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ABSTRACT 

Sewing is a critical operation in garment production process. Therefore, alternative sewing machines 
must carefully be evaluated prior to procurement. Multiple criteria decision making (MCDM) 
techniques can effectively be used in sewing machine evaluation process since multiple evaluation 
criteria including speed and price must be considered. However, physically meaningless subjective 
weights are assigned to evaluation criteria in most MCDM techniques. Linear Physical Programming 
(LPP) is a MCDM methodology that eliminates this subjective weight assignment process by 
allowing decision makers to express their preferences in a physically meaningful way. In this study, a 
sewing machine selection problem faced by a textile company is solved using LPP. 
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1. INTRODUCTION 

Sewing is one of the most critical operations in garment 
production [1, 2]. Industrial sewing operations are usually 
carried out by using industrial sewing machines. There are 
many industrial sewing machine alternatives since various 
companies produce many different types of industrial 
sewing machines. Hence a textile company must evaluate 
those alternatives by considering multiple criteria including 
price, speed, weight and power consumption. 

Multi-criteria decision making techniques were commonly 
used in industrial sewing machine evaluation due to the 
above-mentioned multi-criteria nature of the problem. 
Ertuğrul and Öztaş, 2015 applied MOORA (multi-objective 
optimization on the basis of ratio analysis) and TOPSIS 
(Technique for Order Preference by Similarity to Ideal 
Solution) multi criteria decision making techniques to a 
sewing machine selection problem [3]. The rankings 
proposed by those two techniques were compared. Ulutaş, 
2017 employed EDAS (Evaluation based on Distance from 
Average Solution) for the evaluation of alternative sewing 
machines for a textile company [4].  

The weights for the evaluation criteria were assigned 
subjectively in both of the above-cited studies. In this study, 
the subjective weight assignment process is eliminated by 
using linear physical programming (LPP). In LPP, the 
decision maker expresses his/her preferences for each 
criterion in a flexible and natural way. Then a weight 
algorithm is used to determine the criteria weights based on 
the preferences of the decision maker.   

The rest of the paper is organized as follows. Section 2 
provides brief information on LPP. The details on the 
application of LPP to a sewing machine selection problem 
faced by a company are presented in section 3. Finally, 
conclusions and future research directions are presented in 
section 4. 

2. LINEAR PHYSICAL PROGRAMMING 
 
Linear Physical Programming (LPP) was proposed by 
Messac et al., 1996 as an alternative to traditional 
optimization techniques [5]. LPP lets the decision maker 
define a multi objective decision making problem in a 
natural and flexible way. The decision maker can use one of 

To cite this article: Ilgın MA. 2019. Sewing machine selection using linear physical programming. Tekstil ve Konfeksiyon 29 (4), 300-
304. 
 



 

TEKSTİL ve KONFEKSİYON 29(4), 2019 301 

the following four LPP classes for each criterion in the 
problem formulation [6, 7]: 1S (smaller is better), 2S (larger 
is better), 3S (value is better) and 4S (range is better). 
Figure 1 presents the LPP classes. The horizontal axis in 
this figure represents the preference ranges. These ranges 
can be presented for Class 2S as follows: 

• Unacceptable range  : 5
−≤k kc s  

• Highly undesirable range : 5 4
− −≤ ≤k k ks c s  

• Undesirable range  : 4 3
− −≤ ≤k k ks c s  

• Tolerable range  : 3 2
− −≤ ≤k k ks c s  

• Desirable range  : 2 1
− −≤ ≤k k ks c s  

• Ideal range   : 1
−≥k kc s  

The quantities 1
−
ks  through 5

−
ks  are specified by the 

decision maker for the kth generic criterion. Let us assume 
that the decision maker specifies the values of 1

−
ks  through 

5
−
ks  as 300, 250, 200, 150, 100, respectively. If the criterion 

value of an alternative is 280, it would locate in the 

desirable range. If the criterion value is 180, it would be in 
the undesirable range [8]. 
 
