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Abstract

In this study, random Volterra integral equations obtained by transforming components of deterministic Volterra
integral equations to random variables are analysed. Beta, Normal (Gaussian), Gamma, Geometric and Uniform
distributions are used to investigate the random behaviour of the solutions for Volterra integral equations under random
effects. The random version of Differential Transformation Method (RDTM) is used to obtain an approximation to the
solution of the random Volterra integral equation. Using the approximate solutions, approximate expected values and
approximate variances are calculated. Some integro-differential equations, obtained by using random components with
the above mentioned distributions, are solved as numerical examples. Results are obtained in MAPLE and shown in
graphs. It is seen that random Differential Transformation Method is effective for the examination of random Volterra
integral equations. Comparison of the solutions is given to underline the accuracy of the method.
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Oz

Bu ¢aliymada deterministik Volterra integral denklemlerinin bilegenlerinin rastgele degiskenlere doniistiiriilmesi ile
elde edilen rastgele Volterra integral denklemleri incelenmektedir. Volterra integral denklemlerinin rastgele etkiler
altindaki  rastgele davraniglarim incelemek igin Beta, Normal, Gamma, Geometrik ve Diizgiin dagilimlar
kullanilmaktadir. Rastgele Volterra integral denkleminin ¢oziimiine bir yaklasim elde etmek i¢in Diferansiyel Doniigtim
Yéntemi’'nin rastgele versiyonu (RDTM) kullanilmaktadir. Yaklagik ¢éziim kullamlarak yaklasik beklenen degerler ve
yaklasik varyanslar hesaplanmaktadir. Bahsedilen dagilimlara sahip rastgele bilegenler kullanilarak elde edilen bazi
integro-diferansiyel denklemler sayisal 6rnek olarak kullamimaktadir. Sonuglar MAPLE 'da elde edilmis ve grafiklerle
gosterilmistir. Rastgele Diferansiyel Déniisiim Yontemi nin rastgele Volterra Integral Denklemleri nin incelenmesinde
etkili bir ara¢ oldugu goriilmektedir. Yontemin dogrulugunu géstermek igin sonuglarin karsilagtirmalarina yer
verilmistir.

Keywords: Diferansiyel Déniisiim Yontemi, Beklenen Deger, Modifiye DTM, Varyans, Volterra Integral Denklemi

*2 Mehmet MERDAN; mmerdan@gumushane.edu.tr, orcid.org/0000-0002-8509-3044
® orcid.org/0000-0003-2134-4059 “orcid.org/0000-0001-5671-9995

ISSN: 2146-538X http://dergipark.gov.ir/gumusfenbil



Merdan et al. / GUFBED 10 (1) (2020) 205-216

1. Introduction

Integral equations are used in a various area of
science. Many problems in a wide range of fields
can be analysed by using integral equations, since
some of the problems defined by differential
equations with initial or boundary values can be
converted to integral equations. Problems in
biology, geophysics, economics and radiation are
only some of the areas where integral equations
are used. It is also known that potential theory is
an important area for the literature of the
application of integral equations. Since there is an
extensive field of applications for these equations,
their computational analysis is a widely studied
research subject (Wazwaz, 2011; Kythe and Puri,
2011). In this regard, the Volterra equation is one
of the essential types of integral equations.

The use of ordinary, partial and various other
types of differential equations, as mentioned
above, play an important role in the modelling of
various real-life  phenomena. However, the
deterministic  versions of these equations
sometimes fall short in reflecting the actual course
of events accurately. Hence, the use of random
components within differential equations to model
the randomness of the systems under investigation
within the equations has been attracting interest.
Random differential equations obtained by using
random variables as the coefficients, initial values
or inhomogenous parts of deterministic
differential equations have been used for
applications in many areas such as biology,
medicine and engineering (Chiles and Delfier,
1999; Cortes et al., 2009; Soong, 1973). The use
of mean-square calculus base methods for various
random equations systems have become an
important area of mathematical modelling (Cortes

2. Fredholm and Volterra integral equations

The linear Fredholm integral equation is given as

b
p@ulx) = flx) + /1[ K(x, Hu(t)dt

et al, 2009; Cortes et al, 2007a, Cortes et al,
2007b; Villafuerte et al., 2010; Calbo et al., 2010;
Cortes et al., 2010; Cortes et al., 2011; Khudair,
2016). While there are many random systems in
the literature, many of these models are too
complex to be solved analytically. Hence,
approximation schemes are preferred in studies to
analyse these systems. George Adomian’s
approximation technique Adomian
Decomposition Method (ADM) (Cherrault et al.,
1993), He’s Variational Iteration Method (VIM)
(Khudair et al, 2011) and also the Homotopy
Perturbation Method (HPM) (Khalaf, 2011) are
among some of the widely used method in this
sense. Many other methods and applications can
be found in the literature (Khudair et al, 2016;
Kuhdair et al, 2011, Khalaf, 2011; Merdan et al.,
2019).

