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ABSTRACT: This work builds on former research carried out concerning load-extension properties of plain knitted glass technical fabrics. In 
related former research, it was determined that a load-extension or a load-contraction curve could be considered in three stages of extension or 
contraction. These stages were a) the extension or contraction of the fabric (the first stage), b) the extension of the yarn along with the change 
of the shape of the sample (the second stage), and, c) the extension or contraction of the fibres (the third stage). In the same works, theoretical 
analyses were then provided to explain the first stage of extension or contraction, and thus some simple equations between load and extension 
and between load and contraction together with Poisson’s ratio were obtained. In obtaining the extension of the loop head curve, the equation 
of extension of a circular ring had been applied. This formulation enabled the emergence of a method that separates the frictional restrains 
and/or fabric jamming forces from the experimentally obtained quadratic curve fittings for plain knitted fabrics. Building on those former 
studies, for the present work, similar experimental studies for the first stages of extensions or contractions, were carried out for some more 
complex technical weft knitted structures that use E-glass and Aramid yarns. The curve fitting equations are obtained and some empirical 
equations are given, assuming that the same method of separating frictional restrains and/or fabric jamming forces from quadratic curve fittings 
also applies for complex structures. Extension and contraction rates are also calculated and discussed further. These empirical equations can, 
of course, be used in related engineering software.  

 

Keywords: Weft knitted fabric, load-extension, contraction, empirical equations, glass fiber, aramid fiber, initial extension rates, initial 
contraction rates. 

 
 

BAZI KARMAŞIK CAM VE ARAMİD TEKNİK ATKI ÖRME KUMAŞLARIN BAŞLANGIÇ  
YÜK-UZAMA ÖZELLİKLERİ İÇİN AMPİRİK DENKLEMLER VE POİSSON ORANLARI 

 
ÖZET: Bu çalışma, daha önce cam düz örme kumaşların yük-uzama özellikleri üzerine yapılan bir çalışmanın devamı niteliğindedir. Daha 
önceki çalışmada cam düz örmek kumaşların yük-uzama ve yük-enden daralma eğrilerinin üç aşamada gerçekleştiği gösterilmiştir. Bular; a) 
kumaş uzaması ve yandan daralması (1. aşama), b) iplik uzaması, incelmesi ve deney numunesinin şekil değiştirmesi (2. aşama) ve c) lif 
uzaması ve incelmesidir (3. aşama). Aynı çalışmada, 1. aşamanın açıklanması için teorik çalışma yapılmış, yük-uzama, yük-yandan daralma 
eğrileri için basit formüller bulunmuş ve Poisson oranları hesaplanabilmiştir. Teorik çalışmada ilmek başı uzaması, ilk defa, dairesel elastik 
halkanın uzaması problemi kullanılarak hesaplanmıştır. Bu formülasyon, düz örme kumaşlarda deneysel sonuçlara parabolik regresyon 
denklemleri yazılabildiği durumlarda sürtünme kuvvetleri ile uzamaya sebep olan dış kuvvetlerin birbirinden ayrıştırılabileceği şeklinde bir 
metod geliştirilmesinin önünü açmıştır. Önceki çalışmayı temel alan şimdiki çalışmada, Cam ve Aramid teknik iplikleri kullanılarak bu sefer 
karmaşık atkı örme yapıları için geniş bir deneysel yük-uzama ve yük-yandan daralma eğrilerinin 1. aşamaları incelenmiştir. Deney 
sonuçlarının regresyon denklemleri yazılmış, bazı sık Aramid örgüleri hariç genellikle parabolik regresyon denklemleri elde edilmiştir. Elde 
edilen parabolik regresyon denklemleri daha önceki çalışmada düz örgüler için elde edilen denklemler esas alınarak, bahsi geçen çalışmada 
bulunan ‘sürtünme ve iç kuvvetler ile dış kuvvetlerin ayrıştırılması metodu’ karmaşık örgüler için de geçerli olduğu kabulü yapılarak 
yorumlanmış ve yük-uzama ve yük-yandan daralma eğrileri ampirik formüller şeklinde ifade edilmiştir. Bu ampirik formüller kullanılarak yük-
uzama oranları ve yük-enden daralma oranlarının hesaplanabildiği yeni bir metod geliştirilmiş ve ayrıntılı olarak irdelenmiştir. Bu yeni 
çıkarılan ampirik formüller, tabi ki, ilgili mühendislik bilgisayar paket programlarında kullanılabilir. 
 

Anahtar Kelimeler: Atkı örme kumaş, yük-uzama eğrileri, enden daralma, amprik denklemler, cam lifleri, aramid lifleri, başlangıç uzama 
oranları, başlangıç enden daralma oranları 
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1. INTRODUCTION 
 
Technical applications of knitted fabrics are increasing day by day. 
Some technical functions of knitted fabrics depend on the geometry 
of the employed structure as well as on potential changes in its shape 
under applied loads. In relation to this, Hepworth [1], MacRory et 
al [2,3], Popper [4], Shanahan and Postle [5], Hong et al [6] have 
worked on load-extension properties of plain knitted fabrics in 
course-wise direction. Hepworth [1], MacRory et al [2,3], Popper 
[4], Shanahan and Postle [7], Hong et al [6], moreover, have worked 
on load-extension properties of plain knitted fabrics in wale-wise 
direction. Most of the aforementioned research, however, applied 
the non-inflexional elastica theory in modelling the extension of the 
loop head curve. The lack of those models was that discontinuities 
occurred between the loop head curve and the rest of the loop 
curves, hence the models did not completely match the 
experimental results. Moreover, frictional resistances were not 
properly considered in those early models.  Later on, further 
research on the geometrical and mechanical properties of technical 
glass plain knitted fabrics in their dry relaxed [8,9] and loaded 
[10,11] conditions was conducted by Kurbak. Those works [8,9] 
pointed out that the dry relaxed technical slack plain knitted fabrics 
kept their stable shapes by the effect of frictional restrains. When 
the loop heads were assumed to be circular in shape, the reaction 
force between the loops could be calculated as  
 
ோ


ൌ

ଶୱ୧୬ఈభబ
ఘಳೀሺబ ୡ୭ୱఎబାభబ ୲ୟ୬ఎబሻ

 (1) 

 

where R is the reaction force. B is the bending rigidity, ߩை is the 
radius of the curvature at point B in Figure 1, and ߩை ൌ 	ܽ can 
be written. The parameter ܽ, in turn, is the radius of the circular 
loop head curve and ܿ is the course-spacing at relaxed state. The 
other geometrical parameters ߙଵ, and η are, respectively, the 
leaning angles of the loop head in the third dimension and the 
leaning angles of the loop arms in course-wise direction at relaxed 
state, where the general forms of these angles, ߙଵ and η, are shown 
in Figure 1. The parameter ݁ଵ is the major diameter of the 
imaginary cylinders at relaxed state, which are illustrated in Figure 
1. 
 

In further work, Kurbak [10,11] investigated the load-extension 
and load-contraction properties of plain knitted glass technical 
fabrics experimentally and theoretically. The results showed that 
there were three stages of extensions or contractions namely a) the 
extension or contraction of the fabric (the first stage), b) the 
extension or contraction of the yarn along with the shape changes 
of the samples (the second stage), c) the extension or contraction 
of the fibres (the third stage). Kurbak then conducted a theoretical 
work to explain the first stage of extensions or contractions further 
and obtained the following equations: 

 

When the fabrics were loaded in the wale-wise direction, the 
relation between the extension rate ߝଵௐ and the load ௐܶ and also 
between the contraction rate ߝଶௐ and ௐܶ were given by  

 

Figure 1: Plain knitted slack fabric model (Kurbak [11]). 
 

ଵௐߝ ൌ 	
ௌೈమబ

ሺబିௌೈభబሻ

்ೈ
ଶோ

 (2) 

 

ଶௐߝ ൌ
ଵ

ሺ௪బାೈሻ
െܦௐ െ ߭ሺݓ  2݀ሻଶ √

.ଽହඥ்ೈ ଶାிೄೈ⁄

ଽ.ଶ√
൨ (3) 

 

 
When the fabrics were loaded in the course-wise direction, the 
relation between the extension rate ߝଵ and the load ܶ and also 
between the contraction rate ߝଶ and ܶ were given by  
 

ଵߝ ൌ
ଵ

ሺௐబାሻ
െܦ  ሺݓ  2݀ሻଶ

√ଵ.ඥ்ାிೄ
ଽ.ଶ√

൨ (4) 

 

ଶߝ ൌ െ
ௌమబௗ

ሺబିௌభబௗሻ

்
ோ

 (5) 

 
where ߝଵௐ is the extension rate in the wale-wise loaded samples. 
 ଶௐ is the contraction rate in the course-wise direction under loadߝ
applied in the wale-wise direction. ߝଵ is the extension rate in the 
course-wise loaded samples. ߝଶ is the contraction rate in the 
wale-wise direction under load applied in the course-wise 
direction.  
 

ௐܦ ൌ 	߭ሺݓ  2݀ሻଶ
√.ଽହඥிೄೈ
ଽ.ଶ√

  

ௌௐܨ ൌ 0.405	݃.  

ܵௐଵ ൌ sinൣߤ	 ଵ,௩ߙ െ cosߙଵ൧ ൌ 0.08705  

ܵௐଶ ൌ 	 ൣ1  ߤ sin ଵ,௩൧ߙ ൌ 1.1954  

ܦ ൌ ሺݓ  2݀ሻଶ
√ଵ.ඥிೄ
ଽ.ଶ√

  

ௌܨ ൌ 0.695	݃.  

ܵଵ ൌ ଵߙcosൣߤ  ߭ሺsin ଵ,௩ߙ െ cosߙଵሻ൧ ൌ 0.1516  

ܵଶ ൌ 	 ൣ߭  ߤ sin ଵ,௩൧ߙ ൌ 0.6874 

 

Where ݓ and ܿ are the wale-spacing and course-spacing of fully 
relaxed fabric (global minimum without friction). ܨௌௐ, ܨௌ, ܵௐଶௗ 
and ܵଶௗ are the frictional forces in Equations (2 - 5) which are 
applied in dry relaxed state. ܦௐ, ܦ, ܵௐଵௗ and ܵଵௗ are the 
differences between the dry relaxed fabric parameters (c, w) and 
fully relaxed fabric parameters (ܿ,  ). The indices in Equationsݓ
(2 - 5) are used as such that c and w are used for the load 
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application directions, 1 and 2 are used for extension and 
contraction respectively. 
 

The diameter of the 136 tex glass yarn ݀ ൌ 0.354	݉݉ was found. 
The coefficient of the friction between glass and glass was 
obtained as ߤ ൌ 0.24. The bending rigidity ܤ ൌ 2.87	݃݉݉ଶ was 
used. For Poisson’s ratio ߭ ൌ 	1 2⁄  was found for plain knitted 
fabrics. ߙଵ ൌ 61.159୭ and ߙଵ,௩ ൌ 51.331୭ were taken for the 
course-wise loaded samples and ߙଵ ൌ 63.031୭ and ߙଵ,௩ ൌ
54.71୭ were found for the wale-wise loaded samples. Further 
parameters are given in Table 1. 
 

It should be noted here that ߙଵ was the loop head leaning angle 
at relaxed fabric state. This angle changed with applying load. The 
geometrical model of the plain knit fabric was also drawn at the 
last point of the first stage of the load-extension curve. This point 
was the fifth point of the dead weights applied. The drawn 
geometrical model gave a ߙଵ leaning angle value. The average of 
 .ଵ,௩ valueߙ ଵ was then taken asߙ ଵ andߙ
 
Table 1. Reference state parameters of glass plain knitted fabric (Kurbak 

[11]). 

Ref. State parameters Reaction 
Force 

ݓ  ݀⁄  ܿை ݀⁄  ݈ ݀⁄  Rሾ݃ሿ 
Wale-wise loaded 
samples 

6.751 4.410 22.987 3.840 

Course-wise loaded 
samples 

6.763 4.455 23.361 4.328 

 
The values given in Table 1 were calculated theoretically through 
the geometrical and physical parameters at the relaxed state. 
 

In obtaining Equations (3 and 4): (a) The loop head curves were 
modelled by using the equation of the extension of a circular ring 
(see Kurbak [10]) therefore no discontinuities occurred between 
the loop head curve and the rest of the loop curves during the 
extension. (b) It was shown that when the experimental quadratic 
curve fitting equations 
 

ݕ ൌ ܽଵ	ݔଶ  ܾଵ	ݔ  ܿଵ	 (6) 
 

were written in the form of  
 
ݕ ൌ ܽଵ	ሺݔ െ ሻଶݔ    (7)	ݕ
 

the ݕ	values were the frictional restrains or/and  inter fabric 
jamming forces. Therefore the equations were written in the form 
of  

ݔ െ ݔ ൌ
ඥሺ௬ି௬బሻ

√భ	
 (8) 

 

and thus the Equations (3 and 4) were obtained. 
 

Where ݕ is the total load applied in a direction (wale-wise or 
course-wise), ݔ is the sample length (h) for extension, or the 
minimum fabric width (bmin) for contraction. 
 
In the present work, building on Kurbak’s [8-11] works that are 
described above, the first stages of load-extension and/or load 
contraction properties of some complex weft knitted structures are 

studied experimentally. The aim here is to investigate whether 
empirical equations based on the Equations (2-4) can be found for 
such complex knitted fabrics as well, based on the assumption that 
the ݕ	 values in Regression Equations (7) being frictional 
restrains and/or fabric jamming forces also applies for complex 
fabrics. The outcoming equations are expected to be useful for 
engineering software that are generally used for technical 
applications of textiles, such as composite reinforcements, stretch 
sensors, air permeabilities etc. These kinds of applications usually 
start from dry relaxed fabric conditions; therefore the study 
particularly focuses on this state. The work, furthermore, is 
primarily conducted for composite reinforcement applications, 
therefore high modulus yarns such as E-glass and para-aramid are 
chosen for the study. 
 
2. EXPERIMENTAL PROCEDURE 
 

 The knitted structures chosen for this study were 1x1 Rib, 
Milano Rib, Half Cardigan and Full Cardigan Derivative. Knit 
notations of these fabrics are given in Figures 2a, 2b, 2c and 2d. 
It should be noted here that due to some spiralities that occurred 
in the fabrics with Full Cardigan structure itself, the Full 
Cardigan Derivative structure that is given in Figure 2d was 
chosen for this work. 

 

 Samples were knitted on a 7 gauge (7 needles per inch) V-bed 
hand-knitting machine. In order to study the effect of tightness, 
the samples were knitted at different cam settings of the 
machine, namely, three different cam settings for 1x1 Rib (R6, 
R8, and R10), and two different cam settings for Milano Rib 
(M8 and M10), Half Cardigan (Y8 and Y10) and Full Cardigan 
Derivative (S8 and S10). 

