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Abstract

This paper deals with nonlinear fractional di¤erential equation with boundary value problem con-
ditions. We investigate the existence of solutions in Banach spaces with Hilfer derivative. To obtain
such result we apply Mönch�s �xed point theorem and the technique of measures of noncompactness.
At the end an example is given.
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1 Introduction

In recent years, several papers have been devoted to the study of the existence of solutions for fractional
di¤erential equations, among others we refer the readers to the following references: Agarwal et al.
[5, 4], Abbas et al. [3, 2], Sandeep et al. [32], Furati et al.[20] , Benchohra et al. [17, 18], Gu et al. [21].
Moreover, it has been proved that di¤erential models involving derivatives of fractional order arise
in many engineering and scienti�c disciplines as the mathematical modeling of systems and processes
in many �elds, for instance, about physics, control theory, rheology, chemistry, and so on (see the
monograph of Kilbas and al. [25], Hilfer and al. [22, 23], and Samko and al. [30]).

In this paper we focus on the existence of solutions of the following boundary value problem for a
nonlinear fractional di¤erential equation,

D�;�
a+
y(t) = f(t; y(t)); t 2 J := [0; T ]: (1.1)

with the fractional boundary conditions

I1�
y(0) = y0; I
3�
�2�y0(0) = y1;

I1�
y(�) = �(I1�
y(T )); 
 = �+ � � ��:
(1.2)

where D�;�
0+

is the Hilfer fractional derivative, 0 < � < 1,0 � � � 1, 0 < � < 1, 0 < � < T and let
E be a Banach space space with norm k:k, f : J � E � E � E � E ! E is given continuous function
and satisfying some assumptions that will be speci�ed later. We will use the technique of measures
of noncompactness. which is often used in several branches of nonlinear analysis. Especially , that
technique turns out to be a very useful tool in existence for several types of integral equations; details
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are found in Akhmerov et al. [7], Alvàrez [8], Banas̀ et al. [10, 11, 12, 13, 14, 15, 16], Benchohra et
al. [17, 18], Mönch [27], Szu�a [31].

The main idea used here is that on the Banach space E, we can not use Ascoli-Arzela theorem to prove
the compactness of the operator, so we use the technique of measure of nocompactness to conclude.

Recently, considerable attention has been given to the existence of solutions of initial and boundary
value problems for fractional di¤erential equations with Hilfer fractional derivative [2, 3, 19], and other
problems with Hilfer-Hadamard fractional derivative; see [1, 2, 33, 34]. Many existence results were
established by the use of technics of nonlinear analysis such as Banach �xed point theorem, Schaefer�s
�xed point theorem, Lerayâ-Schauder nonlinear alternative, etc ..., and the technique of measures of
noncompactness, see [4, 5, 6, 18, 15, 16].

In 2008, Benchohra et al. [17], considered the existence of solutions of an initial value problem for a
nonlinear fractional di¤erential equation�

Dry(t) = f(t; y); for each t 2 J = [0; T ]; 1 < r < 2
y(0) = y0; y

0(0) = y1; .
(1.3)

where Dr is the Caputo fractional derivative, f : J � E ! E is a given function, and E is a Banach
space. They obtained results for solutions by using Mönch�s �xed point theorem and the technique of
measures of noncompactness.

In 2018, S. Abbas et al. [2], studied the existence of solutions for the following coupled system of
Hilfer fractional di¤erential equations(

D�1;�10 u(t) = f1(t; u(t); v(t)); t 2 J = [0; T ]
D�2;�20 v(t) = f2(t; u(t); v(t));

(1.4)

with the following initial conditions �
I1�
10 u(0) = �1
I1�
20 v(0) = �2;

(1.5)

where T > 0, �i 2 (0; 1), �i 2 [0; 1], 
i = �i + �i � �i�i, �i 2 E, fi : I � E � E ! E ; i = 1; 2, are
given functions, E is a real (or complex) Banach space with a norm k:k, I1
i0 is the left- sided mixed
Riemann-Liouville integral of order 1� 
i, and D�i;�i0 is the generalized Riemann-Liouville derivative
(Hilfer) operator of order �i and type �i: i = 1; 2. They obtained results for solutions by using the
technique of measure of noncompactness and the �xed point theory.

