl
m
gs ) <\I/N7V¢)h i > ‘h7|2_|7|2 k|2
+ > (k) 3 | 7l
N Ay —|7]2[>3p2 Tin,—lhe 2] < L po1 i=1 AN - |PY‘ AN - |7|

+ > k+1) Y Ze ri) < U,V i > O(p~ETDa)P2,
N AN —|7]2[>Fp21 i, —|hs 2 < gp1 =1
(45)
To calculate the order of each term in , we use Bessel’s inequality and the
orthogonality of ®;, ;. So we have

2 > (k+1)

N:i|Ay—|y? |2 o2t

2
(Ih=* = [7*)
Os(hri) <UN, VO i > ——n =7
X Z Z ) < ¥y hryi > (Ay — 7)1t
7i|ns—|ho|2|<gpo1 =1
_ (k+1)
= 2 Z |AN _ |,-Y|2|2(r+1)

NilAx—lr12[>4p2
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2

X Z Ze T, z < \I’vaq)hr,t > (|h |2 |7‘2)r

Tiln,—|he 2| <L per i=1

< Cll(p2o¢1)72(r+1)(k+1)
X > < Uy, > Ze )2 =) Ve, >
N AN —=|7]2[>Fp21 Ti|n,—|hr 2| < gpo1 =1
2
< 812(p2a1)—2(r+1)(k+1) Z Za i |h |2 |’Y|2)TV(I)hT,i
Tin—|h-|2|<gpo1 i=1
< eny(p?n) 2 (k1) S S ) (e = V|
Tl —he |2|<dpe1 i=1
= cu(p™) P (k+1) > D 105 (hr )[hr [ = P17 | V@, |
i, —lho 2|<dper i=1
a1\ —2(r 1 (e} r —2(r a
< 615(/)2 1) 2( +1)(§p 1)2 (k‘—l—l)( Z Z ” Vq)h,,z ” ( 2(r+1) 1)
Ting—|ho 2| < gpo1 =1
(46)

for r = 0,1,2,..., k. Now let K be the number of h, satisfying |n, — |h,|?| <
%pal, then the order of the last summation in is:

> (k+1)

N:|AN—|7[2[>5p%1

2
X > ZH 2i) <UN VB, > O(p~ kDo)
i, —|hs 2 < gp1 =1
<K > (k+1)
NeJAN—InP2 2 %
x > O(p~FFV )2 10 (he )P+ | < Un, VO, i > |

i, —lhe Pl <o

<epgr K- p 2k, Z | V(2)®, ;|7

Tins—|hr 2| < g po1
<epp- K2 M2 p2khar = g2 g(p2kteny — O(p2e)),
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since K = O(p?) and we can always choose k in O(p~2(*+1De1) guch that

K?-O(p2t0) = 0(p~2),

(47)
which together with the estimations , , and imply
b, m
O(p2) = > DI ACHES XX T
N:AN—|y]?[>5p2e1 T=11i=1
Therefore, from the decomposition we have
bk, m
1-0(p~*™) = > D0 0u(hrs) < Un, @y >
N:An—|y2<gp2er T=11i=1
Since the number of indexes N satisfying [Ay — [7]?| < 1p?*1 is less then p?~!, we
have

m

b
max Os(hr i) < Un, B i > |2
i B {000 <> )

1= 02 < !

T=1 =1
which implies together with the relation that

1—-0 —2a1
|A(N, by, ha, . ) - 042 > pi‘_’l). (48)
It follows from the equation and the estimation that
Ofp-r+49")

778 + —1 b
O(p~%)

that is, holds.

3. AsymMPTOTIC FORMULAS FOR THE EIGENVALUES IN A
SINGLE RESONANCE DOMAIN

Now, we investigate in detail the eigenvalues of L(V') in a single resonance do-
main. In order the inequalities

O<a<ﬁ, 200 —a1 + (d+3)a< 1 (49)
and
oy > 2aq, (50)
to be satisfied, we can choose «, «; and as as follows
a:i, a = P2 a2:2p2+1,
d+p d+p d+p
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where py = [pT*5] — 1. Let v € V5(p™) \ E2, 6 € $\{e;}, where § is minimal in its

direction. Consider the following sets :
1
Bl(é) = {b b=nd,nez, ‘bl < ip%a2}’
Bi(v) =7+ Bi(0) = {y +b:be Bi(9)},

Bi(v,p1) = Bi(7) + T'(p1p”).

As before, denote by h,, 7 = 1,2,...,b; the vectors of By(y,p1), where by is the
number of vectors in By (7, p1). Then the matrix C(v,d) = (¢ij), 4,7 = 1,2,...,mby
is defined by

PT=Vo  Vieen, 0 Vig—n,
Vie—ny  |hPT=Vo - Viyp,
C(v,0) = : : (51)
Vhb1 —h Vhbl —ha T |hb1 ‘QI -V

where Vy, _p., 7,§ = 1,2,...,b1 are the m x m matrices defined by .

Also we define the matrix D(v,d) = (¢;;) for ¢,j = 1,2, ..., ma1, where hq, ha, ..., hq,
are the vectors of By(vy,p1)({y +nd :n € Z}, and a; is the number of vectors in
Bi(7,p1) (v +n6:n e Z}. Clearly a; = O(pz°2).

Lemma 3. a) Ifn;, is an eigenvalue of the matriz C(vy, 0) such that |n; —|hs|?| <
M for s=1,2,....a1, 1+ (s—1)m < js < ms, then

1
|7733 - ‘h’7'|2| > ZPOQ ) VT = ai + 170:1 + 2, ...,bl.

b) If m;, is an eigenvalue of the matriz C(v,8) such that |n; — |hs|?*| < M for
s=a1+1,a1+2,....,b1 and 1+ (s — 1)m < js < ms, then

n;. — |ho?] > ip‘“ , Vr=1,2,...,a1.

Proof. First we prove

B2 = |Ra2] > %pw, Vs<ai, Vr>ai. (52)
By definition, if s < a1 then hy = v + nd, where |nd| < %péa? +pip® U >aq
then h, =~ + s 0 + a, where |s 6] < %p%”, a € I'(p1p*) \ dR. Therefore

|he> = |hs|> =2y-a+256-a+2s~v-6+|s 6+ |af®> — 2ny - 6 — [né|>.
Since v ¢ Vo (p*?), |a| < p1p®, we have
127 - a| > p®? — cop*.
The relation v € V5(p*) and the inequalities for s and n imply that
25y 04+2sy-a+la> —2ny-8 = O(pz*2ter),
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/ 1
180 = ndl*| < o™ + copEete.

Thus follows from these relations, since %052 + a1 < ap and %ag + a < as.
The eigenvalues of D(7,d) and C(v,d) lay in M-neighborhood of the numbers

|hi|? for k = 1,2,...,a; and for k = 1,2,..., by, respectively. The inequality
shows that one can enumerate the eigenvalues 7; (j =1,2,...,mby) of C in the
following way:

nj=1;,, Js <mai, 14+ (s—1)m <js <sm
when for s <aj, 7; lay in M-neighborhood of |hs|*  and

ny=n;, Jjr=>ma, 1+ (T-1m<j <7mm

when for 7 > ay, 7; lay in M-neighborhood |h-|*>. Then by , we get

1
;. = |he|?] > 77 (53)

for s <ay,7>a; and s > a1, T < ay. O

Now, using the notation hy = — (£)§ if s is even, hy, = v + (552)4 if s is odd,
for s = 1,2,...,a1, (without loss of generality assume that a; is even) and using the
orthogonal decomposition of v € g, v =B+ (+v(B))s, where 8 € Hs = {zr € R?:

x-0=0}, 1€ Z, ve|0,1) we can write the matrix D(vy,d) as
D(y,68) = |B]*I + E(v,9), (54)

where I is a maximal identity matrix and E(v,d) is

((z+u)2\5\2)1+v0 Vs Vg Vay o

2
Vs (G=1+0282) 1+ Vv V_as MEENE

2

i v)2|5|2 o
E(%5>: Vs Vas (( + 1+ 0)75] )I+Vo V(aTlJrl)(S
V_ay, . . ((L,%Jrv)zwz)IJrvo
2
Denote ny, = —% if k is even, ng = % if k£ is odd. The system

{0t = 1,2, ...} is a basis in L'[0,27]. Let T(v,0) = T(P(t),3) be the
operator in f5 corresponding to the Sturm-Liouville operator T, generated by

—[6PY"(8) + P)Y (t) = uY (t), (55)
Y (t+27) = 2™ By (1),

) . .
where P(t) = (pi; (t)), pi; (t) = kZl Vijnys€ ™ Vijnys = (vij (), 7‘A3k5| ; ellen)),
= ac ngs

t = - 4. Tt means that T(v,d) is the infinite matrix (Te!(!H+netv)t cilltnmtv)ty
kkm=1,2,....
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To find the relation between the eigenvalues of L(V') in a single resonance domain
and the eigenvalues of the Sturm-Liouville operators defined by , we need the
following theorems.

Theorem 4. Let y € Vs5(p**)\ E2 and |y| ~ p. Then, for any eigenvalue n;_ (v) of
the matriz C(v,0) satisfying
;. — |hs|?| < M, 14 (s—1)m<j,<sm, s=1,2,...,a1 (56)

there exists an eigenvalue ﬁk(js) of the matriz D(v,0) such that

~ 34
M. = N,y T O0(p~3%).
Proof. Let n; be an eigenvalue of the matrix C(v,d) satisfying and 0;, =

(Ojl , 9?57 - 92 Jmb, x1 be the corresponding normalized eigenvector, |0;, | = 1. Now,

we consider the decomposition C' = A+ B and the matrices A, B which are defined
in . Writing the binding formula for n; and using , we get

(77.75 - |h7—‘2)9]s (h‘T;i) = 0.]5 ' Bei’ (57)
T=1,2,...,b;, 1+ (r—=1)m <i<71m.
For simplicity, we use the following notation in the sequel:

€C.k = €k if 1+(C—1)m§k§§m, Cil,...,bl,
Be; -ex, = Ber ;- eg g, =b(1,4,&, k).
Thus, substituting the orthogonal decomposition
Be; = Be,; = Z b(7,1,&, k1)eg i,

£=1,2,...,by
14 (m—1)g<ks <még

into the formula , we get
(njs - |h‘7'|2)9j3 (h'r,i)

0;. - > b(r,i,&, k1 )eek,

£=1,2,..., by
14+ (m—1)6<k] <még

= Z b(T7i7£akl)0js C ¢k

£=1,2,...,b
1+ (m—1)g<ky <m¢

= > b(1,4,&, k1)0;, (he, k1).
£=1,2,....b1
1+ (m—1)E<ky <mé

It is clear that
0 if &€=,
Vkyihe—h, if §FT,

b(T,i,f, kl) = {

which implies

. o £=1,2,...,b1
Z (7,1, k1) = Z v kvihe—hr

£=1,2,...,b1
14+ (m—1)E<ki<mé¢
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Thus one has

he ) = Yy hEeh 0;.(he, k
(n;, = 1h=1%)8;, (hr,9) > o lihen, i (he, k)
— 521,2,.‘.7(11 0 h k
Z UV kyihe—h, i (he k1)
t=artl, b 0;.(he, ky). 58
+> 0 hihen, i (hes k1) (58)

Now, writing the equation for all hy ,7 = 1,2,...,a1, we get the system of
linear algebraic equations:

(n;, = |18, (ha,9) Zg B2 0;, (e, k1)

kyihe—hy
—a141,...,b
= E:gaﬁ ' ejs(hsvkl)
v kyihe—hi

= |ha)8. (kg i) = Y FThRm 0;.(he, k
(77]3 ‘ 2‘ ) .7-9( 272) Z v k‘lihg—hQ jS( 3 1)

E=ai1+1,...,b1
Z v kv ihe —hs ]s( 3 1)
. =1,2,...,a
(0, = Vha [)05, (hay i) = D00 0 (e, k)
1theg —ay
_ E=ai1+1,...,b1 0 h k 59
Z v kvihe—ha, i (he; k) (59)

Using the binding formula (57)), the relation (53)), and || B [|< M, for any 7 =
1,2,...,a1, we find

0; -Be
D S R D Ry oo el
E=a1+1,...,01 t=a141,..,b U ¢
k1=1,2,....m fe1=1.2..m
T €
105,111 Bl leg k. |
S S T
E=a1+1,...,b1 ( ‘h£| )
ki1=1,2,...,m
EF£T
<4pm MY [vkyine—n,|
E=a1+1,...,b1
ki1=1,2,....m
E#T
< 4p~2M?

=0(p™") (60)
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and
9. -B 2
> aledP = 3 (R
T=a1+1,...,b1 T=a1+1,...,b1 nj* T
i=1,2,...,m i=1,2,...,m
- ¥ 1BO;, - exil*.
- B
i=1,2,....m
S 16M2p72a2
) (61)

By and , becomes
[65.,63.. -, 051" = (D(7.8) —1;, 1) {O(p~%),0(p™2),...,O(p~*)]".  (62)

Js? 7 )s?
By the Parseval’s identity and , we get

Yoo 6P = > 0D Y 18 (kD)

125000501 7=1,2,...,b1 T=a1+1,...,b1
2 m =12, 'm i=1,2,..m

> 11— O(pfzo‘z).

Now, taking norm of both sides in and using the above inequality we have

=00 ) < (S 10, (hesi) )} < |(D(3,6) =, D)~ O(arp—o2).

Thus
VIO
1
mal’lﬁjs Mk (5.) > Jaipe ’
or

where the maximum (minimum) is taken over all 7, ) ,s = 1,2,...,a1. So the
result follows. O

Theorem 5. For any eigenvalue 7], of the matriz D(v,d), there exists an eigenvalue
Nj.(r) of the matriz C(v,6) such that

- _1lg4
Nj.(r) =N +O(p"2%)
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Proof. Define the matrix D’ = D’(~,§) by

r 2
|h1l%1 = Vg Vh%,h2 Vh1fha1 0 0 0
Vhg—hy [ho|“T — Vo - Vhg—ha, 0 0 0
' 2
\7 \Y h -V 0 0 0
bl _ hay —h1 hay —ha2 lhayl 0 , (63)
0 0 o lhay+1121 0 0
: : : : B 0
0 0 0 0 0 lhp 11?1 0
o 0 0 0 0 0 Ihyy 121 ]

So that the spectrum of the matrix D’ is

spec(D') = spec(D(v,0)) | H{|ay 117 [hay 12, s o, [*}
= ﬁ?bﬁ%“’aﬁmap|h(11+1|27|h01+2|27'“7|hb1|2}'

Let us denote by Y, = (T1, 72, .., Y%,0,...,0)mp, 1, Yo = (YL, Y2 T,
the normalized eigenvector corresponding to the 7-th eigenvalue of the matrix D’,
for 7 = 1,2,...,may and by {ek;}i=12,..,m the eigenvector corresponding to the
k-th eigenvalue |hy|? of D', for k = a; + 1,a1 + 2, ..., by.
Now, using from the previous theorem, we have
(D'~ >w; 02,00

ai t al 1
[(D(Wv(s) )[0‘}57955 "79]‘5] 7(|ha1+1|2 —n,js)9j5+17---a(|hbl|2—77;‘5)9?5]
= [O(piog)a-'-?O(piaz)a( a1+1|2 777js)9?51+1""7(‘hb1|2 7”;;)9?:]

Taking inner product of both sides of the last equality by T, for 7 = 1,2, ..., ma,
using that D’ is symmetric and D'Y, = 7. T, we have

(Mj.(r) — ZGJS Th = ZO o)k, (64)

For the right hand side of the equation using the Cauchy-Schwarz inequality,
we get

a1 ai ay
220077 <[> 0(p72)? | 3 ITEP < Var(p=*2)? = O(v/aip™),
k=1 k=1 k=1
where a1 = O(P%”)- Thus, the equation can be written as

G Ze O(p~i°2). (65)
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In order to get the result, we need to show that for any 7 = 1,2, ..., ma; there exists

0;,(r) such that
o 1—0(p~322) )
k k) p 1.
|;9]‘s(r) X =105 Trl > g > s (66)
mby
For this, we consider the orthogonal decomposition T, = X_:l(TT -0,.)0;, and the
Parseval’s identity k
mby maj mbq
L= 00, 2= 0, P+ > 0%
s=1 s=1 s=mai+1

First, let us show that

mb1
S a0, P =0 ), (67)
s=mai+1
Using the decomposition Y, = > (Yr-eki)ek,  , the binding formula for
k=1,2...,a1

i=1,2,...,m

C(7v,9) and A, the relation , and the Bessel’s inequality we obtain the estimation

mb1

Y X6,

s=mai+1

mb1
= > DD e -0,
s=mai1+1 k=1,2,...,a1
i=1,2,...m
mb; mby
= > 1Y o)=Y | Y rHoRL
s=ma1+1 k=1,2,...,a1 s=mai1+1 k=1,2,...,a1 (njs _| k| )
=1,2,....om =1,2,....m
mbq
< 160 Y p( Y TR0, - Beyl)
s=mai+1 k=1,2,...,a1
1=1,2,....m
’mb1
< > t6lafmee | S [TRRG,, - Bel?
s=maj+1 k=1,2,...,a1
i=1,2,....m
mbl
< 16p77agfm > [YFPP YT |0;, Beyl?
k=1,2,...,a1 s=mai+1
=1,2,....m
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< 16p 2 alm > [TEP[Bey [ < 16p72%2(arlmM® Y TP
k:l,...,al k‘:l,?,.. ;a1
1=1,2,....m 1=1,2,....m

< 16lay|mp 2 M? = O(p_%’”).

Therefore one has
maiy

ST 0,2 =1-0(p )
s=1

from which it follows that there exists an eigenvector 6, () such that (66| holds.
Dividing both sides of by we get the result

— _1g
Mjs(r) =1, +0(p”2%).
(]

Theorem 6. For every eigenvalue s of the Sturm-Liouville operator T(v,0), there
exists an eigenvalue Sy of the matriz E(v,0) such that

Ss = é; + O(p7%a2)'
Proof. Decompose the infinite matrix T'(vy,d) as T'(v, ) = A+ B where the matrix
A is defined by

((L+0)*[8)?) T+ Vo 0
(L= 1+0)2[0]2) T+ Vp

A = t. .
0 (=% +v)*0]?) I+ Vo
N N (68)
and B = T(v,8) — A. Let ¢4 be an eigenvalue of T'(v,6), and O, = (01,02, 03, ..),
OT = (O7!,...,07™) be the corresponding normalized eigenvector, that is, TO, =

¢sO,. span{e; : (T —1)m 41 < i < Tm} is the eigenspace of the matrix A which
corresponds to the eigenvalue |(7/ + v)d|?, where 7/ = I-Zifriseven, 7/ =4+
if 7is odd, for 7 = 1,2, ... and {e;} is the standard basis for Is.

One can easily verify that
(5 = 167 + )01 ) ©7 = O, - Bers, (69)

where e, ; = e;, if (m— D)7+ 1 <3< mr.

(Eem‘ “€k.j )€k, 55 reduces

NIE!
M8

Using the orthogonal decomposition Eem =

b
Il
—

j=1

to

(Bey.i - ey,;)0%

NE
M8

(ss = 16" + 03" = ool ) €7 =

Il
_
o~
Il
_

J
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and since Be; ; - €k j = Vji(n,—n,)s for k # T,

( (7' +”U 52 @TZ ZZUJ‘(”" —-n,) s Z Z vji(TLk—7LT)6@§j‘ (70)
J=1k=1 =1 k=a;+1

Now take any eigenvalue ¢4 of T'(v, ), satisfying |§g — (& + v )812| < sup|P(t)|
for s = 1,2,..., ™, where i = [ — 5 if 5 is even, i/ = | + %5 L if s is odd. The
relations v € Vs(p®!) (6 #e;) and y =5+ (I + v)é, B-0=0 1mply

|2 -6 + 0] = [T+ ) |6 + [5P*] < p™,  I] < cr0p™

Therefore, using the definition of <" and 7/, we have

./ |a15|
@ +v)d] <

for s =1,2,...% and

laid|

(7" + 03] > 12

. ay
for 7 > ay. Since |a1| > c22p2 and @z > 2ay, we have

167+ )01 = (7 + )| > cagp (71)
for s < %+, 7 > a1, which implies

[ox = 16" + )] 8] = llss = [1(Z' + )" | = [1(" + )] %] = ||’ + )" || > c2ap®,
(72)
for s =1,2,..% , 7> ay.
Since B corresponds to the operator P : Y — P(¢)Y in L7'[0,27], which has
norm sup|P(t)] < M. Using this, equation and , we have for the right
hand side of that

oo

i ®S~§ek-
35 <3 3 |

— (K" + v)d]
j=1k=a1+1 j=1k=a1+1

o H@S””B””ek_]” o

v'L n n. i ’U'L n n
Z _Z | J(ne— T5||§57|( )5|| Z Z | J(ng—mn-) |
j=lk=a1+1 j=1lk=a1+1
< cosp 2, (73)

Therefore writing the equation for all 7 = 1,2,...,a1, and using we get
the following system

(B(7,0) = <:1)[65, 0%, ..., 00] = [0(p™*),0(p™*),... O(p~ )], (T4)
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o0

where I is an ma; X may identity matrix. Using O, = > OTe, ;, the formula
T=1

and the inequality (72)), we have

= T = es'éeri —2a
I e D o e S

T=a1+1 r=a1+1 ¢ - |(T/ + ’U)
and thus
ay
D olOIP =1-0(p2*). (75)
T=1

Multiplying both sides of by (E(v,0) —csI)™1,
(05,63, ..,08] = (B(7,8) = <sI) T [O(p™*2), ..., 0(p~*)],
then taking norm of both sides and using , we get

_ —202
1200 (8.0 - sy O )
or .
min s, &) = QWA ) VR _ o ga)
- =00 )
where the minimum is taken over all eigenvalues <, of the matrix E(v,d). Thus,
the result follows. O

Theorem 7. (Main result) For every 8 € Hs ,|B| ~ p and for every eigenvalue
¢s(v(B)) of the Sturm-Liouville operator T(v,d), there is an eigenvalue A of the
operator L(V') satisfying

An =812 + 5+ O(p~2°2).

Proof. From Theorem [6] and the definition of E(v,d), there exists an eigenvalue
7,(s) of the matrix D(v,d), where v has a decomposition v = 8 + (7 + v(8)),

satisfying 77, ) = [B|° +¢s + O(p~12). Therefore, the result follows from Theorem
[l and Theorem [21 O
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