In this study, we will be following a similar
approach to the above-mentioned literature on
random differential equation systems.
Components of Volterra integral equations will be
transformed into random variables with several
probability distributions. Random Differential
Transform Method (RDTM) will be applied to
find the exact or approximate solutions of the
given Volterra integral equations with random
components. Using the approximate solutions
obtained with RDTM, the approximate expected
values and variances of the random Volterra
integral equations will be given along with their
graphs. Sections 2 and 3 include introductory
information on Volterra integral equations and
Differential Transformation Method. In section 5,
several numerical examples are given with
uniform, beta, normal, gamma and geometric
distributions, respectively.

1)

where the integration is done between the upper limit a and the lower limit b and the unknown function u(x)
is within the integration linearly. For ¢(x) = 1, the equation (1) simplifies to

b
ulx) = f(x) +/1j K(x, u(t)dt

()

which is known as the Fredholm integral equation of the second kind. For the case where ¢(x) = 0, the

equation (1) becomes

b
fl) + /1-[ K(x,Hu(t)dt =0
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which is known as the Fredholm integral equation of the first kind. When the unknown function within the
integration is in functional form F(u(x)) with the power of the function different than one, i.e. F(u(x)) =
u™(x),n # 1, or equal to sinu(x), etc., the integral equations (Fredholm or Volterra) are said to be
nonlinear (Lovitt, 1950; Wazwaz, 1997; Wazwaz, 1999; Mohyud-Din et al., 2010, Arikoglu and Ozkol,
2005; Arikoglu and Ozkol, 2008). The Volterra integral equations (of first and second kind) are also given as
follows(Aksoy,1983):

o(x) = j K Ou(Ddt,
u(x) = j K Ouodt,

a @)
u(x) = FGo) + f K (x, u(t)dt,

o()ulx) = £(x) + f “K e Duodr.

3. Differential transform method

For the Differential Transformation Method of a function with one variable, the transformation of the k-th
derivative for a function is given as
1 [d*f(x)
F(k) = E[ Py , (4)

X=Xo

whereas the inverse transformation is given as

G =) FUOGx = x)* ©)
k=0

The theorems below are obtained by using (4) and (5):

Theorem 1: If f (x)

g(x) + h(x),then F (k) = G(k) + H(k).

Theorem 2: If f (x)

cg(x),then F (k) = cG(k), where c is a constant.

dg(x) _ (k+n)!
—n o thenF (k) = o Gk + n).

Theorem 3: If f (x) =

Theorem 4: If f (x) = g(x)h(x),then F (k) = Z’,§1=0 G(kp)H(k — ky).

1,k=n
0,k+#n

Theorem 5: If f (x) = x™, then F (k) = §(k — n) where, §(k — n) ={
Theorem 6 (Arikoglu and Ozkol, 2008; Fakharzadeh et al., 2015): If

f@) = g1(0)g2(x)... gn-1() gn(x), then F(k) = TK _ Sm=t_ o 38 02 Gy Iy )Gy (k —
kl) Gn—l(kn—l - kn—Z)Gn(k - kn—l)-

Theorem 7 (Arikoglu and Ozkol, 2008; Fakharzadeh et al., 2015): If f(x) = f;o g@®)dtthen, F(k) =

G(k-1)

, Where k > 1.
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Theorem 8 (Arikoglu and Ozkol, 2008; Fakharzadeh et al., 2015): If

fQO = [0 [or e 2 02 [ g(€)dedxy dxydoxs -+ dxn_y s given then, F (k) =
k>=n.

(k— n)

G(k —n), for

Theorem 9 (Arikoglu and Ozkol, 2008; Fakharzadeh et al., 2015): If f(x) = g(x) f;o h(t)dt then, F(k)
k1—1k LGk — ki)H(ky — 1) ,where k > 1.

Theorem 10 (Arikoglu and Ozkol, 2008; Fakharzadeh et al., 2015): If f(x) = f;o 91(t) g, (t)dt then
F(k) = %zglzo Gy(ky)Gy(k —ky — 1) , where k > 1.