In 2018, D.Vivek et al. [34], studied the existence, uniqueness and stability analysis of Hilfer-Hadamard
type fractional neutral pantograph equations with boundary conditions of the form(

D�;�
1+
x(t) = f(t; x(t); x(�t); D�;�

1+
x(�t)); t 2 J = [0; T ]:

I1�

1+

x(1) = a; I1�

1+

x(T ) = b; 
 = �+ � � ��:
(1.6)

where D�;�
1+

is the Hilfer-Hadamard fractional derivative, 0 < � < 1, 0 � � � 1, 0 < � < 1. Let E be
a Banach space, f : J � E � E � E ! E is a given continuous function. They obtained results for
solutions by using Schaefer�s �xed point theorem.

The principal goal of this paper is to prove the existence of solutions for the problem (1.1)-(1.2) using
Mönch�s �xed point theorem and its related Kuratowski measure of noncompactness.
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2 Preliminaires

In what follows we introduce de�nitions, notations, and preliminary facts which are used in the sequel.

For more details, we refer to [4, 5, 7, 9, 11, 19, 20, 21, 22, 23, 24, 25, 26, 31, 32].
Denote by C(J;E) the Banach space of continuous functions y : J ! E, with the usual supremum
norm

kyk1 = supfky(t)k; t 2 Jg:

Let L1(J;E) be the Banach space of measurable functions y : J ! E which are Bochner integrable,
equipped with the norm

kykL1 =
Z
J
y(t)dt:

AC1(J;E) denotes the space of functions y : J ! E, whose �rst derivative is absolutely continuous.

De�nition 2.1. [20] Let J = [0; T ] be a �nite interval and 
 as a real such that 0 � 
 < 1. We
introduce the weighted space C1�
(J;E) of continuous functions f on (0; T ] as

C1�
(J;E) = ff : (0; T ]! E : (t� a)1�
f(t) 2 C(J;E)g:

In the space C1�
(J;E), we de�ne the norm

kfkC1�
 = k(t� a)1�
f(t)kC ; C0(J;E) = C(J;E):

De�nition 2.2. [20] Let 0 < � < 1; 0 � � � 1, the weighted space C�;�1�
(J;E) is de�ned by

C�;�1�
(J;E) = ff : (0; T ]! R : D�;�
0+
f 2 C1�
(J;E)g; 
 = �+ � � ��

and
C11�
(J;E) = ff : (0; T ]! R : f 0 2 C1�
(J;E)g; 
 = �+ � � ��

with the norm
kfkC11�
 = kfkC + kf

0kC1�
 : (2.1)

One have, see [20], D�;�
0+
f = I

�(1��)
0+

D

0+
f and C
1�
(J;E) � C�;�1�
(J;E); 
 = � + � � ��; 0 < � <

1; 0 � � � 1. Moreover, C1�
(J;E) is complete metric space of all continuous functions mapping J
into E with the metric d de�ned by

d(y1; y2) = ky1 � y2kC1�
(J;E) := maxt2J
j(t� a)1�
 [y1(t)� y2(t)]j

for details see [20].

Notation 2.3. For a given set V of functions v : J ! E, let us denote by

V (t) = fv(t) : v 2 V g; t 2 J;

and
V (J) = fv(t) : v 2 V; t 2 Jg:

Now let us recall some fundamental facts of the notion of Kuratowski measure of noncompactness.

