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1 Introduction
Let w be the set of all sequences of real or complex numbers and ¢, ¢ and cq be respectively the Banach spaces of bounded, convergent and

null sequences x = () with the usual norm ||z||,, = sup |zy|, where k € N = {1,2, ...}, the set of positive integers. Also by bs, cs, £1
and /;; we denote the spaces of all bounded, convergent, absolutely summable and p—absolutely summable sequences, respectively.

A sequence space X with a linear topology is called a K —space provided each of the maps p; : X — C defined by p; (x) = z; is continuous
for each ¢ € N, where C denotes the complex field. A K —space X is called an F'K —space provided X is a complete linear metric space. An
F K —space whose topology is normable is called a BK —space. We say that an F'K —space X has AK (or has the AK property), if (ey) (
the sequence of unit vectors) is a Schauder bases for X.

The notion of difference sequence spaces was introduced by Kizmaz [1] and the notion was generalized by Et and Colak [2]. Later on Et and
Nuray [3] generalized these sequence spaces to the following sequence spaces:

Let X be any sequence space and let m be a non-negative integer. Then,

A™(X) ={z = (zx) : (A™zy) € X}
0, _ m,, _ m—1 m—1 m _ UL i m .
Az = (z), Az = (A xp — A Zpy1 ) and so Az = S (—1) i) Theieis a Banach space normed by
i=0

m
Izl ="l + [|A™ 2] -
=1

If x €X (A™) then there exists one and only one y = (y;) € X such that
k—m k
k—i—1 k4+m—i—1
xk_z;(—l)m(m1>yi_z;(_1)M< " >yim7 Yiem = Y2—m =+ =yo =0
= i=

for sufficiently large k, for instance k > 2m. Recently, a large amount of work has been catried out by many mathematicians regarding various
generalizations of sequence spaces. For a detailed account of sequence spaces one may refer to ([2-13]).

In 1932, Agnew [4] introduced the concept of deferred Cesaro mean of real (or complex) valued sequences © = (xj,) defined by
q(n)

1
Dpgx), = ——— T, n=12.3,...,
( P.q )n (q (n) - p(n)) k:pz(n:)-i-l '

where p = {p (n)} and ¢ = {q (n)} are the sequences of non-negative integers satisfying

p(n) < ¢(n) and nli_)mooq (n) = oco. (1)
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2 Topological Properties of X (A™)

In this section we prove some results involving the sequence spaces C§(A™), C£(A™) and CL (A™).

Definition 1. Let m be a fixed non-negative integer and let {p (n)} and {q (n)} be two sequences of non-negative integers satisfying the
condition (1). We define the following sequence spaces:

q(n)

(¢(n) —p(n)) 2

k=p(n)+1

CS(A"”) =<z = () :lim Az =05,
n

q(n)
m . 1 m
Cii(A ) = m:(a:k):héni Z (A"zy — L) = ,
k=p(n)+1
4 1 q(n)
CH(A™) =z = (x):sup | ———— AN < o0
(&) @) sswp | =y 2 AT
=p(n)+1

The above sequence spaces contain some unbounded sequences for m > 1, for example let x = (k™) | then © € Cgo(Am)7 but x ¢ loo.

Theorem 1. The sequence spaces C§(A™), CL(A™) and CL, (A™) are Banach spaces normed by

m 1 LI(”)
[2lla =D |l +sup —————| D> ATz
P n (q(n)—p(n)) k(41
Proof: Proof follows from Theorem 1 of Et and Nuray [3]. O

Theorem 2. X (A™ 1) ¢ X(A™) and the inclusion is strict for X = C’g, s and CL .

Proof: The inclusions part of the proof are esay. To see that the inclusions are strict, let m = 2 and ¢ (n) = n,p(n) = 0 and consider a
sequence defined by x = (kQ) ,then z € C{(A?), butz ¢ CL(A) (Ifz = (k2) , then (Azxk) =(2,2,2,...). O

Theorem 3. The inclusions C§(A™) € CHA™) c CL (A™) are strict.

Proof: First inclusion is esay. Second inclusion follows from the following inequality

1 q(n) . 1 q(n) . 1 q(n)
aw—rom |2 A" S G |2 A Gm e |2
1 q(n) .
<Gy | 2 ATe L+l

k=p(n)+1

For strict the inclusion, observe that z = (1,0,1,0,...) € CL(A™), but = ¢ C{(A™), ( If z =(1,0,1,0,...), then (A™x}) =
((71)m+1 2m+1>). 0

Theorem 4. C{{(A™) is a closed subspace of CL (A™).

© CPOST 2019 199



Proof: Proof follows from Theorem 4 of Et and Nuray [3]. O

Theorem 5. CS{(A™) is a nowhere dense subset of CL (A™).

Proof: Proof follows from the fact that C{'(A™) is a proper and complete subspace of CZ (A™). O

Theorem 6. C (A™) is not separable, in general.

Proof: Suppose that C% (A™) is separable for some m > 1, for example let m = 2 and ¢ (n) = n,p(n) = 0. In this case Coo(A?) is
separable. In Theorem 5, Bhardwaj et al. [5] show that Cixo (A?) is not separable. So C'L (A™) is not separable, in general. d

Theorem 7. CZ (A™) does not have Schauder basis. separable, in general.

Proof: Proof follows from the fact that if a normed space has a Schauder basis, then it is separable. O

Theorem 8. C{/(A™) is separable.

Proof: Proof follows from Theorem 5 of Et and Nuray [3]. O
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