 

 Two types of yarns were used to knit the samples, namely, 136 
tex E-glass yarn (EC9 68 1x2 twisted E-glass yarn) and 168 tex 
Aramid yarn (Twaron [12], 2012). 

 

 
2a) 1x1 Rib 2b) Milano Rib

 
2c) Half Cardigan 2d) Full Cardigan Derivative

Figure 2. Knit notations of the fabrics chosen in this work 
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Estimations of the yarn diameters: Kurbak [11] estimated the 
diameter of 136 tex E-glass yarn as  

݀ ൌ 1.18	݀ ൌ 0.354	݉݉  (9) 

where ݀ was the yarn diameter in the yarn cross-section 
calculated by using the open fibre packaging model by Hearle, 
Grosberg and Backer [13]. It is also known that the yarn diameter 
can be related to the square root of the yarn tex. When Equation 
(9) is given in terms of the yarn tex, the equation  

݀ ൌ 0.03035ඥܶ݁ݔ	୪ୟୱୱ  (10) 

is obtained. The yarn diameter of 168 tex aramid is estimated here 
by using the equivalent yarn tex of the aramid in glass as  

݀ ൌ 0.03035ට
ଵ଼∗ଶ.ହହ

ଵ.ସସ
≌ 0.5236	݉݉  (11) 

where 

ߩ ൌ 2.55	݃/ܿ݉ଷ is the density of the glass fibres and ߩ ≌
1.44	݃/ܿ݉ଷ is the average density of the aramid fibres. 

Estimations of bending rigidities of yarns used: Kurbak [11] used 
the same 136 tex E-glass yarn and found the bending rigidity ܤ 
for 136 tex E-glass yarn as  

ܤ ൌ 2.87	݃݉݉ଶ  (12) 

by using an equation given by Lomov and Verpoest [14] for glass 
yarns as  

ܤ ൌ 1.886		10ିହ	ݔ݁ݐଶ  1.937		10ିଶ	ݔ݁ݐ	ሾ݃	݉݉ଶሿ  (13) 

On the other hand, Kurbak [15], using a different measuring 
system, measured the values 2.66 gmm2 and 18 gmm2 respectively 
for the bending rigidities of 136 tex E-glass and 168 tex aramid 

yarns. Assuming that the ratio 
ଶ.଼

ଶ.
 obtained between Lomov and 

Verpoest’s system of measurements and Kurbak’s system of 
measurements for glass yarns is also valid for aramid yarns, the 
bending rigidity of 168 tex aramid yarn can be estimated as 

ܤ ൌ 	
ଶ.଼

ଶ.
	18 ൌ 19.3483	݃݉݉ଶ  (14) 

In summary, for the 136 tex E-glass and 168 tex aramid yarns that 
are used in this work, the estimated yarn diameters that are given 
in Equations (9) and (11) together with the estimated bending 
rigidities given in Equations (12) and (14) are used throughout the 
work. 

 Two sets of samples were prepared for each structure, each 
chosen tightness points, and each yarn. One of the sets was 
prepared for wale-wise loadings and the other for loadings in 
the course-wise direction.  

The samples were prepared in the following manner: 

i) Wale-wise loading samples: The intention was to obtain a 
hxb=20x10 cm rectangle as the main measuring area of the 
samples. Therefore, the sample lengths (h) at dry relaxed fabric 
condition were chosen in order to fulfil the minimum of 20 cm 
main sample length plus additional fabric parts above and below 
the main sample to be used in fixing the jaws of any measurement 
tester. 

Because of the differences in structure and tightness, it was 
challenging to adjust the sample widths (b) to exact 10 cm in their 
dry relaxed states. Therefore, a constant knitting zone composed 
of 35 needles from each bed (from the back and front beds) was 
set. The sample widths (b), accordingly, were obtained as 10 cm 
in average. 

Because of the high bending rigidities of aramid and glass 
technical yarns, fabric samples unravel easily. To prevent the 
unravelling, ten rows of cotton borders were knitted at the 
beginning and end of each sample. Some examples of E-glass and 
aramid wale-wise load-extension measuring samples can be seen 
in Figure 3a. The average sample widths (b), which are obtained 
by measuring the samples in dry relaxed state at their minimum 
places ,is given in Table 2. A total of five wale-wise loading 
samples were knitted for each case.   

ii) Course-wise loading samples: Again, the abovementioned 
ܾݔ݄ ൌ -ଶ main sample area was intended for the course݉ܿ	10ݔ20
wise loading samples as well. In this case, a knitting zone 
constitutes the sample lengths (h) of the course-wise loading 
samples. Therefore a constant knitting zone of 110 needles on 
each bed (front and back) was set. Through this setting, it was 
possible to obtain the minimum sample length of 20 cm as well as 
the additional fabric parts at the lower and upper sides necessary 
for fixing the samples in the jaws of any measuring tester. Again, 
it was challenging to keep the sample widths (b) at exactly 10 cm. 
Based on the initial tests that were conducted, sufficient numbers 
of rows of fabric were knitted as the widths (b) of the course-wise 
loading samples and the intended average sample widths (b) 
around 10 cm was achieved. 

A total of 5 samples per case were knitted to measure the course-
wise extension of the fabrics. The averages of the 5 sample widths 
(b), which were measured at their dry relaxed conditions, are given 
in Table 2. 

To prevent unraveling, 10 rows of cotton borders were knitted at 
the beginning and at the end of each sample. It was assumed that 
these cotton borders had neglectable minimal effect on the load-
extension measurements. 

Some examples of course-wise loading samples are given in 
Figure 3b. 

 

  
(a)                                                       (b) 

Figure 3. Experimental Samples a) Wale-wise load extension measuring 
samples, b) Course-wise load-extension measuring samples. 
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Table 2. The average sample widths (b) in cm. 

  1x1 Rib Milano Rib Half Cardigan Full Cardigan 

R6 R8 R10 M8 M10 Y8 Y10 S8 S10 

Glass Wales-wise 9.46 9.8 11.5 8.72 11.54 10.82 11.74 11.5 14.2 

Course-wise 10.08 6.7 8.62 9.18 9.68 9.28 8.96 8.34 8.62 

Aramid Wales-wise 7.76 10.12 12.12 8.86 9.82 11.66 12.1 11.3 13.22 

Course-wise 9.14 9.26 8.54 9.64 10.18 9.46 8.3 8.12 7.14 

 

 For each experimental case, one extra sample was prepared to 
measure the samples’ dimensional properties. 

 In total, 216 samples were prepared:  

4 types of structure x (2 different tightness value +1 extra tightness 
value for 1x1 rib) x 2 types of yarn x 2 directions (wale-wise and 
course-wise) x (5 samples from each case to measure the load-
extension properties + 1 extra sample for measuring dimensional 
properties of the samples) = 216 samples.  

 The measurement methods of dimensional properties at dry 
relaxed fabric condition:  

i) Courses per cm (cpc) and wales per cm (wpc): 

After two weeks of dry relaxation on a smooth surface, courses 
per cm (cpc) and wales per cm (wpc) were counted with a two-
inch square magnifying glass at three different places of the wale-
wise loaded samples. The same was done for the course-wise 
loaded samples. Then, the average value was obtained and divided 
by 2x2.54 as (cpc) and (wpc). 

In the half cardigan structure, the number of courses on the front 
side is twice the number of courses on the backside. Thus, in this 
work, the number of courses on the backside was taken into 
consideration. To obtain the number of courses on the front side, 
the number of courses obtained here should be multiplied by two.  

ii) Loop length (l): 

After two weeks of dry relaxation on a smooth surface, areas in 
the size of 105ݔ	ܿ݉ଶ were pointed out at three different regions 

of each sample and these areas were cut out. From each piece, 5 
rows were separated and their course lengths (L) were measured 
by hanging 10 g weights below them. With 10 g weight, the curled 
yarns were observed to be straightened. The average of 3 parts x 
5 rows= 15 course lengths (L) was divided by the average number 
of loops (at the back and in the front sides) in a row in order to 
obtain the loop length (l). 

Dönmez and Kurbak [16] and also Kurbak and Alpyıldız [17], 
2009b showed that the yarn length of a tuck stitch was slightly 
bigger than the stitch length (l) of a normal loop. In the present 
work, however, if a row is constructed as a combination of tuck 
stitches and normal stitches, the yarn length of tuck stitches and 
the yarn length of normal stitches are assumed to be equal. Thus, 
the average loop length (l) was found by dividing the average 
course length (L) by the total number of normal stitches plus tuck 
stitches in a particular row.  

If a structure unit, like the Half Cardigan, has rib rows and rows 
that contain tuck stitches, the stitch lengths of the two types of 
rows were given separately.  

If a structure unit, like the Milano Rib, is a combination of rib rows 
and plain knit rows, their stitch lengths were, again, given 
separately. 

The obtained dimensional properties of dry relaxed samples are 
given in Table 3a for E-glass samples and in Table 3b for Aramid 
samples.  

 
Table 3a. Dimensional properties of dry relaxed Glass fabric samples 

Knitted Structures Tightness Loop Lenght (Ɩ) [mm] Course per cm (cpc) Wales per cm (wpc) Mass per unit area g/m² 

1x1 Rib 
R6 5.923 9.52 4.69 783.409 
R8 7.330 7.65 3.54 575.587 
R10 9.185 5.37 3.02 460.176 

Milano Rib 

 
M8 

Rib/Plain 
7.815/ 5.807 8.06 3.84 718.239 

M10 
Rib/Plain 
9.698/ 7.307 6.63 2.86 475.402 

Half Cardigan 
Y8 

Rib/Tuck 
7.295/ 7.56 6.32 3.05 842.921 

Y10 
Rib/Tuck 
9.243/ 9.842 4.8 2.61 678.354 

Full Cardigan 
Derivative 

S8 
Rib/Tuck 
7.463 /7.739 4.1 3 842.755 

S10 
Rib/Tuck 
8.860/ 9.378 4 2.3 659.663 
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Table 3b. Dimensional properties of dry relaxed Aramid fabric samples 

Knitted Structures Tightness Loop Lenght(Ɩ) [mm] Course per cm (cpc) Wales per cm (wpc) Mass per unit area g/m² 

1x1 Rib 
R6 6.620 7.66 3.98 749.002 
R8 7.358 7.49 3.37 691.027 
R10 8.813 5.79 3.31 677.532 

Milano Rib 

 
M8 

Rib / Plain 
7.835/ 6.775 8.03 4.13 866.605 

M10 
Rib/Plain 
9.769/ 8.805 5.72 3.3 658.282 

Half Cardigan 
Y8 

Rib/Tuck 
7.524/ 7.961 5.18 2.88 833.477 

Y10 
Rib/ Tuck 
8.917/ 9.498 3.36 2.81 682.489 

Full Cardigan 
Derivative 

S8 
Rib/ Tuck 
6.844/ 7.210 6.8 2.9 815.225 

S10 
Rib/Tuck 
9.007/ 9.804 3.5 2.5 651.702 

 
 
It should be remembered that the inverse of (cpc) and the inverse 
of (wpc) in Tables 3a and 3b are equal to the course-spacing (c) 
and the wale-spacing (w) respectively as  
 

ܿ ൌ
ଵ

ሺሻ
ሾ݉݉ሿ   (15) 

ݓ ൌ
ଵ

ሺ௪ሻ
ሾ݉݉ሿ  (16) 

 
 Methods of load-extension and load-contraction measurements: 

 
The load-extension and load-contraction properties of the samples 
were measured by a special apparatus (Elmalı [18]) seen in Figure 
4, since standard methods would not have allowed exploring the 
load-contraction behaviours of the fabrics in question. 
 
Since technical yarns are too brittle and often break when being 
fixed in the jaws of load-extension measurement testers, a special 
friction system was designed to be used at the upper and lower 
ends of the samples in order to prevent yarn breakages. Load-
extension and load-contraction behaviours of the samples were 
measured by hanging dead weights at the lower friction system 
given in Figure 4. The dead weights were gradually increased and, 
at each load level, the length (h) and the width (ܾ) at the mid 
points of the samples were measured with a ruler. 
 

 
Figure 4. Special apparatus to measure the load-extension properties in 

this work (Elmalı [18]). 

According to the initial plan that was set for this study, the first 
experiments were in fact devoted to measure all three extension 
and contraction stages (the first, second, and third stage). 
Therefore, initially, 12 constant dead weights were arranged as 
given in Table 4.  
 

 
 

Figure 5. The shape of a sample under loading, a) sample shape for the 
first stage of extension, b) sample shape for the second and third 
stages of extension (Kurbak [11]). 

 
During the initial experiments, it was observed that some 
extension in the fabric parts placed in the inner side of the special 
friction system shown in Figure 4 inevitably occurred at about the 
eighth load level. Therefore, despite the original plan, it was later 
decided that, while continuing to measure all stages of the load-
extension and load-contraction curves with 12 constant dead 
weights, the present work would be devoted only to the first stage 
of extensions or contractions. The rest of the measurements were 
solely used for a) predicting the exact load point at which the first 
stage of extension ended b) figuring out whether all three stages 
of extensions or contractions can be distinguished in complex 
structures as in plain knitted structure previously given by Kurbak 
[11]. 
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Table 4. The dead weights used to measure load-extension and load-contraction properties.  

Load Levels 1 2 3 4 5 6 

Amount of weight (g) 0 238.4 480 800 1050 1563.33 

Load Levels 7 8 9 10 11 12 

Amount of weight (g) 2050.5 4050.5 6001.5 8360 10700 12570.5 
 
 
As a result, load-extension and load contraction curves of all 
relevant cases were drawn to scale for all 12 dead weights as given 
in Table 4.  
 

It was observed that:  
 

i) All three stages of extensions and contractions were 
distinguishable in complex structures as they were in plain knitted 
fabrics as formerly proven by Kurbak [11]. Some examples of the 
obtained load extension and load-contraction curves are given in 
Figures 6a and 6b.  
 

ii) The end point of the first stage is determined to be the 5th load 
level given in Table 4 for all the cases in question in this study. 
 

iii) Due to the use of a special friction system, no slippages of 
fabrics occurred in the friction system for the first stages of 
extensions and contractions. 
 

iv) Since the aim of the present work is focused on the 
exploration of the first stages of load-extension and load-
contraction properties of the cases in question, hereafter, only the 
first 5 load levels given in Table 4 will be used. 
 

 
Figure 6. Examples of load-extension and load-contraction results for all 

three stages (see ref [19]), a) load-extension, b) load-
contraction. 

 
3. EXPERIMENTAL RESULTS 
 

Experimentally obtained h and ܾ values with changing load 
level T are given at tables in APPENDIX A together with example 
drawings of load-extension and load-contruction curves for each 
table.  
 