De�nion 2.4. ([7, 11]). Let E be a Banach space and 
E the bounded subsets of E. The
Kuratowski measure of noncompactness is the map � : 
E ! [0;1] de�ned by

�(B) = inff� > 0 : B � [ni=1Bi and diam(Bi) � �g; here B 2 
E .
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This measure of noncompactness satis�es some important properties [7, 11]:
(a) �(B) = 0, B is compact (B is relatively compact).
(b) �(B) = �(B):
(c) A � B ) �(A) � �(B):
(d) �(A+B) � �(A) + �(B)
(e) �(cB) = jcj�(B); c 2 R:
(f) �(convB) = �(B):

Now, we give some results and properties of fractional calculus. De�nition 2.5. [26] Let (0; T ] and
f : (0;1) ! R is a real valued continuous function. The Riemann-Liouville fractional integral of a
function f of order � 2 R+ is denoted as I�0+f and de�ned by

I�0+f(t) =
1

�(�)

Z t

0
(t� s)��1f(s)ds; t > 0: (2.2)

where �(�) is the Euler�s Gamma function.

De�nion 2.6. [25] Let (0; T ] and f : (0;1) ! R is a real valued continuous function. The
Riemann-Liouville fractional derivative of a function f of order � 2 R+0 = [0;+1) is denoted as D�0+f
and de�ned by

D�0+f(t) =
1

�(n� �)
dn

dtn

Z t

0
(t� s)n���1f(s)ds: (2.3)

where n = [�] + 1, and [�] means the integral part of �, provided the right hand side is pointwise
de�ned on (0;1).

De�nion 2.7. [25] The Caputo fractional derivative of function f with order � > 0; n� 1 < � <
n; n 2 N is de�ned by

CD�0+f(t) =
1

�(n� �)

Z t

0
(t� s)n���1f (n)(s)ds; t > 0: (2.4)

In [22], R. Hilfer studied applications of a generalized fractional operator having the Riemann-Liouville
and Caputo derivatives as speci�c cases (see also [23, 24]).

De�nion 2.8. [22] The Hilfer fractional derivative D�;�
0+

of order � (n � 1 < � < n) and type �
(0 � � � 1) is de�ned by

D�;�
0+

= I
�(n��)
0+

DnI
(1��)(n��)
0+

f(t) (2.5)

where I�0+ and D
�
0+ are Riemann-Liouville fractional integral and derivative de�ned by 2.2 and 2.3,

respectively.

Remark 2.9. (See [19]) Hilfer fractional derivative interpolates between the R-L (2.3, if � = 0)
and Caputo (2.4, if � = 1) fractional derivatives since

D�;�
0+

=

8<:
DI1�� = D�0+ ; � = 0; I1��D =C D�0+ ; � = 1;

I1��D =C D�0+ ; � = 1;

Lemma 2.10. Let 0 < � < 1; 0 � � � 1; 
 = �+ � � ��, and f 2 L1(J;E).
The operator D�;�

0+
can be written as

D�;�
0+
f(t) =

�
I
�(1��)
0+

d

dt
I
(1�
)
0+

f

�
(t)

= I
�(1��)
0+

D
f(t); t 2 J:
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Moreover, the parameter 
 satis�es

0 < 
 � 1; 
 � �; 
 > �; 1� 
 < 1� �(1� �):

Lemma 2.11. Let 0 < � < 1; 0 � � � 1; 
 = �+����, If D�(1��)
0+

f exists and in L1(J;E), then

D�;�
0+
I�0+f(t) = I

�(1��)
0+

D
�(1��)
0+

f(t); for a.e. t 2 J:

Furthermore, if f 2 C1�
(J;E) and I1��(1��)0+
f 2 C11�
(J;E), then

D�;�
0+
I�0+f(t) = f(t); for a.e. t 2 J:

Lemma 2.12. Let 0 < � < 1; 0 � � � 1; 
 = � + � � ��, and f 2 L1(J;E). If D

0+
f exists and

in L1(J;E), then

I�0+D
�;�
0+
f(t) = I


0+
D

0+
f(t)

= f(t)�
I1�

0+

f(0+)