The class function fk is presented on the vertical axis. Criteria 
values are mapped into non-dimensional, strictly positive real 
numbers using this function. In other words, the class 
function creates a common scale with dimensionless values 
for each criterion. Considering Class 2S as an example, we 
can see that the value of the class function is very small if the 
criterion value is in the desirable range. If the criterion value 
is in the highly undesirable range, the value of the class 
function becomes too large.     

The application steps of LPP can be presented as follows: 
 
1. Appropriate class functions are determined for the 

criteria.  
2. The limits for the desirability ranges are determined. 

3. The following LPP weight algorithm [5] is employed 
for the calculation of the incremental weights:      

 

Class-1S
"Smaller is Better"

Class-2S
"Larger is Better"

Class-3S
"Value is Better"

Ide
al

De
sir

ab
le

To
ler

ab
le

Un
de

sir
ab

le

Hig
hly

 
un

de
sir

ab
le

Un
ac

ce
pta

ble

De
sir

ab
le

To
ler

ab
le

Un
de

sir
ab

le

Hig
hly

 
un

de
sir

ab
le

Un
ac

ce
pta

ble

Class-4S
"Range is Better"

Un
ac

ce
pta

ble

Ide
al

De
sir

ab
le

To
ler

ab
le

Un
de

sir
ab

le

Hig
hly

 
un

de
sir

ab
le

De
sir

ab
le

To
ler

ab
le

Un
de

sir
ab

le

Hig
hly

 
un

de
sir

ab
le

Un
ac

ce
pta

blesk1 s+
k2 s+

k3          s+
k4 s+

k5                               ck(x)s-
k5 s-

k4 s-
k3          s-

k2   

Un
ac

ce
pta

ble

Hig
hly

 
un

de
sir

ab
le

Un
de

sir
ab

le

To
ler

ab
le

De
sir

ab
le

Ide
al

s-
k5 s-

k4 s-
k3          s-

k2        s-
k1    ck(x)         

Un
ac

ce
pta

ble

Hig
hly

 
un

de
sir

ab
le

Un
de

sir
ab

le

To
ler

ab
le

De
sir

ab
le

Ide
al s+

k1 s+
k2 s+

k3          s+
k4 s+

k5          ck(x)

f5

f4

f3

f2
f1

f5

f4

f3

f2
f1

f5

f4

f3

f2
f1

fk

fk fk

f5

f4

f3

f2
f1

fk

s-
k5 s-

k4 s-
k3          s-

k2                   s-
k1             s+

k1 s+
k2 s+

k3          s+
k4 s+

k5                  ck(x)

 
Figure 1. Classes in LPP 

 
 

3.1. Initialize:  

β = 1.1, 1 0kw+ = , 1 0kw− = , 2f = small positive number 
(say, 0.01), k=0; j=1, NC: number of criteria.  

3.2. Set k = k + 1  

3.3. Set j = j+ 1  

Evaluate, in sequence,  
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min, , , , ,j
kj kj kj kjf s s w w w+ − + −     

If minw is less than a small positive number (say, 0.01), then 

increase β , and go to  3.2. 

3.4. If j ≠  5, go to 3.3. 

3.5. If k ≠ NC, go to 3.2. 

where k represents criterion, j represents range, β  is a 
parameter of convexity (see [5]), fk is the class function for 
the criterion k,  jf represents the change in kf that occurs as 
one travels across the range j, −kjs and +kjs represent the widths 
of the jth ranges on the negative and positive sides of 
criterion k, −

kjw and +
kjw  are negative and positive weights, 

respectively, for the range j of criterion k and minw  is the 
minimum of −

kjw and +
kjw .

 
In class function, the slope increments between different 
desirability ranges are represented with positive and 
negative weights [7]. The following equations can be used 
for the calculation of those weights:  

          (1) 

−
−=




j

kj
kj

fw
s

           (2) 
 

In those equations,  jf , +kjs and −kjs are calculated as follows:  
 

1( 1)β −= − j jf NC f           (3) 

( 1)
+ + +

−= −kj kj k js s s           (4) 

( 1)
− − −

−= −kj kj k js s s            (5) 

4. A total score (T) for each alternative is calculated by 

taking the weighted sum of deviations: 
5

, 1 2
min ( )
− +

− − + +

= =

= ⋅ + ⋅∑∑
kj kj

NC

kj kj kj kj
d d k j

T w d w d           (6) 

where −
kjd and +

kjd represent the deviations from the 
corresponding target values for the kth criterion value of the 
alternative of interest. Alternatives are ranked using total scores. 
The best alternative is the one with the lowest total score value. 