Regression analyses are applied to all cases in question and given 
in the form of Equation (6). The constants of Regression 
Equations (6) are given in Table 5, together with their correlation 
coefficients R2: 
 

As seen in Table 5, the correlation coefficients are very high; 
therefore, Regression Equations (6) can be used. 

For comparison purposes, Regression Equations (6) and their 
constants given in Table 5 are written in terms of unit structure 
parameters as follows: 
 
a) For the wale-wise loaded samples  
 

௪ܶ ൌ
௬

	ሺ௪ሻ
  (17) 

 
is defined, where b (wpc) is the average number of loops on a face 
of sample width (b). For the case (i) of contraction equations of 
the wale-wise loaded samples, the equation  
 
ݓ ൌ

௫

	ሺ௪ሻ
  (18) 

 
is used, whereas for the case (ii) of extension equations of the 
wale-wise loaded samples (see Figure 5), the equation  
 
ܿ௩ ൌ

௫

	ሺሻ
  (19) 

 
is used. 
 
It should be noted here that the variable ݕ is the total load applied 
on a sample, the variable  ݔ is the measured length or width of a 
sample under loading condition. the parameter b and h are the 
sample width and length respectively at dry relaxed fabric 
conditions. cpc and wpc are the course per cm and wales per cm 
of the samples at dry relaxed conditions. ௪ܶ, ݓ and ܿ௩ values 
are the calculated wale-wise applied load, minimum wale-spacing 
(see Figure 5) and average course-spacing of a loop under wale-
wise loading conditions. 
 
If the general regression equation is  
 
ݕ ൌ 	ܽଵݔଶ  ܾଵݔ  ܿଵ  (20) 
 
for the contraction equations of the wale-wise loaded samples  
 

௪ܶ ൌ 	
ఈభሺ	௪ሻ

ଵ
ݓ
ଶ െ

భ
ଵ
ݓ 

భ
ሺ	௪ሻ

  (21) 

 
change of variables are applied, whereas for the extension 
equations of the wale-wise loaded samples 
 

௪ܶ ൌ
భሺ	ሻమ

ଵ	ሺ	௪ሻ
ܿ௩ଶ െ

భሺ	ሻమ

ଵ	ሺ	௪ሻ
ܿ௩ 

భ
ሺ	௪ሻ

  (22) 

 
change of variables are applied, where cpc and wpc are given in 
Tables 3a and 3b while b parameters are given in Table 2.  
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Table 5: Constants of Regression Equations (6) together with their correlation coefficients R2 

 

Contraction, x = bmin [cm] Extension, x = h [cm] 

G
L

A
SS

 

Structure Load 
Direction 

Tight a1 b1 c1 R2 a1 b1 c1 R2 

1x1 RIB Wale-Wise R6*1 86.087 -1553 7246.6 0.984 7.3835 -307.92 3453.3 0.9739 
R8 38.067 -739.28 3597.6 0.9923 6.4031 -274.67 2939.4 0.9861 
R10 26.719 -563.73 3958.7 0.978 5.4554 -247.26 2771.8 0.9765 

Course-
Wise 

R6*1 12.312 -391.1 2889.7 0.9873 1.1824 -34.639 410.56 0.9963 
R8 64.499 -789.9 2410.1 0.9634 1.017 -53.209 664.85 0.9817 
R10 57.428 -733.52 2059.5 0.9309 0.9207 -66.554 966.47 0.9589 

MILANO 
RIB 

Wale-Wise M8 59.717 -1085.1 5131.8 0.9956 7.6744 -301.26 3177.6 0.9943 
M10 21.337 -493.3 2935.7 0.9991 4.1551 -168.37 1727.6 0.9741 

Course-
Wise 

M8 10.538 -360.36 2601.9 0.9969 5.0279 -160.18 1332.7 0.9966 
M10 15.752 -356.55 2000.8 0.9767 4.5162 -175.78 1723.8 0.977 

HALF 
CARDIGA
N 

Wale-Wise Y8 106.96 -2272.1 12066 0.9978 3.8588 -187.94 2207.5 0.9894 
Y10 121.38 -2655.7 14453 0.9783 4.1865 -208.25 2492.8 0.9875 

Course-
Wise 

Y8 56.381 -1163.5 5947.4 0.9987 1.4622 -77.269 966.67 0.9799 
Y10 66.541 -1143.6 4908.8 0.9967 1.4782 -97.486 1360.8 0.977 

FULL 
CARDIGA
N 

Wale-Wise S8 30.996 -775.82 4837.1 0.9915 1.9435 -77.354 793.79 0.97 
S10 17.372 -479.63 3322 0.9764 2.0671 -102.84 1239.6 0.9635 

Course-
Wise 

S8 71.31 -1316.5 6027.3 0.9957 1.5107 -81.117 1022.6 0.9786 
S10 61.012 -986.61 3975.4 0.9891 2.9376 -184.72 2520.6 0.9785 

P
.A

R
A

M
ID

 

1x1 RIB Wale-Wise R6 226.59 -5209 26675 0.9996   724.83 -14496 0.9979 
R8 3.6642 -489.89 4657 0.9756   134.31 -25969 0.9698 
R10 42.727 -1010.2 5994.6 0.9316 3.0278 -118.94 1214.7 0.9419 

Course-
Wise 

R6   -12919 11810 0.9988   144.71 -2852.3 0.99 
R8   -673.87 6325.1 0.979   95.359 -1892.8 0.9932 
R10   -224.92 1925.3 0.9954 0.72 -27.874 267.3 0.9994 

MILANO 
RIB 

Wale-Wise  M8   -1965.6 17449 0.9937   661.79 -13135 0.9723 
M10 31.111 -997.62 6822.5 0.9939   157.2 -3142.9 0.9835 

(OR) M10         6.8911 -161.95 513.44 0.9881 
Course-
Wise 

M8   -1991.5 19266 0.9799   558.83 -11103 0.9842 
M10   -557.73 5734 0.9896   145.16 -2888.4 0.9986 

HALF 
CARDIGA
N 

Wale-Wise Y8 227.75 -5886.6 37705 0.9987 24.851 -956.3 9200.5 0.9913 
Y10 193.82 -4954.3 31594 0.99 11.109 -427.17 4114.8 0.9882 

Course-
Wise 

Y8   -656.01 6255.1 0.9894 2.1676 -66.358 478.91 0.9896 
Y10   -335.15 2747.1 0.9781 1.4557 -79.53 1013.7 0.9804 

(OR) Y10 52.573 -1048.8 5103.3 0.9935         
FULL 
CARDIGA
N 

Wale-Wise  S8   -806.24 9201.8 0.9717 5.5094 -145.29 738.45 0.9823 
S10   -341.92 4480 0.9836 13.482 -579.01 6195.7 0.981 

(OR) S10 46.636 -1433.9 10816 0.9961         
Course-
Wise 

S8   -772.7 6321.3 0.9907 1.823 -62.759 544.34 0.9853 
S10   -356.61 2492.1 0.9722 1.6691 -96.791 1271.7 0.9872 

(OR) S10 70.88 -1165.3 4719.9 0.9963         
*1: The first point is not included in the regression analyses. 

 

It should be noted here that the ݓ and ܿ௩ parameteres are 
given in mm, therefore ܽଵ and ܾଵ constants in Equations (21) and 
(22) are also divided by 100 and 10 respectively. 
 

b) On the other hand, for the course-wise loaded samples, the 
equation  

 

ܶ ൌ
௬

	ሺሻ
  (23) 

 
is valid. In this category  
 

ܿ ൌ
௫

	ሺሻ
  (24) 

for (i) contraction equations and 
 
௩ݓ ൌ 	

௫

	ሺ௪ሻ
  (25) 

for (ii) extension equations should also be considered. Using 
Equations (23, 24 and 25), the change of variable equations 
 

ܶ ൌ
భሺ	ሻ

ଵ
ܿ
ଶ െ

భ
ଵ
ܿ 

భ
ሺ	ሻ

  (26) 

ܶ ൌ
భሺ	௪ሻమ

ଵሺ	ሻ
௩ଶݓ െ

భሺ	௪ሻ

ଵሺ	ሻ
௩ݓ 

భ
ሺ	ሻ

   (27) 
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are obtained to be applied for the contraction equations (i) and for 
the extension equations (ii) of the course-wise loaded samples 
respectively. 
 
Where ܶ, ܿ and ݓ௩ values are the calculated course-wise 
applied load, minimum course-spacing and average wale-spacing 
of a loop under the course-wise applied loading conditions. 
 
After applying Equations (21, 22, 26 and 27) in related Regression 
Equations (6 or 20) through Table 5, the following forms of 
equations are assumed and applied in accordance with the 
obtaining of Equation (8) as given in the work of Kurbak [11] for 
plain knitted glass fabrics. 
 
a) For the wale-wise loaded samples 
 
i) Contraction 
 

ݓ ൌ ݓ
" േ	ඥ

்ೢ ା

మ
  (28) 

 
ii) Extension 
 

ܿ௩ ൌ ܿ േ
ඥ்ೢ ା

మ
  (29) 

 
b) For the course-wise loaded samples 
 
i) Contraction  
 

ܿ ൌ ܿ
" േ ඥ ்ା

మ
  (30) 

 
ii) Extension 
 

௩ݓ ൌ ݓ	 േ
ඥ ்ା

మ
  (31) 

 
Here, it should be noted that the m values in Equations (28-31) are 
assumed to be as frictional restrains and/or fabric jamming forces 
as were the y0 values given in Equation (8). 
 
Assuming that the side edges of loaded samples constitute 
parabolic curves (see Figure 5a) for the first stages of extensions, 
Kurbak [11] found the following equations to obtain ݓ௩ and ܿ௩ 
in places of ݓ and ܿ in Equations (28 and 30), thus  
 

௩ݓ ൌ
ଵ

ଷ
ݓ
ᇱ 

ଶ

ଷ
   (32)ݓ

ܿ௩ ൌ
ଵ

ଷ
ܿ
ᇱ 

ଶ

ଷ
ܿ   (33) 

 
When Equations (32) and (33) are replaced in Equations (28) and 
(30), the following forms are obtained 
 

௩ݓ ൌ 	
ଶ௪బ

"ା௪బ
ᇲ

ଷ
േ ඥ்ೢ ା

ଵ.ହమ
   (34) 

ܿ௩ ൌ 	
ଶబ

"ାబ
ᇲ

ଷ
േ ඥ ்ା

ଵ.ହమ
   (35) 

These changes of variables are also applied to all of the related 
Regressions Equations (6) through Table 5, by equalizing the w 
and c values obtained from Tables 3a and 3b through the 
Equations (15) and (16) to the ݓ

ᇱ  and ܿ
ᇱ  in Equations (34) and 

(35) respectively. 
 
With these final changes, the final forms of Equations (28-31) 
become as follows: 
 
a) For the wale-wise loaded samples 
 
i) Contraction 
 

௩ݓ ൌ ݓ േ
ඥ்ೢ ା

య
  (36) 

 
ii) Extension 
 

ܿ௩ ൌ ܿ േ
ඥ்ೢ ା

య
   (37) 

 
b) For the course-wise loaded samples 
 
i) Contraction  
 

ܿ௩ ൌ ܿ േ
ඥ ்ା

య
   (38) 

 
ii) Extension 
 

௩ݓ ൌ ݓ േ
ඥ ்ା

య
   (39) 

 
where 
 

ݓ ൌ
ଶ௪బ

"ା௪బ
ᇲ

ଷ
   (40) 

ܿ ൌ
ଶబ

"ାబ
ᇲ

ଷ
   (41) 

 
are taken for Equations (36) and (38) and also 
 
ܽଷ ൌ 1.5	ܽଶ  (42) 
 
is taken for the same Equations (36) and (38) while ܽଶ do not 
change in Equations (37) and (39) as 
 
ܽଷ ൌ 	ܽଶ  (43) 
 
Similar equations as Equations (17-43) are also valid for the cases 
in which the linear regression equations are applied. The only 
differences are that the ܿ 

ଶ ݓ ,
ଶ ௩ଶݓ ,  and ܿ ௩

ଶ  parameters should 
be equalized to zero and the phrases ඥ ௪ܶ ݉ and ඥ ܶ  ݉ 
should be replaced by ܶ ௪ and ܶ  all through the Equations (17-43).  
 
The parameters ݓ, ܿ, m and ܽଷ of Equations (36-39) are given 
in Table 6 for all cases considered. 
 
When T is equalized to zero in Equations (36-39), two roots are 
obtained for each case if m is positive. For these cases, the relaxed 
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fabrics can either be in root 1 condition or in root 2 condition, 
which are also given in Table 6. If the m parameter is negative, 
there is no root for T is equal to zero. Therefore, for those cases, 0 
(zero) are placed in Table 10. If a regression equation is linear, 
there is no m value and thus there is only one root. For these cases 
‘–’ (dash) are put in places of m and root in Table 6.  All these 
situations are explained further in the next section.  
 

Since it is not useful in practice to have too many equations and 
also to be able to cover the intermediate tightnesses, some 
empirical equations are obtained in the next section. 
 
It is seen from Table 6 that the m values are small enough to be 
considered as frictional restrains and/or fabric jamming forces. 
Therefore, considering Equation (8) and assuming ݕ values in 
Equation (8) or the m values in Table 6 as frictional restrains 
and/or fabric jamming forces is reasonable. 