�(
)
t
�1; t 2 J:

Lemma 2.13. [25] For t > a, we have

I�0+(t� a)
��1(t) =

�(�)

�(� � �)(t� a)
�+��1

D�0+(t� a)
��1(t) =

�(�)

�(� � �)(t� a)
����1;

(2.6)

Lemma 2.14. Let � > 0; 0 � � � 1, so the homogeneous di¤erential equation with Hilfer
fractional order

D�;�
0+
h(t) = 0 (2.7)

has a solution

h(t) = c0t

�1 + c1t


+2��2 + c2t

+2(2�)�3 + :::+ cnt


+n(2�)�(n+1):

De�nion 2.15. A map f : J � E ! E is said to be Caratheodory if
(i) t 7! f(t; u) is measurable for each u 2 E;
(ii) u 7! F (t; u) is continuous for almost all t 2 J .

The following theorems will play a major role in our analysis.

Theorem 2.16. ([5, 32]). Let D be a bounded, closed and convex subset of a Banach space such
that 0 2 D, and let N be a continuous mapping of D into itself. If the implication
V = convN(V ) or V = N(V ) [ 0) �(V ) = 0
holds for every subset V of D, then N has a �xed point.

Lemma 2.17. ([32]). Let D be a bounded, closed and convex subset of the Banach space C(J;E),
G a continuous function on J�J and f a function from J�E �! E which satis�es the Caratheodory
conditions, and suppose there exists p 2 L1(J;R+) such that, for each t 2 J and each bounded set
B � E, we have

lim
h!0+

�(f(Jt;h �B)) � p(t)�(B); here Jt;h = [t� h; t] \ J:

If V is an equicontinuous subset of D, then

�

��Z
J
G(s; t)f(s; y(s))ds : y 2 V

��
�
Z
J
kG(t; s)kp(s)�(V (s))ds:
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3 Main results

First of all, we de�ne what we mean by a solution of the BVP (1.1)-(1.2).

De�nition 3.1. A function y 2 C1�
(J;E) is said to be a solution of the problem (1.1)- (1.2) if y
satis�es the equation D�;�

a+
y(t) = f(t; y(t)) on J , and the conditions I1�
y(0) = y0; I3�
�2�y0(0) = y1,

and I1�
y(�) = �(I1�
y(T )):

Lemma 3.2. Let f : J � E � E � E � E ! E be a function such that f 2 C1�
(J;E) for any
y 2 C1�
(J;E). A function y 2 C
1�
(J;E) is a solution of the integral equation

y(t) = I�f(t; y(t)) +
y0
�(
)

t
�1 +
y1

�(
 + 2� � 1) t

+2��2 + �(�; 
; �; �)�

y0(�� 1) +
�T 2��1 � �2��1

�(2�)
y1 + �I

��
+1f(T; y(T ))� I��
+1f(�; y(�))
�
t
+2(2�)�3

(3.1)

if and only if y is a solution of the Hilfer fractional BVP

D�;�
a+
y(t) = f(t; y(t)); t 2 J := [0; T ]; (3.2)

with the fractional boundary conditions

I1�
y(0) = y0; I
3�
�2�y0(0) = y1;

I1�
y(�) = �(I1�
y(T )); 
 = �+ � � ��:
(3.3)

Proof. Assume y satis�es (3.1). Then Lemma 2.18 implies that

y(t) = c0t

�1 + c1t


+2��2 + c2t

+2(2�)�3 +

1

�(�)

Z t

0
(t� s)��1f(s; y(s))ds:

for some constants c0; c1; c2 2 R.
From (3.3), by Lemma 2.16 (2.6) , we have

� I1�
y(0) = y0 implies that c0 = y0
�(
)

� I3�
�2�y0(0) = y1 implies that c1 = y1
�(
+2��1)