Theorem 11 (Arikoglu and Ozkol, 2008; Fakharzadeh et al., 2015): If
f(x) - f 91(092 (t) *In- 1(t)gn(t)dt then F(k) - _an 1=0 ZI;Z:;=0 Zk =0 k oGl(kl)GZ(kZ

kl) n—1(kn—1 n—Z)Gn(k kn—l - 1)-
Theorem 12 (Arikoglu and Ozkol, 2008; Fakharzadeh et al., 2015): If

f(x) = [~ () hy () -+ hyy_q () Ry ()] fx 91(t)92(t) “++ Gm-1() gm (t)dt then
F(k) = Zﬁﬁ:::i_l Zkz—l Zk1—1 Km G1(k1 1)G2(k2 - k1) Gm—l(km—l - km—z)Gm(km
km—l) X Hl(km+1 - km)HZ(km+2 - m+1) Hn—l(kn+m—1 - kn+m—2)Hn(k - km+n—1)-

km+n 1=1

4. Numerical Examples

In this section, some examples are given for the application of the Differential Transformation Method
(DTM) to obtain approximations to the expected values and variances of random Volterra integral equations.
Each example contains random integral equations with different probability distributions.

Example 4.1 Consider the random Volterra integral equation
u(x)_B+Ax——+f (x — ) u(®) dt, u(0) = B 6)

where A and B are random variables with uniform distribution within the interval (Chiles and Delfier,
1999;Cortes et al.,2009), i.e. A,B~U(a = 1,8 = 2) with the parameters « = 1 and § = 2. Using DTM for
the equation (6), we obtain

§(k — ky — DUy — 1)

k
Uk) = B5(k) + As(k — 1) —%6(!( 3+ Z

k=1 !
= 5(k, — DUk — k 1; 0
— L -t k=1
k
k.=0
Using (7) with the inverse transformation (Theorems 10 and 11),
B B
U)=B,U1) =AUQR)=B/2,U3)=0,U4) = Z,U(S) =0,U(6) = ar ®)
U(7) =0,
and hence, the solution is given as
3 . Bx?* Bx* Bx® 3 x? x* x®
u(x) = ZU(k)x =Ax+ B+ T + al + el +--=Ax+B 1+§+Z+a+'-- ©)

= Ax + Bcosh(x).
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Numerical characteristics of the approximate solutions of the random Volterra integral equation found with
random DTM are obtained through the following calculations (Fakharzadeh et al., 2015; Golmankhaneh et
al., 2013)

Efu(x)] =i E[U(k)]x

Var[u(x)] = Z Z cov(U(D), U())xi,
i=0 j=0
Higher moments of the random variables are needed for the calculation of the approximate expectation and
variances. The moment generating function of a uniformly distributed random variable X, i.e. X ~ U(a, B),
is given as (Feller, 1968):

eﬁt _ eat
My (t) = E[e*] = —.
Hence, the first two moments of X are
a+ a — B)?
E[X] = 'B,Var[X] :%.

Using these and the independency of random variables (E[XY] = E[X]E[Y] for independent random
variables X and Y), the expectation of the solution is obtained as:

E(u() = z E(U0O)x* = E()x + B(B) |x =+ o= o+ w0
= E(A)x + E(B)cosh(x).
Similarly, the variance becomes
Var(u(x)) = E@(x)?) — E(u(x))2 =Var(A)x? + Var(B)cosh(x)?. (11)
Since A,B~U(a = 1 B =2)witha =1and g = 2, we get:

E(u(x)) = —x + E cosh(x) Var(u(x)) = ix + %cosh(x)2

The results are shown in Flgure 1.

the expected value

20 L L L L L
L 7 .
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— //
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w
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-
0 r r r r r
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10 T T T T T
=)
8 ° y
>
0 r r r
0 0.5 1 1.5 2 2.5 3

Figure 1. The expected value and variance of (6) obtained with random DTM.
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Example 4.2 Let us examine the random Volterra integral equation

u() = (A+O)x + 2 _ f (t — ) u(®) dt, u(0) = 0 (12)

where A and C are random varlables with Beta distribution such that the shape parameters are given as @ = 3
and f =2, i.e. A,C~B(a = 3, = 2). For the application of DTM, (12) is transformed as:

k
MM:%A+OMk_D+égEi2_§:Mk—h—UU@r4J

3! . kq
k-1 ! (13)
§(ky — DUk —ky — 1)
. :
k1=0
Theorems 11 and 12 are used and for k = 1, the inverse transformation is obtained.
C C
Ul0)=001)=4+C,U(2)=0UB)=—-=—,U4) =0,U(5) = U(6) =0,
3 (14)
_C
U@) ==,
The solution becomes:
- Cx® Cx°> Cx’
_ k _
u(x) = z UGk = (4+Ox - S+ = ==
k=0 (15)
3 xS x7 '
—Ax+C[x—§+§—?+ ] = Ax + Csin(x).
The moment generating function of a Beta distributed random variable is given as (Feller, 1968):
< a+r
My(t) = E[e*] = z 1_[ tk/k!.
x () = 1+ a+pB+r /
Thus, the expectation, second moment and the variance of a Beta distributed random variable are
a ala+1) ap
E[X] =—— E[X?] = dVar|X] = .
[x] a+p X7 (a+ﬁ’+1)(a+ﬁ)an ar(X] (a+pB)2(a+p+1)
These formulas and the independency of the random variables gives:
X3 5 X7
E(u(x)) = ZE(U(k))x = EMx+EQ) |x - g+~ + (16)
= E(A)x + E(C)sin(x)
Similarly, the variance becomes:
Var(u(x)) = E@(x)?) — E(u(x))2 =Var(A)x? + Var(C) sin?(x). (17)

Fora =3 and 8 = 2, we get:
5 5
E(u(x)) = Ex + Esin(x), Var(u(x)) = —x + —sm2 (x).
The results are shown in Figure 2.

210



Merdan et al. / GUFBED 10 (1) (2020) 205-216

the expected value
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Var(U)

Figure 2. The expected value and variance of (12) obtained with random DTM.

Example 4.3 Consider the random Volterra integral equation

u(x) = A+ Ax + f;(t —x)u(t)dt,u(0) =A (18)
where A is a hormal (Gaussian) random variables with mean and standard deviation 4 = 4 and ¢ = 3, i.e.
A~N(u = 4,02 = 9). Application of DTM requires the transformation of (18) as (Theorems 5, 10, 11):

8k —ky — DUk 1) "i 5(ky — DUk — ky — 1)

k
Uk) = AS(K) + AS(k — 1) + z

k. . (19)
k1=1 k1=0
Using the inverse transformations to get the solutions, we find
A A A A A A
U)=400Q1) = U(Z) U(3) U(4) U(S) = U(6) =— (20)
U(7) = A/7!,
and
. Ax?  Ax®  Ax*  Ax®
u(x)zZU(k)x =A+Ax + T + o + T + o
k=0 (22)
XZ 3 4 x5
= —_— —_ R —_ — X
—A[1+x+2'+3'+ +5'+ = Ae*.

Since the moment generating function (MGF) of a Gaussian random variable X ~ N(u,0?) is (Feller,
1968):
My(®) = E[e™] = e(27°%),
We find the first two moments and the variance as
E[X] =u,E[X?] = u*> + 0% Var[X] =2
Using these results, the expectation becomes:

3 4 5
E(u(x) = ZE(U(k))x = E(4) [1 +x+—+§+x—+’;—'+ ]=E(A)ex, (22)
and the variance:
3 4% 45 2
Var(u() = E()?) - E(u(®)” = Var(4) [1 +x+—+§+—+§+ ] 23)

= Var(4d)e?*
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For u = 4 and o = 3, we get:
E(u(x)) = 4ex,Var(u(x)) = 92X,
The results are shown in Figure 3.

Example 4.4 Consider the random Volterra integro differential equation

2
u(0) =4+ B,u'(0) =-B

B B x
u'(x) = —Ee‘zx +A+——Ae* —Be™* —f e tu(t)dt, (24)
0

where A and B are Gamma distributed random variables such that the shape and scale parameters are given
asa=4and B = 2, hence 4, B~G(ax =4, = 2).
Transforming (24), we get (Theorems 10, 11):

(k+1DUk+1)

B
o (-2 B ACD* BC-D*
2
— + A6 (k) +E5(k) Tk (25)
k-1 (_1)k1 Uk — ky — 1)
- kZ:O ki k '

For k > 1, the inverse transformations and the solution are found.
B B B B B
1! 2! 3! 4! 5! (26)

ue) = g,UU} I

T
and
the expected value
12 T L L L L T L L L
10~ -
2 sl ' .
w -
6 - i
Y- r ~ r r r r r r r r
0 01 02 03 04 05 06 07 08 09 1
X
the variance
80 T r r r r T L L L
2
3
>
0 r r r r r r r r r
0 01 02 03 04 05 06 07 08 09 1
X
Figure 3. The expected value and variance of (18) obtained with random DTM.
= )k Bx?> Bx® Bx* Bx®°
u(x)—ZU( )x*=A+B—Bx+ TR +4! — + -
= (27)
A+B|1 oy e =A+Be™
=A+ _x+i_§+z_§+.” = A+ Be™".
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The MGF of a Gamma distributed random variable X is given as (Feller, 1968)