 
Table 6. The calculated parameters of Equations (36-39) for all the present experimental cases 

 ܿ, ݓ m ܽଷ root 

   AIai∗

  R6ݓ 

R8 
R10 

2.0661 
2.8076 
3.1287 

-5.4683 
-0.2393 
0.4250 

9.2703 
5.4510 
4.5693 

0 
0 
2 

AIaii ܿ R6 
R8 
R10 

1.0952 
1.4018 
2.1100 

-5.4757 
0.1784 
0.8543 

7.7672 
6.5731 
4.2566 

0 
1 
1 

AIbi ܿ R6 
R8 
R10 

1.4534 
1.2322 (1.4970) 
1.5405 

2.2529 
0.1623 
6.1105 

5.1559 
8.6245 
7.7338 

1 
2 
2 

AIbii ݓ R6 
R8 
R10 

1.5616 (2.1322) 
3.6949 
5.5840 

-1.1635 
0.6071 
5.1041 

1.0412 
0.9973 
0.8518 

0 
1 
1 

AIIai ݓ M8 
M10 

2.6770 
3.5241 

-6.0390 
-0.7999 

6.7073 
3.9805 

0 
0 

AIIaii ܿ M8 
M10 

1.2176 
1.5316 

-6.6286 
-0.5462 

7.7173 
4.6992 

0 
0 

AIIbi ܿ M8 
M10 

1.9541 
1.6784 

6.4716 
0.2625 

4.1885 
4.7693 

1 
1 

AIIbii ݓ M8 
M10 

2.0741 
3.4023 

-0.7695 
-0.2083 

2.0020 
1.5174 

0 
0 

AIIIai ݓ Y8 
Y10 

3.2385 
3.6573 

0.0085 
2.3877 

8.9118 
9.1478 

2 
2 

AIIIaii ܿ Y8 
Y10 

1.9204 
2.5908 

2.0085 
3.1642 

4.3222 
3.5485 

1 
1 

AIIIbi ܿ Y8 
Y10 

1.7003 
2.0311 

0.9413 
0.5120 

8.6256 
8.0103 

1 
2 

AIIIbii ݓ Y8 
Y10 

4.3315 
6.3169 

0.9230 
5.7310 

0.9632 
0.9677 

1 
1 

AIVai ݓ S8 
S10 

3.5294 
4.2268 

0.5082 
-0.3499 

4.9052 
3.5729 

1 
0 

AIVaii ܿ S8 
S10 

2.4229 
3.1094 

-0,7712 
1.2093 

1.9462 
2.0126 

0 
1 

AIVbi ܿ S8 
S10 

2.6127 
2.3966 

1.4298 
0.3816 

7.4070 
6.8799 

1 
2 

AIVbii ݓ S8 
S10 

4.4746 
6.8353 

1.9387 
11.1244 

1.2611 
1.3427 

1 
1 

BIai∗ ݓ R6 
R8 
R10 

2.5112 
2.9673 
3.0211 

- 
- 
-0.5865 

273.645 
63.558 
6.21023 

- 
- 
0 

BIaii ܿ R6 
R8 
R10 

1.3054 
1.3300 
1.6961 

- 
- 
-1.1623 

359.5424 
58.9942 
3.1813 

- 
- 
0 

BIbi ܿ R6 
R8 
R10 

1.3056 
1.3472 
1.7298 

- 
- 
- 

193.785 
101.0805 
33.738 

- 
- 
- 

BIbii ݓ R6 
R8 
R10 

2.4762 
2.9450 
3.0211 

- 
- 
0.0501 

16.4528 
9.2681 
0.7988 

- 
- 
1 
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Table 6. The calculated parameters of Equations (36-39) for all the present experimental cases 
 

BIIai ݓ M8 
M10 

2.4244 
3.0344 

- 
- 

294.84 
68.2995 

- 
- 

BIIaii 
 

ܿ M8 
M10 

1.2358 
1.7476 

- 
- 

290.4571 
55.4983 

- 
- 

  BIIbi  ܿ M8 
M10 

1.2483 
1.7618 

- 
- 

298.725 
83.6595 

- 
- 

BIIbii ݓ M8 
M10 

2.4054 
3.01485 

- 
- 

59.6303 
16.4531 

- 
- 

BIIIai ݓ Y8 
Y10 

3.7064 
3.6922 

9.8962 
1.9306 

13.1179 
12.1769 

1 
1 

BIIIaii ܿ Y8 
Y10 

1.8572 (1.5343) 
2.8611 (2.8140) 

-0.0170 
-0.2456 

8.9122 
3.8411 

0 
0 

BIIIbi ܿ Y8 
Y10 
(or) Y10 

1.9408 
3.3765 
2.9515 

- 
4.5695 
- 

98.4 
5.7436 
50.2725 

- 
1 
- 

BIIIbii ݓ Y8 
Y10 

2.6573 
4.8606 

0.5896 
2.6015 

1.2114 
1.2840 

2 
1 

BIVai ݓ S8 
S10 
(or) S10 

3.4713 
4.4277 
3.9763 

- 
6.2299 
- 

120.936 
5.8890 
51.288 

- 
1 
- 

BIVaii ܿ S8 
S10 

0.9695 
3.0676 (2.8414) 

6.6958 
0.6345 

5.5764 
4.4708 

2 
1 

BIVbi ܿ S8 
S10 
(or) 

1.4779 
3.1453 
2.8167 

- 
2.7858 
- 

115.905 
6.3130 
53.4915 

- 
1 
- 

BIVbii ݓ S8 
S10 

2.9678 (4.0150) 
5.7990 (5.4429) 

-0.0761 
5.7989 

1.0539 
1.2922 

0 
1 

∗: A) Glass, B) Aramid, I) 1x1 Rib, II) Milano Rib, III) Half Cardigan, IV) Full Cardigan Derivative, a) Wale-wise loaded samples, b) Course-wise loaded samples, i) 
Contraction, ii) Extension 

 

4. SUGGESTIONS OF SOME EMPIRICAL EQUATIONS, 
POISSON’S RATIOS AND CALCULATIONS OF 
EXTENSION RATES 

During the obtaining of empirical equations, the following points 
were considered. 

1. All of the regression equations for glass yarn gave similar 
equations to Equations (3) and (4), which were obtained for plain 
knitted fabrics by Kurbak [11]. Therefore. for glass yarn, the 
following empirical forms of equations should be written: 

a) for wale-wise loaded samples 

i) contraction  

௩ݓ ൌ ݓ െ ߭ଵ
ᇳሺ௪బିௗሻඥ்ೢ ଶ⁄ ା ଶ⁄

ర√
  (44) 

ii) extension  

ܿ௩ ൌ ܿ 
ᇱሺబሻඥ்ೢ ଶ⁄ ା ଶ⁄

ఱ√
   (45) 

b) for course-wise loaded samples 

i) contraction 

ܿ௩ ൌ ܿ െ ߭ଶ
ᇳሺబሻඥ ்ା

ల√
   (46) 

 

ii) extension 

௩ݓ ൌ ݓ 
ᇱሺ௪బିௗሻඥ ்ା

ళ√
   (47) 

2. The Poisson’s ratio ߭ଵ in Equation (44) should be equal to the 
߭ଶ in Equation (46) as  

߭ଵ ൌ 	 ߭ଶ ൌ ߭   (48) 

During equalizing Poisson’s ratios in Equations (44 and 46),  f ″ 
functions were so changed that equalities in Equations (44 and 46) 
were remained the same. Changings of  f ″ functions were as such 

that ݂ᇱ ൌ ൫߭ଵ ߭ൗ ൯݂ᇳand ݂ᇱ ൌ ൫߭ଶ ߭ൗ ൯݂ᇳ. 

3. The constant ܽସ in Equation (44) should be equal to ܽ in 
Equation (47), while the same equality between ܽହ and ܽ in 
Equations (45) and (46) should also be valid: 

ܽସ ൌ 	ܽ ൌ 	ܾଶ   (49) 

ܽହ ൌ 	ܽ ൌ 	ܾଷ   (50) 

Again during equalizing ܽସ and ܽ and also equalizing ܽହ and ܽ 
in Equations (44-47), ݂ᇱ functions were so changed that equalities 
in Equations (44-47) were remained the same. Changings of ݂ᇱ 

functions were as such that ݂	 ൌ ቀܾଶ ܽସൗ ቁ ݂ᇱ, ݂	 ൌ ቀܾଶ ܽൗ ቁ݂ᇱ, 

݂ ൌ ቀܾଷ ܽହൗ ቁ݂ᇱ and ݂	 ൌ ቀܾଷ ܽൗ ቁ݂ᇱ. 
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4. The phrase ሺݓ  2݀ሻ in Equations (3) and (4) was created by 
Kurbak [11] because this phrase was proportional with the loop 
head radius, ܽ, of the relaxed plain knitted fabrics. Since, in most 
of the rib structures, the radius of the loop heads, ܽ, proportional 
with ሺݓ െ ݀ሻ, assumes that wale jamming conditions occurred, 
for the extension or contraction in the course’s direction, function 
f in Equations (44) and (47) should depend on ሺݓ െ ݀ሻ. In this 
work  

݂ሺݓ െ ݀ሻ ൌ ሺݓ െ ݀ሻ  (51) 

is taken. 

On the other hand, there is no such knowledge for wale-wise 
extensions or contractions, but the function f for Equations (45) 
and (46) should depend on ܿ because the length (ܿ) extends at 
two ends of a curved part of a loop. Therefore, for f function of 
Equations (45) and (46), the form 

݂ሺܿሻ ൌ 	 ܿ
  (52) 

is taken. 

The f functions given in Equations (51) and (52) are used here for 
various purposes as such that 

i) the upper indices n is used for estimating the intermediate 
tightnesses, 

ii) if any jamming occurs in the fabric in a direction, this can be 
easily considered by changing the values of upper indices n etc., 

The final empirical parabolic equations to be used in this work are 
as 

a) for wale-wise loaded samples 

i) contraction  

௩ݓ ൌ ݓ െ ݒ
ሺ௪బିௗሻඥ்ೢ ଶ⁄ ା ଶ⁄

మ√
  (53) 

ii) extension  

ܿ௩ ൌ ܿ 
ሺబሻඥ்ೢ ଶ⁄ ା ଶ⁄

య√
   (54) 

b) for course-wise loaded samples 

i) contraction 

ܿ௩ ൌ ܿ െ ݒ
ሺబሻඥ ்ା

య√
   (55) 

ii) extension 

௩ݓ ൌ ݓ 
ሺ௪బିௗሻඥ ்ା

మ√
  (56) 

5. For aramid fabrics, most of the regression equations are linear 
in forms as 

௩ݓ ൌ ݓ	 േ
்

మ
 (57) 

ܿ௩ ൌ 	 ܿ േ
்

మ
   (58) 

The form of Equations (57) and (58) obtained for aramid fabrics 
can best be explained by using Equations (55) of Kurbak’s work 
[11] for plain knitted fabrics as such that Equation (55) in 
Kurbak’s work [11] was as 

ܶ  ௦ܨ ൌ
ଶ

ଷబ
మ 	8.770	ሺݔ െ 1ሻଶ  (59) 

where 

ݔ ൌ 	


బ
	≌ 	

௪ೌೡାଶௗ

௪బାଶௗ
  (60) 

When Equation (59) is opened up, the equation  

ܶ  ௦ܨ ൌ 	
ଶ

ଷబ
మ 	8.770	ሺݔ

ଶ െ ݔ2  1ሻ  (61) 

is obtained. Since the bending rigidity, B, of aramid is high as 
given in Equation (14), the inclination angles of parabolic curves 
between T and ݓ௩ are very high; thus, the arms of the parabolic 
curves obtained for this yarn are extended along which are near 
the vertical line as given in Figure 7. Because of these higher 
inclination angles of parabolic curves, the values of ݓ௩ and ݓ 
becomes too close to each other, and, thus, ݔଶ in Equations (61) 
becomes as  

ଶݔ ൌ 	
మ

బ
మ 	≌ 	

ሺ௪ೌೡାଶௗሻమ

ሺ௪బାଶௗሻమ
ൎ 	1   (62) 

When Equations (62) is replaced in Equation (61), an equation is 
obtained as  

ܶ  ௦ܨ ൌ െ	
ଶ

ଷబ
మ 	8.770	ሺ2ݔ െ 2ሻ  

and thus 

ܶ  ௦ܨ ൌ 	െܾᇱ2ܤሺݔ െ 1ሻ   (63) 

 

 

Figure 7. Comparison of parabolic curve fittings of load-extension 
properties of aramid and glass samples. 

 
It is thought that this must be one of the reasons for obtaining 
linear regression equations for aramid fabrics. One more reason 
for obtaining linear regression equations for aramid fabrics will be 
given later in this section. 

As a result of the above discussion, the following forms of 
empirical equations are used for linear equations of aramid 
fabrics: 
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a) for wale-wise loaded samples 

i) contraction 

௩ݓ ൌ ݓ	 െ ߭
ሺ௪బିௗሻ

మሺଶሻ

்ೢ

ଶ
   (64) 

ii) extension 

ܿ௩ ൌ 	 ܿ 
బ


యሺଶሻ

்ೢ

ଶ
   (65) 

b) for course-wise loaded samples 

i) contraction 

ܿ௩ ൌ 	 ܿ െ ߭
బ


యሺଶሻ
	 ܶ   (66) 

ii) extension 

௩ݓ ൌ ݓ	 
ሺ௪బିௗሻ

మሺଶሻ
	 ܶ   (67) 

According to the above points, the empirical equations were 
obtained by the method of trial and error, and they are given in 
APPENDIX B. 

It should be noted here that Empirical Equations in APPENDIX B 
include one more parameter called ‘a’. This parameter is included 
to equalize two different Poisson’s ratios in one structure. The 
parameter, a, is put wherever it is necessary in the equations.  

To be able to apply Equations in APPENDIX B, the parameter, m, 
in the equations should also be estimated and discussed further as 
given below: 

i) if the parameter, m, is negative 

If the parameter, m, in an equation is negative and when the 
external load T is set to zero, the square root in the equation 
becomes irrational. It is thought that these kind of structures are 
jammed structures, and some of the external loads are spent to 
overcome these jamming forces. The amounts of inner fabric 
forces are equal to m; therefore the equation  

ܶ ൌ ݉  (68) 

should be valid where ܶ  is the external load to overcome the inner 
fabric force.  

In this situation, an equation in the form 

 ± ݓ =௩ݓ
ሺ௪బିௗሻඥ்ା

మ√
   (69a) 

ܿ௩= ܿ ± 
బ
ඥ்ା

మ√
   (69b) 

has no root when ܶ is equal to zero as seen in Figure 8. 

It is not difficult to conclude that, if an extension equation has a 
minus m value, the load-extension curve would follow the route 
which is given in Figure 9a. Again, if a contraction equation has 
minus m value, it should take the route as given in Figure 9b. 

 

Figure 8. Parabolic curve fittings of load-extension properties of knitted 
fabrics for negative m values in Equations (69a and 69b). 

  
 

  
 

Figure 9. Possible parabolic curve fittings for a) load-extension and b) 
load-contraction results when the parameter m is negative in 
Equations (69a and 69b). 

 
For these kind of structures, when a load-extension or a load-
contraction equation is given in the form as  

ሺݓ௩	ݎ	ܿ௩ሻ ൌ 	 ሺݓ	ݎ	ܿሻ 	േ	ܦூሺ ܶ  ݉ሻ   (70) 

practically obtained ݓ
ᇱ  or ܿ

ᇱ  values should be equal to ݓ and ܿ 
values in Equation (70). The rate of extensions or contractions can 
be given for the negative m case in the form as  

ߝ ൌ 	
ሺ௪ೌೡ		ೌೡሻି	ሺ௪బ		బሻ

ሺ௪బ		బሻ
ൌ 	∓

	ሺ்ା	ሻ

ሺ௪బ		బሻ
; 	ݎ݂	 ܶ 	 	 |݉| (71) 

The cases AIai  (R6, R8), AIaii  (R6), AIbii  (R6), AIIai  
(M8, M10), AIIaii  (M8, M10), AIIbii  (M8, M10), AIVai  
(S10), AIVaii  (S10) in E-glass fabrics have these kinds of load-
extension or load contraction curves (see Figure 10a). 