� I1�
y(1) = �(I1�
y(T )) implies that

�
I1�
y

�
(�) = (I1�


y0
�(
)

t
�1)(�)+(I1�

y1
�(
)

t
+2��2)(�) + c2

�
I1�
t
+2(2�)�3

�
(�) + I��
+1f(�; y(�))

= y0 +
y1

�(2�)
�2��1 + c2

�(
 + 2(2�)� 2)
�(4� � 1) �4��2 + I��
+1f(�; y(�))�

I1�
y
�
(T ) = (I1�


y0
�(
)

t
�1)(T ) + (I1�

y1

�(
 + 2� � 1) t

+2��2)(T ) + c2

�
I1�
t
+2(2�)�3

�
(T )

+ I��
+1f(T; y(T ))

= y0 +
y1

�(2�)
T 2��1 + c2

�(
 + 2(2�)� 2)
�(4� � 1) T 4��2 + I��
+1f(T; y(T ))

�
�
I1�
y

�
(T ) = �y0 +

�y1
�(2�)

T 2��1 + c2
��(
 + 2(2�)� 2)

�(4� � 1) T 4��2 + �I��
+1f(T; y(T ))

that is,

c2 = �(�; 
; �; �)

�
y0(�� 1) +

�T 2��1 � �2��1
�(2�)

y1 + �I
��
+1f(T; y(T ))� I��
+1f(�; y(�))

�
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With

�(�; 
; �; �) =
�(4� � 1)

�(
 + 4� � 2)(�4��2 � �T 4��2)

The following hypotheses will be used in the sequel.
(H1) f : J � E ! E satis�es the Caratheodory conditions;
(H2) There exists p 2 L1(J;R+) \ C(J;R+), such that,

kf(t; y)k � p(t)kyk; for t 2 J and each y 2 E;

(H3) For each t 2 J and each bounded set B � E, we have

lim
h!0+

�(f(Jt;h �B)) � t1�
p(t)�(B); here Jt;h = [t� h; t] \ J:

Theorem 3.3. Assume that conditions (H1)-(H3) hold. Let

p� = sup
t2J

p(t):

If

p�
�
T��
+1

�(�+ 1)
+
j�(�; 
; �; �)j
�(�� 
 + 2)

�
j�jT��
+1 + ���
+1

�
T 2(2�)�2

�
< 1 (3.4)

then the BVP (1.1)-(1.2) has at least one solution.

Proof. We transform the problem (1.1)-(1.2) into a �xed point problem, then we consider the
operator N : C1�
(J;E)! C1�
(J;E) de�ned by

N(y)(t) = I�f(t; y(t)) +
y0
�(
)

t
�1 +
y1

�(
 + 2� � 1) t

+2��2 + �(�; 
; �; �)�

y0(�� 1) +
�T 2��1 � �2��1

�(2�)
y1 + �I

��
+1f(T; y(T ))� I��
+1f(�; y(�))
�
t
+2(2�)�3

Clearly, the �xed points of the operator N are solutions of the problem (1.1)-(1.2). Let

R �
y0
�(
) +

y1T 2��1

�(
+2��1) + j�(�; 
; �; �)j
�
ky0kj�� 1j+ �T 2��1��2��1

�(2�) ky1k
�

1� p�
�
T��
+1
�(�+1) �

j�(�;
;�;�)jT 4��2
�(��
+2) (j�jT��
+1 + ���
+1)

� (3.5)

and consider
D = fy 2 C1�
(J;E) : kyk � Rg:

The subset D is closed, bounded and convex. We shall show that the assumptions of Theorem 2.4 are
satis�ed. The proof will be given in three steps.