LPP-based solution methodologies were developed in order 
solve various problems in different domains including 
production planning [9], reverse logistics [10] and robot 
selection [11]. The interested reader is referred to a 
comprehensive review by Ilgin and Gupta, 2012 for more 
information on LPP applications [6].   

3. INDUSTRIAL SEWING MACHINE SELECTION 
USING LPP 

 

This section presents the application of LPP to a sewing 
machine selection problem faced by a textile company. The 
company tries to determine the most suitable single-needle 
lockstitch industrial sewing machine. The following five 
evaluation criteria were determined by interviewing the 
managers of the company: 
 

• Price: Average market price in dollars ($) was used. 
Price must be minimized in order to minimize the total 
cost of investment. 

• Power Consumption: The company prefers industrial 
sewing machines with low power consumption in order 
to minimize its energy costs. The unit for power 
consumption is Volt-Amperes (VA). 

• Weight: The weight of machine head in kilogram (kg) 
was considered as a criterion. The weight should be as 
low as possible for ease of transportation.  

• Maximum Speed: Maximum speed in stitches per minute 
(spm) was considered as a criterion. Maximum speed of 
the machine should be as high as possible.  

• After-sale Support: The quality of the after-sale support 
services offered by a sewing machine manufacturer is a 
vital criterion. This criterion is evaluated using a 10-
point scale (10 being the highest after-sale support and 1 
being the lowest after-sale support). 

 
Table 1 presents the criteria values for the eight alternative 
industrial sewing machines (ISM) considered in this study. 
Target values for each criterion were presented in Table 2. 
Those values were determined by interviewing the 
managers of the company. The three criteria (Price, Power 
Consumption and Weight) were modeled as Class 1S while 
the other two criteria (Maximum Speed and After-sale 
Support) were modeled as Class 2S.  
 
C++ programming language was used to code the LPP 
weight algorithm and the criteria weights presented in 
Table 3 were obtained using this algorithm. A screenshot 
from this algorithm is presented in Figure 2. 

An LPP model for each ISM was constructed using Lingo 
(v17) mathematical programming software. Deviations 
from the target values for each ISM were determined using 
this model. As an example, deviations for ISM 1 are 
presented in Table 4. For instance, consider the first 
criterion (price - f1). The deviation for j=2 can be 
determined in two steps. First, the value of the criterion 
(i.e., 1495, see the bolded number in Table 1) is subtracted 
from the target value (i.e., 1250; see the bolded number in 
Table 2). Then the absolute value (i.e., 245, see the bolded 
number in Table 4) of this difference is taken.  

The total score for each ISM (see Table 5) was determined 
by solving the associated LPP model. For instance, the total 
score for ISM 1 is calculated by using the deviations from 
Table 4 and the criteria weights from Table 3: 

Total_ScoreISM1 = 245*0.04+100*0.2+50*0.138462+7*2+ 
2*2.4+500*0.01+5*1=65.5231 

A ranking of alternative ISMs is also presented in Table 5. 
ISM 1 with the lowest total score is the best ISM based on 
the preferences of the decision makers.   
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Table 1. Characteristics of alternative ISMs 

Machines Price 
($) 

Power 
Consumption (VA) 

Weight 
(kg) Maximum Speed (spm) After-sale  

Support 
ISM 1 1495 400 37 5000 8 
ISM 2 1800 415 46 5000 8 
ISM 3 2150 520 40.5 5000 6 
ISM 4 1300 250 36 4000 6 
ISM 5 2049 320 30 5000 6 
ISM 6 1825 450 34.5 5000 8 
ISM 7 2079 390 28 5500 6 
ISM 8 1850 320 38 5000 6 

 