On the other hand, in spite of the linear regression equations that 
are applied, these kinds of load-extension or load contraction 
curves can be distinguished in some of the aramid fabrics such as 
BIai  (R8, R10), BIaii  (R8, R10), Bibi  (R8), BIbii  (R6, 
R8), BIIai  (M8, M10), BIIaii  (M8, M10), BIIbi  (M8), 
BIIbii  (M8), BIIIai  (Y8, Y10), BIIIbi  (Y8), BIVai  
(S8), BIVaii  (S8), BIVbi  (S8) (see Figure 10b). 
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Figure 10. a) The load-extension results of wale-wise extended glass 
1x1 rib structure knitted with 6 cam setting and parabolic 
curve fitting, b) the load-contraction results of wale-wise 
extended aramid full cardigan derivative sample knitted with 
an 8 cam setting and parabolic curve fitting. 

The diameter of the aramid yarn was ݀ ൌ 0.5236	݉݉ while the 
diameter of the E-glass yarn was ݀ ൌ 0.354	݉݉. Therefore, the 
aramid fabric samples obtained here were tighter than the E-glass 
samples. Since the jamming forces occur in tight fabrics, most of 
the load-extension or load-contraction curves of the aramid fabric 
samples would have minus m values if they could be written in 
parabolic form. It is thought that this is the other reason to obtain 
linear regression equations in load-extension or load-contraction 
curves of the aramid fabrics in addition to the reason given earlier 
in this section. It can be understood that, although the linear 
regression equations are applied, some of the aramid load-
extension or load-contraction curves for the first stage are actually 
combinations of two different regions, one of which is the ܶ 
region and the other is the parabolic region, as seen in Figure 10b: 

ii) If the parameter m is positive    

For this condition there are two roots of the parabolic equations in 
the forms as  

ሺݓ௩	ݎ	ܿ௩ሻ ൌ 	 ሺݓ	ݎ	ܿሻ 	േ	
ൣሺ௪బିௗሻ		బ

൧ඥ்ା

మ√
  (72) 

when T is equal to zero. These roots (for the ௪ܶ 2⁄  and ݓ௩ 
relationship, for example) is shown in Figure 11. 

 

Figure 11. Parabolic curve fittings of load-extension properties of knitted 
fabrics for positive m values in Equations (69a and 69b). 

For further explanation, regression equations to obtain these roots 
for a fabric sample are written in the form as  

a) wale-wise loaded samples 

i) contraction  

ଵ,ଶݓ ൌ ݓ	 േ	ܦଶ௪ሺ݉ 2⁄ ሻ   (73) 

ii) extension  

ܿଵ,ଶ ൌ 	 ܿ േ ଵ௪ሺ݉ܦ 2⁄ ሻ   (74) 

b) course-wise loaded samples  

i) contraction  

ܿଵ,ଶ ൌ 	 ܿ േ  ଶሺ݉ሻ   (75)ܦ

ii) extension 

ଵ,ଶݓ ൌ ݓ	 േ	ܦଵሺ݉ሻ   (76) 

It should be noted here that the minus signs in Equations (73-76) 
stand for root 1 while plus signs stand for root 2 where 

ଶ௪ሺ݉ܦ 2⁄ ሻ ൌ 	߭
ሺ௪బିௗሻඥ ଶ⁄

మ√
   (77) 

ଵ௪ሺ݉ܦ 2⁄ ሻ ൌ 	
బ
ඥ ଶ⁄

య√
   (78) 

ଶሺ݉ሻܦ ൌ 	߭
బ
√

య√
   (79) 

ଵሺ݉ሻܦ ൌ 	
ሺ௪బିௗሻ√

మ√
   (80) 

can be given for the terms in Equations (73-76). Equations (77-
80), in turn, should be evaluated from Empirical Equations in 
APPENDIX B for the case considered.  

Some more definitions are given here to be used in the rest of the 
work as 

ଶ௪ሺܦ ௪ܶ
2ൗ ݉

2ൗ ሻ ൌ 	߭
ሺ௪బିௗሻඥ்ೢ ଶ⁄ ା ଶ⁄

మ√
   (81) 

ଵ௪ሺܦ ௪ܶ
2ൗ  ݉

2ൗ ሻ ൌ
బ
ඥ்ೢ ଶ⁄ ା ଶ⁄

య√
   (82) 

ଶሺܦ ܶ  ݉ሻ ൌ ߭
బ
ඥ ்ା

య√
   (83) 
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ଵሺܦ ܶ  ݉ሻ ൌ 	
ሺ௪బିௗሻඥ ்ା

మ√
  (84) 

where Equations (81-84) are used for wale-wise loaded 
contraction, wale-wise loaded extension, course-wise loaded 
contraction and course-wise loaded extension respectively. 

The evaluations of Equations (81-84) again should be done by 
using Empirical Equations in APPENDIX B for the case 
considered. 

As analysed in the work of Kurbak [11] the main reason for 
obtaining the two roots is because of friction resistances which are 
applied in the dry relaxed fabrics. In the actual situation, the fabric 
in a dry relaxed state can either be in root 1 (ݓଵ or ܿଵ) condition 
or in root 2 (ݓଶ or ܿଶ) condition. 

As a result of the above discussion, to be able to use Empirical 
Equations in APPENDIX B,  ݓ and ܿ values should be known. 
These values, in turn, can be obtained by using Equations (73-76). 
The unknown parameters m in Equations (73-76) should be 
estimated first for obtaining ݓ and ܿ values for the intermediate 
tightness points along with which root should be taken as the 
starting point of extension or contraction (root 1 or root 2). 

The parameters, m, are estimated and the pattern of the starting 
root of each curve for E-glass fabric samples were searched 
assuming that this present pattern is repeatable. and thus the same 
pattern could be obtained in future works. This work is given as in 
the following: 

 The tightness, ݈ ݀ൗ , for each case is calculated first using Table 

3a and Equation (9). During these calculations, the plain knit 
row of the unit cell of Milano Rib, the rib row of the unit cell 

of Half Cardigan and the rib row of the unit cell of Full 
Cardigan Derivative Structure are used.  

 The parameters, m, given in Table 6 and ݈ ݀ൗ  are drawn in the 

graphical forms as seen in Figures 12a and 12b for 1x1 rib; in 
Figures 13a and 13b for Milano Rib; in Figures 14a and 14b for 
Half Cardigan; and in Figures 15a and 15b for Full Cardigan 
Derivative structures. 

 Assuming linear relations between m values and tightness ݈ ݀ൗ  

values, a pattern of m values for each structure was obtained 
and is given in the related figures (Figures 12-15). 

 The starting roots of extensions and contractions are also shown 
on these graphical representations by putting (–) for root 1, (+) 
for root 2, and (.) for negative m values on top of each case.  

When Figures (12-15) are searched, it is seen that the negative m 
values are seen to be obtained mainly for tight fabrics. 

It should be added that the glass milano rib structure samples have 
mostly negative m values. The reason may be the tighter plain knit 
rows of the unit cell of the milano rib. The rib row and the plain 
knit rows of the unit cell of the milano rib have been knitted in the 
same cam setting which is against the experience that the normal 
tightness of plain knit requires a higher cam setting than the 
normal cam settings of the 1x1 Rib. 

 The relaxed fabrics which are being in root 1 or root 2, is mostly 
effective on the extension rates and the contraction rates. Since 
the rate of extension and the rate of contraction are preferred in 
places of the extension and the contraction themselves in 
practice, calculations of the extension rate and contraction rate 
are explained briefly as follows: 

 

 

Figure 12. The parameter m vs. l/d for 1x1 Rib, a) Wale-wise loaded samples, b) Course-wise loaded samples. 
 

 
Figure 13. The parameter m vs. l/d for milano rib, a) Wale-wise loaded samples, b) Course-wise loaded samples. 
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Figure 14. The parameter m vs. l/d for half cardigan, a) Wale-wise loaded samples, b) Course-wise loaded samples. 
 
 

 

Figure 15. The parameter m vs. l/d for full cardigan derivative, a) Wale-wise loaded samples, b) Course-wise loaded samples. 
 
 

 
(a)                                                                     (b) 

Figure 16: Load-extension and load-contraction curves when the fabric is in r\root 1 condition, a) load-extension curve, b) load-contraction curve. 
 
 
i) If the relaxed fabric state is in root 1, for example, for the 
contraction of the wale-wise loaded samples, the contraction rate 
would be as  
 

ଶ௪ߝ ൌ 	
ൣ௪ೌೡି൫௪బିమೢሺ ଶ⁄ ሻ൯൧

ሾ௪బିమೢሺ ଶ⁄ ሻሿ
ൌ 	

మೢሺ ଶ⁄ ሻିమೢቀ
்ೢ

ଶൗ ା ଶൗ ቁ

௪బିమೢሺ ଶ⁄ ሻ
  (85) 

 

If the relaxed fabric state is in root 1, for example, for the 
extension of the wale-wise loaded samples, the extension rate 
would be as  

ଵ௪ߝ ൌ 	
ೌೡି൫బିభೢሺ ଶ⁄ ሻ൯

బିభೢሺ ଶ⁄ ሻ
ൌ 	

భೢሺ ଶ⁄ ሻାభೢሺ
்ೢ

ଶൗ ା ଶൗ ሻ

ሾబିభೢሺ ଶ⁄ ሻሿ
  (86) 

 

The relations between ௪ܶ
2ൗ  and ߝଵ௪ and between ௪ܶ

2ൗ  and ߝଶ௪ 
would be as in Figures 16a and 16b, respectively.  
 
ii) If the relaxed fabric state is in root 2 condition, for the 
contraction of the same wale-wise loaded sample, the contraction 
rate would be as  

ଶ௪ߝ ൌ 	
௪ೌೡି൫௪బାమೢሺ ଶ⁄ ሻ൯

ሾ௪బାమೢሺ ଶ⁄ ሻሿ
ൌ 	

ିమೢሺ ଶ⁄ ሻ	ି	మೢሺ
்ೢ

ଶൗ ା ଶൗ ሻ

௪బାమೢሺ ଶ⁄ ሻ
  (87) 

If the relaxed fabric state is in root 2 condition, for the extension 
of the same wale-wise loaded sample, the extension rate would be 
as  
 

ଵ௪ߝ ൌ 	
ೌೡି൫௪బାభೢሺ ଶ⁄ ሻ൯

బାభೢሺ ଶ⁄ ሻ
ൌ 	

ିభೢሺ ଶ⁄ ሻାభೢሺ
்ೢ

ଶൗ ା ଶൗ ሻ

బାభೢሺ ଶ⁄ ሻ
  (88) 

 

The relations between ௪ܶ
2ൗ  and ߝଵ௪ and between ௪ܶ

2ൗ  and ߝଶ௪ 
would be as in Figures 17a and 17b. 
 
Very similar equations as Equations (85-88) and very similar 
curves as in Figures (16-17) are obtained for the course-wise 
loaded samples, as well. 
 
It can be seen from the above discussion that the extension rates 
and/or the contraction rates are different according to the relaxed 
fabrics being in root 1 or root 2. Using the present experimental 
results, the equations of m values in terms of tightness (݈ ݀⁄ ) 
(assuming linear relations), the starting roots of the relaxed 
fabrics, and the contraction or the extension rates for glass fabrics 
are given in APPENDIX C. 
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To complete the work, the calculated load-extension and load-
contraction rates are compared with the experimentally obtained 
load-extension and load-contraction rates in Figures 18-26 for all 
the structures, tightness, and types of yarns used in this work. 
 
During obtaining the theoretical load-extension curves in Figures 
18-26, the m, c0, and w0 values are taken from Table 6. According 
to the roots given in Table 6, similar equations as in Equation (71, 
85-88) are calculated to obtain the extension or contraction rate 
values. As noted above, example calculations of extension and 
contraction rates are also given in APPENDIX C for the glass 
samples. 
 
During obtaining the experimental extension or contraction rates, 
Tables in APPENDIX A are used as 
 

Ԫଶ ൌ 	
ౣ	ሺሻି	బ

ଵ.ହ	బ	
 ;   (i = 1 to 5) (89) 

ࣟଵ	 ൌ 	
	ି	బ
బ

  ; (i =1 to 5) (90) 

 
It should be noted here that the contractions are measured in the 
middle of the samples as bmin. In order to obtain bav. values, the 
side edges of the samples are assumed to be as in Figure 5a in this 
work, and similar equations as Equations (34-35) are used for 
obtaining bav. values. Therefore, a dividing factor 1.5 exists in 
Equation (89). 
 
The load applied, T, are calculated by dividing the total loads 
given at the Tables in APPENDIX A by the average number of 
loops on a face of the cross-section of fabric that carries out the 
total loads as 
 

௪ܶ ൌ
்௧	௪ି௪௦	ௗ௦	ሺ௦	்௦	ହ	ௗ	ሻ

	ሺ௪ሻ
 (91) 

ܶ ൌ 	
்௧	௨௦ି௪௦	ௗ௦	ሺ௦	்		ௗ	଼ሻ

	ሺሻ
 (92) 

 

The applied loads ௪ܶ and ܶ given in Equations (91-92) are used 
for obtaining the theoretical calculations of extension and 
contraction rates as well as for obtaining the experimental load-
extension and load-contraction results. 
 
It should be said further that b (wpc) and b (cpc) in Equations (91-
92) are the average number of loops on one face of the samples. 
The chosen faces were explained during obtaining (wpc) and (cpc) 
parameters by using Equations (15-16). These definitions of 
applied loads makes easier to obtain the carried load by a unit 
cross-sections of fabrics at any structures by having ௪ܶ	ሺܿݓሻ 
[g/cm] and ܶ 	ሺܿܿሻ [g/cm] and so on. 
 
In some of the cases, ܿ and ݓ values given in Table 6 do not 
give the calculated extension and/or contraction rates correctly, so 
the drawn curves do not follow the experimental points. For these 
cases some suitable ܿ and/or ݓ values are calculated to fit the 
experimental points. These calculated new ܿ  and/or ݓ values are 
given in Table 6 in brackets. They may be due to five experimental 
points which are less for obtaining the correct ܿ  and/or ݓ values. 
 
In some of the tight fabric cases, the calculated curves do not 
follow the experimental points. These discrepancies can be 
explained as follows; for example, for the glass 6 cam setting tight 
fabrics, the first point was put out of the regression equation. It 
was later seen that the second point in the 6 cam setting and the 
first point in the 8 cam setting of the1x1 rib glass fabric should 
also be put out of the regression equations as shown in Figure 10. 
This kind of discrepancy is also the result of fewer experimental 
points since, if the second experimental point in the 6 cam setting 
of the glass fabrics were also left out of the regression equations, 
only three point would be left for a quadratic curve fitting. 
 
In spite of some discrepancies mentioned above, it is seen that 
Empirical Equations in APPENDIX B can be used to estimate the 
extension and the contraction rates for a given load value for any 
kind of complex knitted structure at any tightness.  

 

 
(a)                                                                                (b) 

Figure 17: Load-extension and load-contraction curves when the fabric is in root 2 condition, a) load-extension curve, b) load-contraction curve. 
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(i) Contraction                  (ii) Extension 

(a) Wale-wise loaded samples 

 
(i) Contraction                (ii) Extension 

(b) Course-wise loaded samples 

Figure 18: Glass 1x1 rib load-extension results and empirical equations. 
 
 
 

 
(i) Contraction           (ii) Extension 

(a) Wale-wise loaded samples 

 
(i) Contraction                       (ii) Extension 

(b) Course-wise loaded samples 

Figure 19: Glass milano rib load-extension results and empirical equations. 
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(i) Contraction                      (ii) Extension 

(a) Wale-wise loaded samples 

 
(i) Contraction                   (ii) Extension 

(b) Course-wise loaded samples 

Figure 20: Glass half cardigan load-extension results and empirical equations. 
 
 
 
 

 
(i) Contraction                 (ii) Extension 

(a) Wale-wise loaded samples 

 
(i) Contraction                (ii) Extension 

(b) Course-wise loaded samples 

Figure 21: Glass full cardigan load-extension results and empirical equations. 
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(i) Contraction                         (ii) Extension 

(a) Wale-wise loaded samples 

 
(i) Contraction               (ii) Extension 

(b) Course-wise loaded samples 

Figure 22: Aramid 1x1 rib load-extension results and empirical equations. 
 
 
 
 

 
(i) Contraction             (ii) Extension 

(a) Wale-wise loaded samples 

 
(i) Contraction            (ii) Extension 

(b) Course-wise loaded samples 

Figure 23: Aramid milano load-extension results and empirical equations. 
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(i) Contraction                (ii) Extension 

(a) Wale-wise loaded samples 

 
(i) Contraction                (ii) Extension 

(b) Course-wise loaded samples 
Figure 24: Aramid half cardigan load-extension results and empirical equations. 

 
 

 
(i) Contraction                (ii) Extension 

(a) Wale-wise loaded samples 

 
(i) Contraction                  (ii) Extension 

(b) Course-wise loaded samples 
Figure 25: Aramid full cardigan load-extension results and empirical equations. 

 
5. RESULTS AND DISCUSSION 
 

Results of the initial load-extension and load-contraction 
properties of complex weft knitted fabrics will be given in 
comparison with the same properties of plain knitted fabric which 
was given by Kurbak [11] such that: 
 

i) For the extension and contraction in fabric length direction of 
plain knitted glass fabric, linear regression equations with higher 
correlation coefficients could be applied while they were quadratic 
curve fittings for the fabric width directions. For the extension and 

the contraction in both directions for complex weft knitted glass 
fabrics, however, quadratic curve fittings could be applied with 
higher correlation coefficients. It may be because of the loop arms 
which are nearly two dimensional curves for plain knitted fabrics 
while they are three dimensional for complex weft knitted 
structures. 
 

ii) Mainly three kinds of quadratic curve fittings are obtained for 
complex weft knitted fabrics as given in schematic Figures 26a, 
26b and 26c. 
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Figure 26. Schematic drawings of curve fittings obtained for load 
against extension rates ሺܶ	ݏݒ.%ࣟሻ of complex weft knitted 
structures a) quadratic curve fitting with no root, b) quadratic 
curve fitting with root 2, c) quadratic curve fitting with root 
1 and d) the linear load-extension curve. 

 
These three kinds of quadratic load-extension curves could be 
calculated in this work by adding the dotted blue curves to the blue 
curves in Figures 26a, 260b and 26c, to make the curves as 
complete parabolas.  
 
It is thought that if the parameter m in Equation (69a) or in 
Equation (69b) is negative, the situation in Figure 26a is obtained. 
In this situation, no root is obtained when the load is equal to zero. 
This can occur because there are jamming forces in tight fabrics, 
and the red dotted curve in Figure 26a along with the blue curve 
is the actual load-extension curve which can be measured by a 
measuring tester. 
 
When the parameter m is positive, the two cases are obtained as in 
Figures 26b and 26c. It is thought that two roots exist for 
Equations (73-76), namely root 1 and root 2, and slack fabrics in 
a dry relaxed state can be in root 1 or root 2 conditions, according 
to their relaxation from loaded knitting conditions. Fabrics in these 
conditions can be in a friction induced equilibrium state. If a 
relaxed fabric is in root 2 condition and the extension load is 
applied, load-extension rate results are obtained as in Figure 26b. 
Again, if a fabric is in root 1 condition and the extension load is 
applied, load–extension rate results are obtained as in Figure 
26c.The red dotted line given in Figure 26c along with the blue 
line is the actual load-extension curve which can be obtained by 
using a measuring tester. 
 
The negative m case, the root 1 case, and the root 2 case obtained 
during the present experimental work are given in Figures 12-15 
for glass samples. Calculations of extension and contraction rates 
are also given in Equations (71, 85-88). Apart from these, example 
calculations of extension and contraction rates in relation to the 
tightness of fabrics are given in APPENDIX C for glass samples. 
 
When Kurbak’s work [11] is examined, it can be seen that root 1 
and root 2 conditions also exist in plain knitted glass fabrics. 

iii) In complex knitted fabrics, the other curve fittings obtained are 
the linear regression equation which is given in Figure 26d.  
While linear regression equations were obtained for the wale-wise 
load-extension properties in plain knitted fabric because of the 
yarn arms of plain knitted fabrics which were nearly two 
dimensional, the linear regression equations obtained for three 
dimensional complex weft knitted fabrics are because of higher 
bending rigidities along with higher tightness. Linear regression 
equations are obtained in tight aramid fabrics. It is thought that 
these tight complex weft knitted fabrics with higher bending 
rigidities also have parabolic load-extension or load-contraction 
curves, but their extensions or contractions are too small to be 
approximated by linear curve fittings. 
 
iv) As the initial regions of the load-extension and load-contraction 
properties of complex weft knitted fabrics are uncertain 
geometrically, some empirical equations are suggested for use in 
related engineering software. It is thought that, at least for 
experimentally considered tightness regions here, intermediate 
load-extension and load-contraction properties can be estimated. 
These empirical equations are given as in APPENDIX B. 
 
v) In Empirical Equations given in APPENDIX B, the estimations 
of the Poisson’s ratios of the structures are also given. They are 
listed below along with the Poisson’s ratio obtained by Kurbak 
[11] for plain knitted glass fabrics as 
 
߭ ൌ 0.5    for plain knitted fabric 
߭ ൌ 0.4288  for 1x1 rib 
߭ ൌ 0.3874  for milano rib 
߭ ൌ 0.1996  for half cardigan 
߭ ൌ 0.1930  for full cardigan derivative 
 
These estimations of Poisson’s ratios are reasonable since they 
decrease according to the complexity of the structure, as they 
should be. 
 
vi) According to the method given above, the experimentally 
obtained load-extension results for all the samples concerned here 
are compared with the given Empirical Equations in APPENDIX 
B in Figures 18-25 in which the extension or contraction rates are 
calculated with the similar equations as in Equations (71, 85-88). 
In most of the cases, the calculated load-extension curves fit with 
the experimentally obtained results. 
 
More research, however, must be conducted by having more load 
levels in the region during experiments at any tightness point and 
also to increase the tightness points to cover intermediate 
tightness. It is thought that with this future research, the 
parameters ܿ, ݓ, and m in Table 6 can be formulated in relation 
to the tightness, l/d, and, thus, the above procedure will become a 
complete method. 
 
Finally, some suggestions can be made on some of the technical 
applications of knitted fabrics according to the present results. 
 
 If the load and extension rate relationship is uncertain as in 

Figures 26b and 26c, it cannot be used for cyclic loading, for 
example, for “stretch sensor” applications (see ref. [20]). 
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 In composite reinforcement application of knitted fabrics; 
Araujo et al. [21] suggested that if a fabric is extended at a 
certain rate, the low load region of the load-extension curves 
can be omitted and the breaking strengths of composites can be 
increased. They used this method with a 20% extension rate.  

 
According to the present work, this suggestion is not suitable for 
every tightness of the fabric since the fixed amount of extension 
rate could be bigger than the maximum extension of tight fabrics. 
Apart from this, fabrics can be in one of the load-extension curves 
given in Figure 26; therefore, with a 20% extension (for example, 
if a fabric is in root 1 condition as in Figure 26c), the low tension 
region will not be completely omitted. It is thought that, instead of 
using a certain extension rate, the certain amount of load applied 
on a loop should be more suitable to use.  
 
In addition to the above argument that the wale-wise breaking 
strengths of the composites reinforced with the plain knitted 
fabrics and the milano rib fabrics are obtained to be higher than 
the other weft knitted structures in practice, it is interesting to see 
that the wale-wise extensions of plain-knitted fabrics and the 
milano rib fabrics start from their relaxed conditions given in 
Figures 26a, 26b and 26d as seen in Figure 19a, Figure 23a, and 
Figure 6 of the reference paper by Kurbak [11]. 
 
 Lastly, the mechanical properties of fabrics are calculated by 

using their geometrical models nowadays (see refs. [22, 23]). 
Before starting of these kinds of calculations, the initial load-
extension properties of the subjected fabric should first be 
experimentally investigated. Otherwise, some discrepancies 
may occur between the theoretically calculated values and the 
measured experimental results. There is one exception: if a 
fabric has a special tightness at which the course and/or wale 
jamming has just started to occur, on this special tightness point, 
the m value becomes zero. For this special tightness point, 
theoretical calculations can be carried out without the need for 
the initial experimental results.  

 
6. CONCLUSION 
 
In this work, an experimental investigation on the initial load-
extension and load-contraction properties of some complex weft 
knitted technical fabrics was carried out based on the work of 
Kurbak [11] in plain knitted glass fabrics. The work is 
summarized and the conclusion given below: 
 

a) Two types of yarn were used namely 136 tex E-glass and 168 
tex aramid. Four different structures were chosen: 1x1 rib, 
milano rib, half cardigan, and full cardigan derivative. Two 
types of samples were prepared for the wale-wise direction 
and the course-wise direction. For the 1x1 rib, three tightness 
points were taken: the 6 cam setting, the 8 cam setting, and 
the 10 cam setting of the 7 gauge V-bed hand knitting 
machine. For the milano rib, the half cardigan, and full 
cardigan derivative, two tightness points were taken, the 8 
cam setting and the 10 cam setting. Six samples for each 
experiment were prepared. A total of 216 samples were 
prepared. 
 

Samples were adjusted so that the usable length (h) and 
width (b) were about 20x10 cm2 plus enough length to hold 
them by a load-extension measuring apparatus. 
 
One sample for each experimental point was used to measure 
the initial dimensional properties of the fabric: the loop 
length (l), the course-per-cm (cpc), and wales-per-cm (wpc). 
 
The load-extension and load-contraction properties of the 
20x10 cm2 samples were then measured on a special 
apparatus (see Figure 4) using 5 level dead weights. The load 
levels were increased from zero to the maximum load of the 
first region. For every load level, the lengths (h) and the 
middle widths (bmin) of the samples were measured. Five 
samples for each experimental point were measured, and 
their averages were calculated. 
 

b) Regression analyses were carried out on the relation between 
the loads (T) and lengths (h) and also between the loads (T) 
and widths (bmin). Mostly quadratic curve fittings with higher 
correlation coefficients were obtained between the load-
extension and the load-contraction results except that, for 
some, tight aramid fabrics linear regression equations could 
be applied to the experimental results with higher correlation 
coefficients. 
 

c) For comparison purposes, the regression equations 
(Equations 6 and Table 5) are written in terms of the loop 
parameters cav, cmin, wav, wmin, Tc and Tw using Equations (21-
22, 26-27).  
 

d) The last obtained equations were then turned into the forms 
of equations as given in Equations (28-31) according to the 
assumption made about the separating method of the 
frictional restrains and/or fabric jamming forces from 
quadratic curve fittings. In the form of Equations (28-31) the 
m values were considered as the frictional restrains or/and 
fabric jamming forces for the unit structures of fabrics. 
 

e) For the first stages of extensions and contractions, Kurbak 
[11] gave some equations as Equations (32-35) to replace 
cmin and wmin values with the cav and wav values by assuming 
that the side edges of the samples follow parabolic curves 
under loading conditions (see Figure 5a). Equations (32-35) 
are applied to all the cmin and wmin values in the regression 
equations, and they are turned into the forms given in 
Equations (36-39). The parameters of all the obtained 
regression equations in the form of Equations (36-39) are 
given in Table 6. It is seen in Table 6 that the m values are 
small enough to be considered as frictional restrains and/or 
fabric jamming forces. Therefore, the assumption made 
about the separating method of the m values from quadratic 
curve fittings is the reasonable one. 
 

f) When all the parabolic curve fittings were examined, three 
kinds of situations were distinguished: 

i) When parameter m is negative (in this case, when external 
load Tw or Tc is equal to zero), the square root in Equations 
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(53-56) become imaginary; therefore, no root is obtained. 
This situation was primarily obtained for tight fabrics.  

 
ii) When parameter m is positive; there are two roots, root 1 

and root 2. The fabric can be in each of the roots when 
the external load is equal to zero. These cases— the 
negative m case, the root 1 case, and the root 2 case— are 
also given in Table 6 as 0, 1, and 2 respectively. One more 
case is that when the linear regression equation is applied. 
For the linear equation case, a “dash”(-) is used in Table 
6. 

 
g) The first region (initial region) is the most geometrically 

uncertain region of the load-extension and load-contraction 
curves; thus, if one wants to obtain the mechanical properties 
of knitted fabrics by using their geometrical models, this 
region may create some problems. Therefore, the attempt 
was made to find out if some empirical equations can be 
given for this region that can be used in related engineering 
software. The empirical equations are given as in 
APPENDIX B. While obtaining the empirical equations, 
Poisson’s ratios of the structures were also estimated. The 
estimated Poisson’s ratios are reasonable since they reduce 
with the complexities of the fabrics, as they should be. 
 

h) In Empirical Equations given in APPENDIX B, the 
parameters c0, w0, and m values are taken from Table 6. It is 
already known that the parameters c0 and w0 are related to 
the tightness l/d. It is attempted to obtain some relationship 
between the m parameters and the tightness l/d, as given in 
Figures 12-15. It was thought that, to obtain the exact 
relations between the parameter m and the tightness l/d, some 
more tightness points should be taken from each fabric 
structure during the experiments. 
 

i) Using Table 6 and the Empirical Equations in APPENDIX 
B, the load-extension rates and load-contraction rates are 
obtained through some equations which are similar to 
Equations (71, 85-88) for all the cases considered here. The 
results obtained were compared with the experimentally 
obtained extension and contraction rates as given in Figures 
18-25.  
 
Figures 18-25 show that the Empirical Equations in 
APPENDIX B correctly estimated the extension and 
contraction rates. Because only 5 load levels are taken for the 
first extension or contraction region in this work, for 7 points 
out of 70 points, however, the c0 or w0 values were obtained, 
which are different from the given points in Table 6. The new 
points are also written in brackets in Table 6. 
 

Finally, it can be concluded that three different parabolic curve 
fittings of the load-extension and load-contraction rates were 
obtained as given schematically in Figures 26a, 26b and 26c. The 
linear curve fittings were also obtained for tighter aramid fabrics. 
The three kinds of curve fittings in Figures 26a, 26b and 26c could 
be calculated by Empirical Equation in APPENDIX B through 
some equations similar to Equations (71, 85-88); thus, this can be 
considered as a new method. It is thought that, when this method 

is improved by future experiments, it will be useful for obtaining 
the load-extension or load-contraction properties of such a 
geometrically uncertain region, namely the initial load-extension 
or load-contraction region. 
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APPENDIX A 
 
The experimentally obtained h and ܾ values with changing load levels T are given in Tables A1a and A1b for wale-wise loaded glass 
samples, in Table A2a and A2b for course-wise loaded glass samples, in Table A3a and A3b for wale-wise loaded aramid samples and 
in Table A4a and A4b for course-wise loaded aramid samples.  
 
Example drawings of load-extension and load contraction curves for each table are also given in Figures A1a, A1b, A2a, A2b, A3a, 
A3b A4a and A4b. 
 
Table A1: Measured initial (the first stage) load-extension and load contraction results for wale-wise loaded glass samples. 

Glass wale‐wise extension  
Results 
a) extension (h) [cm] 

 1x1 Rib Milano Rib Half Cardigan  
Full Cardigan 
Derivative 

Load [g] R6 R8 R10 M8 M10 Y8 Y10  S8 S10 

0 20 20 20 20 20 20 20 20 20 

238.4 20.94 27.1 28.88 21.32 26.1 32.58 33.46 28.34 35.02 

480 26.24 30.48 33 25.22 31.66 36.62 36.82 36.48 42.14 

800 30.12 33.06 35.36 28.58 34.26 39.62 40.02 40.54 45.68 

1050 30.92 33.92 36.24 29.88 35.48 40.9 40.98 41.98 46.8 
 
b) contraction (b) [cm] 

 
 1x1 Rib Milano Rib Half Cardigan  

Full Cardigan 
Derivative 

Load [g] R6 R8 R10 M8 M10 Y8 Y10  S8 S10 

0 9.5 9.8 11.5 8.7 11.5 10.8 11.7 11.5 14.2 

238.4 9.0 7.5 7.8 8.3 9.2 9.2 9.5 9.9 10.7 

480 7.4 6.1 6.0 7.0 6.7 8.5 8.7 8.4 8.3 

800 6.3 5.0 4.8 5.8 5.5 7.8 8.2 7.2 6.8 

1050 6.0 4.6 4.5 5.4 5.0 7.5 8.0 6.8 6.4 
 

 
 

   
(a) (b) 

Figure A1: Example drawings of load-extension and load-contraction results given in Table A1; a) load-extension, b) load-contraction. 
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Table A2: Measured initial (the first stage) load-extension and load-contraction results for course-wise loaded glass samples. 

Glass course‐wise extension 
Results 
a) extension (h) [cm] 

 
 
 
 
 
 
 
 
 
 
 
 

 
b) contraction (b) [cm] 

 1x1 Rib Milano Rib Half Cardigan  
Full Cardigan 
Derivative 

Load [g] R6 R8 R10 M8 M10 Y8 Y10 S8 S10 

0 10.1 6.7 8.6 9.2 9.7 9.3 9.0 8.3 8.6 

238.4 9.7 4.5 3.6 8.8 7.8 8.1 6.8 7.3 6.2 

480 8.6 3.1 2.4 7.7 5.5 7.2 5.8 6.5 5.2 

800 6.6 2.5 2.0 6.0 3.8 6.4 5.1 5.7 4.3 

1050 5.9 2.3 1.8 5.1 3.4 5.9 4.7 5.4 4.0 
 

 1x1 Rib Milano Rib Half Cardigan  
Full Cardigan 
Derivative 

Load [g] R6 R8 R10 M8 M10 Y8 Y10 S8 S10 

0 20 20 20 20 20 20 20 20 20 

238.4 23.22 40.82 57.26 22.04 25.66 39.3 50.2 40.04 45.52 

480 30.72 49.86 66.26 24.9 30.08 46.6 56.1 46.66 49.08 

800 38.48 55.58 70.32 28.3 33.26 51.34 60.34 51.74 52.08 

1050 41.88 57.76 72.08 29.88 34.02 53 61.66 53.04 52.9 

 
 

 
(a)                                                                      (b) 

Figure A2: Example drawings of load-extension and load-contraction results given in Table A2; a) load-extension, b) load-contraction. 
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Table A3: Measured initial (the first stage) load-extension and load-contraction results for wale-wise loaded aramid samples. 

Aramid wale‐wise extension 
Results 
a) extension (h) [cm] 

 1x1 Rib Milano Rib Half Cardigan  
Full Cardigan 
Derivative 

Load [g] R6 R8 R10 M8 M10 Y8 Y10 S8 S10 

0 20 20 20 20 20 20 20 20 20 

238.4 20.36 20.42 24.96 20.12 21.26 22.02 23.28 21.64 25.4 

480 20.62 22.76 33.06 20.46 23.36 23.78 25.98 24.6 27.92 

800 21.1 25.72 36 21.08 25.44 25.04 27.92 27.2 29.52 

1050 21.46 26.9 36.82 21.46 26.24 25.62 28.68 28.04 30.1 
 
b) contraction (b) [cm] 

 1x1 Rib Milano Rib Half Cardigan  
Full Cardigan 
Derivative 

Load [g] R6 R8 R10 M8 M10 Y8 Y10 S8 S10 

0 7.8 10.1 12.1 8.9 9.8 11.7 12.2 11.3 13.2 

238.4 7.6 9.9 10.1 8.8 9.4 11.4 11.6 11.2 12.4 

480 7.5 9.2 8.1 8.7 8.7 11.0 11.1 10.9 11.5 

800 7.3 8.3 7.4 8.5 8.0 10.6 10.6 10.4 10.6 

1050 7.2 7.9 7.2 8.3 7.6 10.5 10.4 10.1 10.2 
 

 
 

 
(a)                                                                       (b) 

Figure A3: Example drawings of load-extension and load-contraction results given in Table A3; a) load-extension, b) load-contraction. 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Journal of Textiles and Engineer 
Cilt (Vol): 26 No: 116 

SAYFA EK 4 
Tekstil ve Mühendis 

Empirical Equations and Poisson’s Ratios for Initial Load-Extension Properties 
of Some Complex Glass and Aramid Technical Weft Knitted Structures 

Arif KURBAK
Sinem ÖZTÜRK

Table A4: Measured initial (the first stage) load-extension and load-contraction results for course-wise loaded aramid samples. 

Aramid course‐wise extension 
Results 
a) extension (h) [cm] 

 1x1 Rib Milano Rib Half Cardigan  
Full Cardigan 
Derivative 

Load [g] R6 R8 R10 M8 M10 Y8 Y10 S8 S10 

0 20 20 20 20 20 20 20 20 20 

238.4 21.02 21.94 38.08 20.22 21.42 25.36 40.74 27.18 42.94 

480 22.92 25.1 45.08 20.62 23.14 31.02 47.84 33.98 49.06 

800 25.56 28.64 52.48 21.32 25.54 35.4 52.54 38.8 53 

1050 26.8 30.5 57.76 21.78 27.08 37.16 54.2 40.52 55.04 
 
b) contraction (b) [cm] 

 1x1 Rib Milano Rib Half Cardigan  
Full Cardigan 
Derivative 

Load [g] R6 R8 R10 M8 M10 Y8 Y10 S8 S10 

0 9.1 9.3 8.5 9.6 10.2 9.5 8.3 8.1 7.1 

238.4 9.0 9.1 7.4 9.6 9.9 9.3 7.5 7.9 6.3 

480 8.8 8.8 6.6 9.5 9.5 8.8 6.5 7.6 5.4 

800 8.5 8.2 5.0 9.3 8.8 8.3 5.7 7.1 4.7 

1050 8.3 7.8 3.8 9.1 8.4 8.0 5.3 6.8 4.3 
 

 
 

 
(a) (b) 

Figure A4: Example drawings of load-extension and load-contraction results given in Table A4; a) load-extension, b) load-contraction. 
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APPENDIX B 
 
EMPIRICAL EQUATIONS 
A) GLASS 
I) 1x1 RIB STRUCTURE 
a) for wale-wise loaded samples  
i) contraction 

௩ݓ ൌ ݓ	 െ ߭
ሺ௪బିௗሻభ.యఴమలඥ்ೢ ଶ⁄ ା ଶ⁄

ଷ.ସଶଷଵ	√
        (B1) 

ii) extension 

ܿ௩ ൌ 	 ܿ 
బඥ்ೢ ଶ⁄ ା ଶ⁄

ଷ.଼	√
          (B2) 

 
b) for course-wise loaded samples 
i) contraction 

ܿ௩ ൌ 	 ܿ െ ߭
బ
భඥ ்ା

ଷ.଼	√
          (B3) 

ii) extension 

௩ݓ ൌ ݓ	 
ሺ௪బିௗሻమඥ ்ା

ଷ.ସଶଷଵ	√
         (B4) 

 
where 
 

߭ ൌ
ଵ

ଶ.ଷଷଵଽ
ൌ 0.4288         (B5) 

݊ଵ ൌ 2.6582 െ 2.1194	ሺܿ ݀ൗ െ 3.7932ሻ       (B6) 

݊ଶ ൌ 2.34071	ቀݓ ݀ൗ െ 5.5671	ቁ
ିଵ

ଷ.ଶହൗ
       (B7) 

 
A) GLASS 
II) MILANO RIB STRUCTURE 
a) for wale-wise loaded samples  
i) contraction 

௩ݓ ൌ ݓ	 െ ߭
ሺ௪బିௗሻభ.లళఱඥ்ೢ ଶ⁄ ା ଶ⁄

ସ.ସସ	√
        (B8) 

ii) extension 

ܿ௩ ൌ 	 ܿ 
బ
మ.భలయඥ்ೢ ଶ⁄ ା ଶ⁄

ସ.ଽଷଷ	√
         (B9) 

 
b) for course-wise loaded samples 
i) contraction 

ܿ௩ ൌ 	 ܿ െ ߭
బ
భඥ ்ା

ସ.ଽଷଷ	√
          (B10) 

ii) extension 

௩ݓ ൌ ݓ	 
ሺ௪బିௗሻమඥ ்ା

ସ.ସସ	√
         (B11) 

 
where Poisson’s ratio 
 

߭ ൌ 	
ଵ

ଶ.ହ଼ଵ
ൌ 0.3874          (B12) 

݊ଵ ൌ 2.4441 െ
ሺబ ௗൗ ିହ.ହଶሻ

ଵ.ସ
         (B13) 

݊ଶ ൌ 2.44034 െ
௪బ ௗିହ.଼ହଽ⁄

ଷ.ଷସ
         (B14) 

 
A) GLASS 
III) HALF CARDIGAN STRUCTURE 
a) for wale-wise loaded samples  
i) contraction 

௩ݓ ൌ ݓ	 െ ߭
ሺ௪బିௗሻభ				ඥ்ೢ ଶ⁄ ା ଶ⁄

ଵ.ଶହସ	√
        (B15) 
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ii) extension 

ܿ௩ ൌ 	 ܿ 
బ
బ.లఱఈඥ்ೢ ଶ⁄ ା ଶ⁄

ଷ.ହସଽ଼√
         (B16) 

 
b) for course-wise loaded samples 
i) contraction 

ܿ௩ ൌ 	 ܿ െ ߭
బ
మሺଵ ఈሻ⁄ ඥ ்ା

ଷ.ହସଽ଼	√
         (B17) 

ii) extension 

௩ݓ ൌ ݓ	 
ሺ௪బିௗሻయሺଵ ൗ ሻඥ ்ା

ଵ.ଶହସ√
         (B18) 

 
where Poisson’s ratio and a constant, a, are as 
 

߭ ൌ 	
ଵ

ହ.ଽସ
ൌ 	0.1996         (B19) 

ܽ ൌ 1.2891           (B20) 

݊ଵ ൌ 0.2506 െ	
௪బ

ௗൗ ିଽ.ଵସ଼ସ

ଶଷ.ସ଼ହ଼
        (B21) 

݊ଶ ൌ 2.8312 െ ሺܿ ݀ െ 4.8031ሻ/1.5423⁄        (B22) 
݊ଷ ൌ 0.7535 െ ሺݓ ݀⁄ െ 12.2359ሻ/32.4436      (B23) 

 
A) GLASS 
IV) FULL CARDIGAN DERIVATIVE 
a) for wale-wise loaded samples  
i) contraction 

௩ݓ ൌ ݓ	 െ ߭
ሺ௪బିௗሻభ.ఱభళఈඥ்ೢ ଶ⁄ ା ଶ⁄

ଶ.ଶଶ	√
        (B24) 

ii) extension 

ܿ௩ ൌ 	 ܿ 
బ
భ			ඥ்ೢ ଶ⁄ ା ଶ⁄

.଼ହ	√
         (B25) 

 
b) for course-wise loaded samples 
i) contraction  

ܿ௩ ൌ 	 ܿ െ ߭
ሺଵ ൗ ሻඥ ்ା

.଼ହ	√
          (B26) 

ii) extension 

௩ݓ ൌ ݓ	 
ሺ௪బିௗሻమሺଵ ൗ ሻඥ ்ା

ଶ.ଶଶ	√
         (B27) 

 
where  
 

߭ ൌ 	
ଵ

ହ.ଵଽ଼
ൌ 0.1930          (B28) 

ܽ ൌ 0.9762           (B29) 

݊ଵ ൌ 	െ0.037338 െ	
బ

ௗൗ ି.଼ସସଷ

ଽ.ଽଵଽ
        (B30) 

݊ଶ ൌ 0.7555 െ
ሺ௪బ ௗ⁄ ିଵଶ.ସሻ

ଷ.଼ଶ
         (B31) 

 
 
B) ARAMID 
I) 1x1 RIB STRUCTURE 
a) for wale-wise loaded samples 
i) contraction 

ோ
ோ଼ൟ	ݓ௩ ൌ ݓ	 െ ߭

ሺ௪బିௗሻభ

.ହଶሺଶሻ

்ೢ

ଶ
         (B32) 

ܴ10ሽ	ݓ௩ ൌ ݓ	 െ ߭
ሺ௪బିௗሻభඥ்ೢ ଶ⁄ ା ଶ⁄

.ହଶ√
        (B33) 

ii) extension 
ோ
ோ଼ൟ	ܿ௩ ൌ 	 ܿ 

బ
మ

ଷ.ଵଽሺଶሻ

்ೢ

ଶ
         (B34) 
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ܴ10ሽ	ܿ௩ ൌ 	 ܿ 
బ
మ			ඥ்ೢ ଶ⁄ ା ଶ⁄

ଷ.ଵଽ√
         (B35) 

 
b) for course-wise loaded samples 
i) contraction 

ܿ௩ ൌ 	 ܿ െ ߭
బ
యሺଵ ൗ ሻ

ଷ.ଵଽ	ሺଶሻ ܶ         (B36) 

ii) extension 
ோ
ோ଼ൟ	ݓ௩ ൌ ݓ	 

ሺ௪బିௗሻరሺଵ ሻ⁄

.ହଶሺଶሻ ܶ        (B37) 

ܴ10ሽ	ݓ௩ ൌ ݓ	 
ሺ௪బିௗሻరሺଵ ሻඥ ்ା⁄

.ହଶ√
        (B38) 

 
where Poisson’s ratio 
 

   ߭ ൌ 	
ଵ

ଶ.ଷଷଵଽ
ൌ 0.4288          (B39) 

ܽ ൌ 1.0500          (B40) 

݊ଵ ൌ ൝
െ12.4049  2.2727

௪బ
ௗ
; 	ݎ݂

௪బ
ௗ
 5.6671

0.2520; 	ݎ݂
௪బ
ௗ
 5.6671

       (B41) 

݊ଶ ൌ ൝
െ343.9483  137.3074	

బ
ௗ
; 	ݎ݂

బ
ௗ
 2.5401

3.3608	; 	ݎ݂
బ
ௗ
 2.5401

      (B42) 

݊ଷ ൌ ൝
3.6553  25.3303ሺܿ ݀ െ 2.5730ሻ; 	ݎ݂

బ
ௗ
	 2.5730⁄

3.6553  ሺܿ ݀ െ 2.5730ሻ/2.1812; ⁄	ݎ݂ బ
ௗ
	 	2.5730

     (B43) 

݊ସ ൌ ቐ
െ1.9575 

ೢబ


ଵ.ଽଶଷହ
; 	ݎ݂

௪బ
ௗ
	 5.6671	

1.2957; 	ݎ݂
௪బ
ௗ
 5.6671

       (B44) 

 
B) ARAMID 
II) MILANO RIB STRUCTURE 
a) for wale-wise loaded samples 
i) contraction 

௩ݓ ൌ ݓ	 െ ߭
ሺ௪బିௗሻఱ.మఱరఴሺଵ ሻ⁄

ଷସ.ଽሺଶሻ

்ೢ

ଶ
         (B45) 

ii)extension 

ܿ௩ ൌ 	 ܿ 
బ
ర.ళళళఴሺଵ ൗ ሻ

଼.ଷସ	ሺଶሻ

்ೢ

ଶ
          (B46) 

 
b) for course-wise loaded samples 
i) contraction 

ܿ௩ ൌ 	 ܿ െ ߭
బ
య.లవయయ

଼.ଷସ	ሺଶሻ ܶ         (B47) 

ii) extension 

௩ݓ ൌ ݓ	 
ሺ௪బିௗሻర.ఱఴవయ

ଷସ.ଽሺଶሻ ܶ         (B48) 

 
where 
 

 ߭ ൌ 	
ଵ

ଶ.ହଽସଽ
ൌ 0.3857           (B49) 

ܽ ൌ 1.2369           (B50) 
 
B) ARAMID 
III) HALF CARDIGAN STRUCTURE 
a) for wale-wise loaded samples 
i) contraction 

௩ݓ ൌ ݓ	 െ ߭
ሺ௪బିௗሻభඥ்ೢ ଶ⁄ ା ଶ⁄

.ହଵ√
         (B51) 

ii) extension 
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ܿ௩ ൌ 	 ܿ 
బ
మ		ඥ்ೢ ଶ⁄ ା ଶ⁄

.ଶଽହ√
         (B52) 

 
b) for course-wise loaded samples 
i) contraction 

ܻ8
ܻ10

ቅ ܿ௩ ൌ 	 ܿ െ ߭
బ
య

.ଶଽହ	ሺଶሻ ܶ        (B53) 

ܻ10ሽܿ௩ ൌ 	 ܿ െ ߭
బ
బ.ఴరఱళඥ ்ା

.ଶଽହ	√
         (B54) 

ii) extension 

௩ݓ ൌ ݓ	 
ሺ௪బିௗሻరඥ ்ା

.ହଵ	√
         (B55) 

 
where 
 

߭ ൌ 	
ଵ

ହ.ଽସ
ൌ 0.1996          (B56) 

݊ଵ ൌ 0.1514 െ 2.4037 ሺݓ ݀⁄ െ 	7.07861ሻ       (B57) 

݊ଶ ൌ 	െ1.0356 	
బ

ௗൗ ିଷ.ହସ

ଵ.ଵ
        (B58) 

݊ଷ ൌ െ0.2381 
బ/ௗ

ସ.ଶଶ
         (B59) 

݊ସ ൌ 0.7911 െ
ೢబ

	ି	ହ.ହ

ଽ.ଽ଼଼
         (B60) 

 
B) ARAMID 
IV) FULL CARDIGAN DERIVATIVE 
a) for wale-wise loaded samples 
i) contraction 

ܵ8
ܵ10

ቅݓ௩ ൌ ݓ	 െ ߭
ሺ௪బିௗሻభ

.ଶହ	ሺଶሻ

்ೢ

ଶ
         (B61) 

ܵ10ሽݓ௩ ൌ ݓ	 െ ߭
ሺ௪బିௗሻభ.బభరమඥ்ೢ ଶ⁄ ା ଶ⁄

.ଶହ	√
        (B62) 

ii) extension 

ܿ௩ ൌ 	 ܿ 
బ
మඥ்ೢ ଶ⁄ ା ଶ⁄

.ଽଶ	√
          (B63) 

 
b) for course-wise loaded samples 
i) contraction 

ܵ8
ܵ10

ቅ ܿ௩ ൌ 	 ܿ െ ߭
బ
య

.ଽଶ	ሺଶሻ ܶ        (B64) 

ܵ10ሽܿ௩ ൌ 	 ܿ െ ߭
బ
బ.ఴవబయඥ ்ା

.ଽଶ	√
         (B65) 

ii) extension 

௩ݓ ൌ ݓ	 
ሺ௪బିௗሻరඥ ்ା

.ଶହ	√
         (B66) 

 
where 
 

߭ ൌ
ଵ

ହ.ଵଽ଼
ൌ 0.1930          (B67) 

݊ଵ ൌ െ3.2302 
௪బ ௗ⁄

ଵ.ଷଽଶ
         (B68) 

݊ଶ ൌ 7.2022 െ 1.2190 ܿ ݀⁄          (B69) 

݊ଷ ൌ 0.4086 
బ ௗ⁄

଼.ହସ
          (B70) 

݊ସ ൌ 0.7410 െ
௪బ ௗ	ିଽ.ହସଽଷ⁄

.ଽସ
        (B71) 
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APPENDIX C 
 
EXAMPLE CALCULATIONS OF THE PARAMETER m, THE RATES OF EXTENSIONS (Ԫ࢝	, Ԫࢉሻ,	AND THE RATES OF 
CONTRACTIONS (Ԫ࢝	, Ԫࢉሻ FOR GLASS SAMPLES 
 
The following route and notations should be known in order to understand the calculations: 
 

i) ܿ and ݓ values should be taken from Table 6 for related cases 
 
ii) The linear relations between tightness points l/d and the parameter m of each fabric structure are assumed to occur as in Figures 

12-15. 
 
iii) In the equations in the Appendix, notations as in Equations (77-84) are used. Evaluations of the right-hand side of Equations 

(77-84), in turn, should be made by using the related case equations given in Empirical Equations at APPENDIX B. 
 

Example calculations are given below. 
 
A) GLASS 
 
I) 1x1 RIB STRUCTURE 
 
a) Wale-wise loaded samples 
i) Contraction 

݉ ൌ ቐ
െ ܶ ൌ 1.452	ሺ݈ ݀ൗ െ 20.5ሻ; 	ݎ݂ ݈ ݀ൗ  20.5;݉ ൏ 0	

ሺ ௗൗ ିଶ.ହሻ

ଵଶ.଼ଵସଷ
; 	ݎ݂ ݈ ݀ൗ  20.5; 2	ݐݎ

      (C1) 

ଶ௪ߝ ൌ ൞

ିమೢሺ
்ೢ

ଶൗ ି బ்
ଶൗ ሻ

௪బ
; 	ݎ݂ ݈ ݀ൗ  20.5; ௪ܶ

2ൗ  	 ܶ
2ൗ 	

ିమೢ൫ ଶൗ ൯ିమೢሺ
்ೢ

ଶൗ ା ଶൗ ሻ

௪బାమೢ൫ ଶൗ ൯
; 	ݎ݂ ݈ ݀ൗ  20.5

      (C2) 

ii) Extension 

݉ ൌ ቐ
െ ܶ ൌ 1.452	ሺ݈ ݀ൗ െ 20.5ሻ; 	ݎ݂ ݈ ݀ൗ  20.5;݉ ൏ 0	

ሺ ௗൗ ିଶ.ହሻ

.ଷସ
; 	ݎ݂ ݈ ݀ൗ  20.5; 1	ݐݎ

      (C3) 

ଵ௪ߝ ൌ ൞

భೢሺ
்ೢ

ଶൗ ି బ்
ଶൗ ሻ

బ
; 	ݎ݂ ݈ ݀ൗ  20.5; ௪ܶ

2ൗ  	 ܶ
2ൗ 	

భೢ൫ ଶൗ ൯ାభೢሺ
்ೢ

ଶൗ ା ଶൗ ሻ

బିభೢ൫ ଶൗ ൯
; 	ݎ݂ ݈ ݀ൗ  20.5

      (C4) 

 
b) Course-wise loaded samples 
i) Contraction 

݉ ൌ ቐ
ି൫ ௗൗ ିଶ.ହ൯

ଵ.ଶ
; 	ݎ݂ ݈ ݀ൗ  20.5; 1	ݐݎ

1.122	ሺ݈ ݀ൗ െ 20.5ሻ; 	ݎ݂ ݈ ݀ൗ  20.5; 2	ݐݎ
       (C5) 

ଶߝ ൌ ቐ

మሺሻିమሺ ்ାሻ

బିమሺሻ
; 	ݎ݂ ݈ ݀ൗ  20.5	

ିమሺሻିమሺ ்ାሻ

బାమሺሻ
; 	ݎ݂ ݈ ݀ൗ  20.5	

       (C6) 

ii) Extension 

݉ ൌ ቐ
െ ܶ ൌ

൫ ௗൗ ିଶ.ହ൯

ଷ.ଶଷ଼ଽ
; 	ݎ݂ ݈ ݀ൗ  20.5;݉ ൏ 0

൫ ௗൗ ିଶ.ହ൯

ଵ.
; 	ݎ݂ ݈ ݀ൗ  20.5; 1	ݐݎ

       (C7) 

ଵߝ ൌ ቐ

భሺ ்ି బ்ሻ

௪బ
; 	ݎ݂	 ݈ ݀ൗ  20.5;	 ܶ  ܶ	

భሺሻାభሺ ்ାሻ

௪బିభሺሻ
; 	ݎ݂	 ݈ ݀ൗ  20.5

       (C8) 
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II) MILANO RIB 
 
a) Wale-wise loaded samples 
i) Contraction 

݉ ൌ	െ ܶ ൌ 1.3336	ሺ݈ ݀ൗ െ 21.1425ሻ; 	ݎ݂ ݈ ݀ൗ  21.1425;݉ ൏ 0    (C9) 

ଶ௪ߝ ൌ െ
మೢሺ்ೢ /ଶି బ்/ଶሻ

௪బ
; 	ݎ݂ ݈ ݀ൗ  21.1425;	 ௪ܶ

2ൗ  ܶ
2ൗ       (C10) 

ii) Extension 

݉ ൌ	െ ܶ ൌ 1.3336	ሺ݈ ݀ൗ െ 21.1425ሻ; 	ݎ݂ ݈ ݀ൗ  21.1425; 	݉ ൏ 0     (C11) 

ଵ௪ߝ ൌ
భೢሺ்ೢ /ଶି బ்/ଶሻ

బ
; 	ݎ݂ ݈ ݀ൗ  21.1425;	 ௪ܶ

2ൗ  ܶ
2ൗ       (C12) 

 
b) Course-wise loaded samples 
i) Contraction 

݉ ൌ	െ1.3654	ቀ݈ ݀ൗ െ 21.1425ቁ; 	ݎ݂ ݈ ݀ൗ  21.1425;  (C13)    1	ݐݎ

ଶߝ ൌ
మሺሻିమሺ ்ାሻ

బିమሺሻ
; 	ݎ݂ ݈ ݀ൗ  21.1425      (C14) 

ii) Extension 

݉ ൌ െ ܶ ൌ
൫ ௗൗ ିଶଵ.ଵସଶହ൯

.ଵହଽ
; 	ݎ݂ ݈ ݀ൗ  21.1425;݉ ൏ 0      (C15) 

ଵߝ ൌ
ଵሺܦ ܶ െ ܶሻ ൗݓ ; 	ݎ݂ ݈ ݀ൗ  21.1425;	 ܶ  ܶ     (C16) 

 
III) HALF CARDIGAN 
 
a) Wale-wise loaded samples 
i) Contraction 

݉ ൌ
ሺ ௗൗ ିଶ.ହ଼ሻ

ଶ.ଷଵ
; 	ݎ݂ ݈ ݀ൗ  20.58;  (C17)        	2	ݐݎ

ଶ௪ߝ ൌ
ିమೢ൫ ଶൗ ൯ିమೢሺ

்ೢ
ଶൗ ା ଶൗ ሻ

௪బାమೢ൫ ଶൗ ൯
; 	ݎ݂ ݈ ݀ൗ  20.58       (C18) 

ii) Extension 

݉ ൌ
ሺ ௗൗ ିଵଵ.଼ሻ

ସ.ହଶଶସ
; 	ݎ݂ ݈ ݀ൗ  11.8	;  (C19)       	1	ݐݎ

 

ଵ௪ߝ ൌ
భೢ൫ ଶൗ ൯ାభೢሺ

்ೢ
ଶൗ ା ଶൗ ሻ

బିభೢ൫ ଶൗ ൯
; 	ݎ݂ ