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ON THE Ka−CONTINUITY OF REAL FUNCTIONS

KAMIL DEMIRCI, SEVDA YILDIZ, AND FADIME DIRIK

Abstract. The aim of the present paper is to define Ka−continuity which is
associated to the number sequence a = (an) and to give some new results.

1. Introduction and Preliminaries

Robbins proposed a problem and he asked readers to show that a function f :
R→ R with the following property has to be linear:

lim
n

1

n

n∑
k=1

f (xk) = f (x0) whenever lim
n

1

n

n∑
k=1

xk = x0, x0 ∈ R,

in 1946 ([9]). Solution by R. C. Buck [10] was published in 1948 (the problem
was also solved by five others). Since then, different type continuities defined and
studied by authors. Antoni and Salat [3] defined the concept of A−continuity for
real functions based on A−summability. After that the notion of F−continuity
based on almost convergence (F−convergence) was introduced in the paper [11] by
Öztürk. This method studied by Borsik and Salat [4] and they remark that almost
convergence and A−summability are not equivalent. Also some authors studied
different concepts of continuity [2, 10, 12, 13].
Let A = (ank) be an infinite matrix of real numbers and x = (xn) be a number se-

quence. The sequence (A (x)n) where A (x)n =
∞∑
k=1

ankxk is called the A−transform

of x whenever the series converges for n = 1, 2, 3, .... The sequence x is said to be
A−summable to l if the sequence (A (x)n) converges to l and we write A−limn xn = l.
A is called regular if lim

n
xn = l implies A− lim

n
xn = l ([5, 6]).
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A sequence (xn) of real numbers is said to be almost convergent (F−convergent)
to number l if

lim
p

1

p

p∑
k=1

xn+k = l

holds uniformly in n = 1, 2, 3, ... and we write F − lim
n
xn = l[8].

Definition 1. Let A = (ank) be a regular matrix of real numbers and (xn) be a
number sequence. A function f : R → R is A−continuous at a point x0 ∈ R if
A− lim

n
f (xn) = f (x0) whenever A− lim

n
xn = x0([2, 3]).

Definition 2. A function f : R → R is F−continuous at a point x0 ∈ R if
F − lim

n
f (xn) = f (x0) whenever F − lim

n
xn = x0.

In the present paper, we study the concept of Ka−continuity based on Ka−
convergence, was defined by Lazic and Jovovic [7]. It is now natural to ask:
Is the Ka−continuity a special case of A−continuity or do Ka−continuity and
F−continuity contain each other? In general the answer is no. Simple examples
show that these continuity methods do not contain each other. Namely, these
methods are overlap.
We now recall some definitions and properties:
The notion of Ka−convergence was defined by Lazic and Jovovic [7] in 1993,

which is obviously associated to the matrix A = (ank),

A =


a1 0 0 0 ...
a2 a1 0 0
a3 a2 a1 0
.
.

 .

Let a = (an) and (xn) be number sequences, set yn =
n∑
i=1

an−i+1xi (n = 1, 2, 3, ...) ,

then we say that (yn) is the Ka−transformation of the (xn) .

Definition 3. [7] The sequence (xn) of real numbers is said to be Ka−convergent
to the number l if, its Ka−transformation (yn) converges to the number l, i.e.
lim
n
yn = l. This limit is denoted by Ka − lim

n
xn = l.

Proposition 4. [7] Let a = (an) be a number sequence and the series
∑
an be

absolutely convergent, i.e.
∞∑
n=1

|an| <∞. (1)
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(i) If (xn) is convergent, lim
n
xn = l and the condition (1) is satisfied then,

Ka − lim
n
xn = l

∞∑
n=1

an.

(ii) The convergence method Ka is regular if and only if the condition (1) and
∞∑
n=1

an = 1 (2)

are valid (for more properties and details, see also [7]).

Now, we will give examples which show that Ka−convergence and almost con-
vergence do not imply each other.

Example 5. Let a = (an) = (2, 2,−2, 0, 0, ...) and let

x = (xi) = (1, 0, 1,−1, 2,−3, 5,−8, ...) [xi = xi−2 − xi−1 for i ≥ 3] .

Then,

(yk) =

(
k∑
i=1

ak−i+1xi

)
= (2, 2, 0, 0, ...) .

Therefore Ka − lim
n
xn = 0. However, F − lim

n
xn does not exist. Also, observe that

∞∑
n=1

an = 2 and Ka is not regular.

Example 6. Let a = (an) = (1, 0, 1, 0, 0, ...) and let

(xi) =

(
1, 1,

1

23
,
1

24
, 1, 1,

1

27
,
1

28
, 1, 1, ...

)
.

Then,

(yn) =

(
n∑
i=1

an−i+1xi

)
=

(
1, 1, 1 +

1

23
, 1 +

1

24
,
1

23
+ 1,

1

24
+ 1, ...

)
.

Hence Ka− lim
n
xn = 1. However, F − lim

n
xn 6= 1. Also, observe that

∞∑
n=1

an = 2 and

Ka is not regular.

Now, we introduce the notion of Ka−continuity.

Definition 7. Let a = (an) and (xn) be number sequences. The function f :
R → R is Ka−continuous at a point x0 ∈ R if Ka − lim

n
f (xn) = f (x0) whenever

Ka − lim
n
xn = x0.
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Lemma 8. If (fn) is a sequence of Ka−continuous functions defined on a subset

D of R,
∞∑
n=1

|an| =M 6= 0 and (fn) is uniformly convergent to a function f, then f

is Ka−continuous on D.

Proof. Let (xn) be a Ka−convergent sequence and ε > 0. Since (fn) is uniformly
convergent, then there exists a positive integer N such that |fn (x)− f (x)| <

ε
2(M+1) for all x ∈ D, whenever n ≥ N. As fN is Ka−continuous, there exists

a positive integer N1, greater than N , such that

∣∣∣∣∣
n∑
i=1

an−i+1fN (xi)− fN (x0)
∣∣∣∣∣ < ε

2

for n ≥ N1 (ε) . Then, for all n ≥ N1, we get∣∣∣∣∣
n∑
i=1

an−i+1f (xi)− f (x0)
∣∣∣∣∣ ≤

∣∣∣∣∣
n∑
i=1

an−i+1 (f (xi)− fN (xi))
∣∣∣∣∣

+

∣∣∣∣∣
n∑
i=1

an−i+1fN (xi)− fN (x0)
∣∣∣∣∣

+ |fN (x0)− f (x0)|
<

ε

2 (M + 1)
M +

ε

2
+

ε

2 (M + 1)
= ε.

This completes the proof. �

2. Main Results

In this section we prove our main theorems.

Theorem 9. Let a = (an) be a number sequence and
∞∑
n=1

|an| < ∞. If f : R → R

is Ka−continuous at a point x0 ∈ R, then f is a linear function.

Proof. Let
∞∑
n=1

an = N and N 6= 0. First, we can assume that g : R → R is

Ka−continuous at a point 0 and g (0) = 0 as a special case.
Let x = (b, c, d, b, c, d, ...) such that b, c, d ∈ R and b + c + d = 0 and let a =

(an) = (1, 1, 1, 0, 0, ...) . Then the sequence Ka−convergent to 0. Indeed,(
n∑
i=1

an−i+1xi

)
= (b, b+ c, 0, 0, ...) .

This means Ka − lim
n
xn = 0. According to assumption, we have Ka − lim

n
g (xn) =

g (0) = 0, i.e., the sequence (g (xn)) = (g (b) , g (c) , g (d) , ...) is Ka−convergent to
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0. Also, by a direct calculation, we can see that(
n∑
i=1

an−i+1g (xi)

)
= (g (b) , g (b) + g (c) , g (b) + g (c) + g (d) , g (c) + g (d) + g (b) , ...) .,

Ka − lim
n
g (xn) = g (b) + g (c) + g (d) . Hence

g (b) + g (c) + g (d) = 0 (3)

Since d = −b− c, we get g (−b− c) = −g (b)− g (c) . Putting c = 0 we have

g (−b) = −g (b) (b ∈ R) (4)

Let x, y ∈ R arbitrary. Put d = x + y, b = −x, c = −y then b + c + d = 0 and
according to (3) and (4), we get

g (x+ y) = −g (−x)− g (−y) = g (x) + g (y) , g (nx) = ng (x) .

If a sequence (xn) is Ka−convergent to zero, so that lim
n

n∑
i=1

an−i+1xi = 0, then it

can be seen that

lim
n

n∑
i=1

an−i+1g (xi) = lim
n
g

(
n∑
i=1

an−i+1xi

)
= 0.

Hence g is continuous in the usual sense at zero. On the basis of well known
knowledge on Cauchy equation we get g (x) = Cx for x ∈ R, C being a constant
(p. 44-45, [1]).
Now, we shall discuss the general case. Let f : R → R be Ka−continuous at

a point x0 ∈ R. We write new coordinates x′ = x − x0, y′ = Ny − f (x0) . Put
g (x′) = Nf (x) − f (x0) . It is easy to see that from the Ka−continuity of f at
x0 the Ka−continuity of g at 0 follows. Hence, g has the form g (x′) = C ′x′, i.e.,
Nf (x)− f (x0) = C ′x′ = C ′ (x− x0) = C ′x− C ′x0, f (x) = C′

N x+
−C′x0+f(x0)

N =

Cx+B where C = C′

N and B = −C
′x0+f(x0)
N . The proof is finished. �

Theorem 10. Let a = (an) be a number sequence,
∞∑
n=1

|an| < ∞ and f : R → R

have the following property:
there exists such a point x0 ∈ R that the following implication

Ka − lim
n
xn = x0 ⇒ lim

n
f (xn) =

f (x0)

N
, (5)

where N =

∞∑
n=1

an (N 6= 0) , is valid. Then f is a constant function.
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Proof. From (5) and Proposition 4, we have

Ka − lim
n
xn = x0 ⇒ Ka − lim

n
f (xn) = f (x0) .

Hence f is Ka−continuous at a point x0 ∈ R. The Theorem 9 says that f is linear.
Put b = x0 − 1, c = x0 + 1 and a = (an) =

(
1
2 ,

1
2 , 0, 0, ...

)
. Then the sequence

(xn) = (b, c, b, c, ...) is Ka−convergent to x0, i.e.,(
n∑
i=1

an−i+1xi

)
=

(
x0 − 1
2

, x0, x0, ...

)
,

Ka − lim
n
xn = x0. It follows from (5) that

(f (xn)) = (f (b) , f (c) , f (b) , f (c) , ...)

converges. The last statement yields

f (b) = f (c) . (6)

Since f is a linear function it follows from (6) that f is a constant function. �

We note that if
∞∑
n=1

an = 1 then the matrix A = (ank) given via the sequence a =

(an) is regular. In that case, the Ka−continuity is a special case of A−continuity.

But, here
∞∑
n=1

|an| <∞ and therefore our main theorems Theorem 9 and Theorem

10 are not a consequence of the results concerning the A−continuity.
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