1

~a-po

Thus, the mean and variance of X ~ G(«,B) are:
E[X] = aB,Var[X] = a B2

My (t) = E[e"]

Using these and the independency of the random variables, we get:

E(u(x)) —iE(U(k)) k=E)+E®B)|1 +x2 z +x4 al +
ur T4 = B 1=xto—5+5 5 (28)
= E(A)+E(B)e™*
and
Var(u(x)) = E@(x)?) — E(u(x))2
x2 x3 x* x° 2
_ VRIS A 29
=Var(4A) +Var(B) [1 x+ TR + YR + ] (29)
= Var(4) + Var(B)e™%*,
Fora=4andf =2,ie A B~G(a =4,3 = 2),wefind:
E(u(x)) =8+ Se_x,Var(u(x)) =16 + 16e~?*.
The results are shown in Figure 4.
the expected value
16 L L L L L
14+ y
S 12- -
w
10 -
8 r r r f d
0 1 2 3 4 5 6
X
the variance
35 L L L L L
30 -
=)
T 25k -
>
20 -
15 r r r r r
0 1 2 4 5 6
X
Figure 4. The expected value and variance of (24) obtained with random DTM.
Example 4.5 Consider the nonlinear random Volterra integro differential equation
A—B
u'(x) = —5 + Bcos(x) — Asin(x) — e* sin(x) + e* cos(x)
(30)

; f (etu(®)) dt, u(0) = 0.
0

where A and B are geometrically distributed random variables such that p = iand q=3/4,ie. A,B~G(p =

%, q= %). Transformation of (30) for DTM gives (Theorems 5, 10, 11):
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(k + DUk + 1)

k . kln
_A-B 500) + B (kn) A (kn) A+B Sin (_2 )
=— 71605 |5 o sin

| — |
2 =, k! (k — k! (31)
ki -
B4 £ cos(14F) , "i Uk —ky — 1)
2 k! (k —ky)! kky!
k,=0 -
for k = 1. Inverse transformations and the solution are obtained through (31) as:
A B A B A
U(0) =A,U(1)=B,U(2) =—5,U(3)= U@ =,U6)=¢,U) = ,U(7) (32)
= —B/7,U(8) = A/8,U(9) = B/9!,
And
N o AXT Axt AxS Ax® Bx® Bx® Bx’
u) _ZU(k)x IR T R TR R TR
Bx? x2  x* 46 X3 x5 x7 (33)
+T...=A 1_5-'_5_5-}— + B x—§+§—ﬁ+---
= Acos(x) + Bsin(x).
The MGF of a Geometrically distributed X ~ G(p, q) is given as (Feller, 1968):
M) = B[] = 2%
X 1—qget
Thus, the expectation and the variance are:
1
E[X] = =, Var[X] = —.
p p
Using these and the independency of the random variables, we get
E(ut)) = Y E(U(0)x*
k=0
2 44 46 ¥ x5 x7 (34)
= E(A) [1—?+Z—E+ ] +E(B) [X-;-l'a—?-l'"']
= E(A) cos(x) + E(B)sin(x)
and
Var(u(x)) = E@(x)?) — E(u(x))2
x*  x® 2 x> x7 2 34
—Var(A)[l——+Z—a+ ] +Var(B)[x——+§—ﬁ+~--] (34)

= Var(4) cos?(x) + Var(B) sin?(x) .
1 3
Forp :Zand q =, we get

E(u(x)) = 4cos(x) + 4sin(x), Var(u(x)) = 12 cos?(x) + 12 sin?(x).

The results are shown in Figure 5.
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the expected value
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Var(U)
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r r
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Figure 5. The expected value and variance of (30) obtained with random DTM.

5. Conclusion

In this study, the application of random
Differential Transformation Method has been
presented for the solutions of random Volterra
integral equations. Volterra integral equations
with random components having Uniform, Beta,
Gaussian, Gamma and Geometric distributions are
given as examples for the method. The expected
values and the variances of the solutions are
obtained and are also shown in graphs. Similar
approaches can be seen for the Adomian
Decomposition Method (Khudair et al., 2016), the
Variational Iteration Method (Khudair et al.,
2011), and the Homotopy Perturbation Method
(Khalaf, 2011). We have shown that the
Differential Transformation Method is an
important tool for analysing random Volterra
integral equations.
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