 
Figure 2. A screenshot from the weight algorithm 

Table 2. Target values for the evaluation criteria 

Criterion 1 (k=1): Price Criterion 2 (k=2):Power Consumption 
Class 1S Class 1S 

Preference Preference 
Range Limit Limit  

Value Preference Preference 
Range Limit Limit  

Value 
I ≤ s-11 s-11 1250 I ≤ s-21 s-21 300 
D (s-11, s-12) s-12 1500 D (s-21, s-22) s-22 350 
T (s-12, s-13) s-13 1800 T (s-22, s-23) s-23 415 

UD (s-13, s-14) s-14 2250 UD (s-23, s-24) s-24 480 
HU (s-14, s-15) s-15 2500 HU (s-24, s-25) s-25 520 
UA ≥ s-15   UA ≥ s-25   

     
Criterion (k=3): Weight Criterion 4 (k=4): Maximum Speed 
Class 1S Class 2S 

Preference Preference 
Range Limit Limit  

Value Preference Preference 
Range Limit Limit  

Value 
I ≤ s-31 s-31 30 I ≥ s+41 s+41 5500 
D (s-31, s-32) s-32 35 D (s+41, s+42) s+42 5000 
T (s-32, s-33) s-33 40 T (s+42, s+43) s+43 4500 

UD (s-33, s-34) s-34 45 UD (s+43, s+44) s+44 4000 
HU (s-34, s-35) s-35 50 HU (s+44, s+45) s+45 3000 
UA ≥ s-35   UA ≤  s+45   

  
Criterion 5 (k=5): After-sale Support  
Class 2S 

Preference Preference 
Range Limit Limit  

Value 
I:       Ideal 
D:     Desirable 
T:     Tolerable 
UD:  Undesirable 
HU:  Highly Undesirable 
UA:  Unacceptable 

 

I ≥s+51 s+51 9 
D (s+51, s+52) s+52 7 
T (s+52, s+53) s+53 5 

UD (s+53, s+54) s+54 3 
HU (s+54, s+55) s+55 1 
UA ≤  s+55   



 

304 TEKSTİL ve KONFEKSİYON 29(4), 2019 

 
Table 3. Weights for each criterion 

Criteria 
 

2kw+

 
3kw+

 4kw+  5kw+  2kw−  3kw−  4kw−  5kw−  

Price (k=1) 0.04 0.033333 0.034222 0.318364 - - - - 
Power 
Consumption  
(k=2) 

0.2 0.138462 0.406154 1.917385 - - - - 

Weight (k=3) 2 2.4 5.28 11.616 - - - - 
Max. Speed 
(k=4) - - - - 0.01 0.017400 0.010138 0.013889 

After-sale 
Support (k=5) - - - - 5 1.85 2.5345 3.472265 

 

 
 

 

Table 4. Deviations for ISM 1 

Criteria j=2 j=3 j=4 j=5 
Price (k=1) 245 0 0 0 
Power Consumption  (k=2) 100 50 0 0 
Weight (k=3) 7 2 0 0 
Max. Speed (k=4) 500 0 0 0 
After-sale Support (k=5) 1 0 0 0 

 

Table 5. Total scores and ranks of alternative ISMs 

Alternatives Total Score Rank 
ISM 1 65.5231 1 
ISM 2 175.6959 7 
ISM 3 315.2143 8 
ISM 4 70.719 2 
ISM 5 84.63109 3 
ISM 6 111.7504 6 
ISM 7 102.3962 5 
ISM 8 86.42765 4 

 

4. CONCLUSION  
 
The use of the most suitable sewing machine has an utmost 
importance in the profitability and effectiveness of sewing 
operations. In this study, LPP was employed in order to 
solve the sewing machine selection problem faced by a 
textile company. A ranking of eight alternative industrial 
sewing machines was obtained based on the preferences of 
company managers. ISM 1 is proposed as the best sewing 
machine since it has the lowest total score.    
 
Although LPP allows the decision maker to express his/her 
preferences using physically meaningful values it cannot 
consider the uncertainty and vagueness associated with 
decision maker's preferences. That is why development of a 
sewing machine selection approach based on fuzzy linear 
physical programming can be an interesting future research 
topic.  
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