1-First we show that N is continuous:

Let yn be a sequence such that yn ! y in C1�
(J;E). Then for each t 2 J ,

kt1�
(N(yn)(t)�N(y)(t))k �
t1�


�(�)

Z t

0
(t� s)��1kf(s; yn(s))� f(s; y(s))kds+

j�(�; 
; �; �)jt4��2
�(�� 
 + 1)�

j�j
Z T

0
(T � s)��
kf(s; yn(s))� f(s; y(s))kds+

Z �

0
(� � s)��
kf(s; yn(s))� f(s; y(s))kds

�
�
�
t��
+1

�(�+ 1)
+
j�(�; 
; �; �)jt4��2
�(�� 
 + 2) (j�jT��
+1 + ���
+1)

�
kf(s; yn(s))� f(s; y(s))k

�
�
T��
+1

�(�+ 1)
+
j�(�; 
; �; �)jT 4��2
�(�� 
 + 2) (j�jT��
+1 + ���
+1)

�
kf(s; yn(s))� f(s; y(s))k
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Since f is of Caratheodory type, then by the Lebesgue dominated convergence theorem we have

kN(yn)�N(y)k1 ! 0 as n!1:

2-Second we show that N maps D into itself:

Take y 2 D, by (H2), we have, for each t 2 J and assume that Ny(t) 6= 0.

kt1�
N(y)(t)k � t1�


�(�)

Z t

0
(t� s)��1kf(s; y(s))kds+ ky0k

�(
)
+

ky1k
�(
 + 2� � 1) t

2��1

+ j�(�; 
; �; �)j
�
ky0kj�� 1j+

j�jT 2��1 � �2��1
�(2�)

ky1k
�
t4��2

+
j�(�; 
; �; �)jt4��2
�(�� 
 + 1)

�
j�j
Z T

0
(T � s)��
kf(s; y(s))kds+

Z �

0
(� � s)��
kf(s; y(s))kds

�
� T 1�


�(�)

Z t

0
(t� s)��1p(s)kykds+ ky0k

�(
)
+

ky1k
�(
 + 2� � 1)T

2��1

+ j�(�; 
; �; �)j
�
ky0kj�� 1j+

j�jT 2��1 � �2��1
�(2�)

ky1k
�
T 4��2

+
T 4��2

�(�� 
 + 1) j�(�; 
; �; �)j
�
j�j
Z T

0
(T � s)��
p(s)kykds+

Z 1

0
(1� s)��
p(s)kykds

�
� RT 1�


�(�)

Z t

0
(t� s)��1p(s)ds+ ky0k

�(
)
+

ky1k
�(
 + 2� � 1)T

2��1

+ j�(�; 
; �; �)j
�
ky0kj�� 1j+

j�jT 2��1 � �2��1
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�
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�
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(t� s)��1ds+ ky0k
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+
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�(
 + 2� � 1)T

2��1

+ j�(�; 
; �; �)j
�
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�(2�)

ky1k
�
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 + 1) j�(�; 
; �; �)j
�
j�j
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0
(T � s)��
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Z �

0
(� � s)��
ds

�
� Rp�T��
+1

�(�+ 1)
+
ky0k
�(
)

+
ky1k

�(
 + 2� � 1)T
2��1

+ j�(�; 
; �; �)j
�
ky0kj�� 1j+

j�jT 2��1 � �2��1
�(2�)
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�
T 4��2

+ j�(�; 
; �; �)j
�
j�jRp�T��
+4��1
�(�� 
 + 2) +

Rp����
+1T 4��2

�(�� 
 + 2)

�
� R:

3-Finally we show that N(D) is bounded and equicontinuous:

By Step 2, it is obvious that N(D) � C1�
(J;E) is bounded. For the equicontinuity of N(D), let
t1; t2 2 J , t1 < t2 and y 2 D, so t1�
2 Ny(t2)� t1�
1 Ny(t1) 6= 0. Then
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kt1�
2 Ny(t2)� t1�
1 Ny(t1)k �
1

�(
 + 2� � 1)ky1t
2��1
2 � y1t2��11 k+ j�(�; 
; �; �)j



�y0j�� 1j+ j�jT 2��1 � �2��1�(2�)

y1 + j�jI��
+1f(T; y(T ))� I��
+1f(�; y(�))
�
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2(2�)�2)
2 � t2(2�)�2)1 )

+






 t1�
2

�(�)

Z t2

0
(t2 � s)��1f(s; y(s))ds�

t1�
1

�(�)

Z t1

0
(t1 � s)��1f(s; y(s))ds







� 1

�(
 + 2� � 1)ky1k(t
2��1
2 � t2��11 ) + j�(�; 
; �; �)j�

ky0kj�� 1j+
j�jT 2��1 � �2��1

�(2�)
ky1k
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+
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kf(s; y(s))kds+

Z �
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2
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2
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�(2�)
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R
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0
(T � s)��
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Z �

0
(� � s)��
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+
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2
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1
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0
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+t1�
2
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t1
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�
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Z �

0
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2
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� ky1k
�(
 + 2� � 1)(t

2��1
2 � t2��11 )

+ j�(�; 
; �; �)j
�
ky0kj�� 1j+

j�jT 2��1 � �2��1
�(2�)

ky1k+
Rp�(j�jT��
+1 + ���
+1)

�(�� 
 + 2)

�
(t
2(2�)�2)
2 � t2(2�)�2)1 ) +

Rp�

�(�+ 1)
(t��
+12 � t��
+11 ):

As t1 ! t2, the right hand side of the above inequality tends to zero.
Hence N(D) � D.

Now we show that the implication holds:

Let V � D such that V = conv(N(V ) [ f0g).

We have V (t) � conv(N(V )[f0g) for all t 2 J . NV (t) � ND(t), t 2 J is bounded and equicontinuous
in E, the function t! v(t) = �(V (t)) is continuous on J .
By assumption (H2), and the properties of the measure � we have for each t 2 J .

t1�
v(t) � �(t1�
N(V )(t) [ f0g)) � �(t1�
(NV )(t))

� �
�
t1�


�
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�(
)

t
�1 +
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�(
)

t
+2��2 + �(�; 
; �; �)�
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�T 2��1 � �2��1
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��
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This means that

kvk � p�kvk
�
T��
+1

�(�+ 1)
+
j�(�; 
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�(�� 
 + 2)

�
j�jT��
+1 + ���
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By p�
h
T��
+1

�(�+1) +
j�(�;
;�;�)j
�(��
+2)

�
j�jT��
+1 + ���
+1

�
T 2(2�)�2

i
< 1 it follows that kvk = 0, that is v(t) = 0

for each t 2 J , and then V (t) is relatively compact in E. In view of the Ascoli-Arzela theorem, V is
relatively compact in D. Applying now Theorem 2.16, we conclude that N has a �xed point which is
a solution of the problem (1.1)-(1.2).

4 Example

We consider the problem for Hilfer fractional di¤erential equations of the form:8<:
D�;�y(t) = f(t; y(t)); (t; y) 2 ([0; 1];R);

I1�
y(0) = y0; I
3�
�2�y0(0) = y1; I

1�
y(�) = �(I1�
y(T ))
(4.1)

Here

� =
1

2
; � =

1

2
; 
 =

3

4
;

� =
1

2
; � =

1

4
; T = 1:

With

f(t; yt)) =
1

4
+
ct2

et+4
jy(t)j; t 2 [0; 1]

and

c =
e3

10

p
�

Clearly, the function f is continuous. For each y 2 E and t 2 [0; 1], we have

kf(t; y(t))k � ct2

et+4
kyk

Hence, the hypothesis (H2) is satis�ed with p� = ce�3. We shall show that condition 3.4 holds with
T = 1. Indeed,

p�
�
T��
+1

�(�+ 1)
+
j�(�; 
; �; �)j
�(�� 
 + 2)

�
j�jT��
+1 + ���
+1

�
T 2(2�)�2

�
< 1

Simple computations show that all conditions of Theorem 3.1 are satis�ed. It follows that the problem
4.1 has a solution de�ned on [0,T].
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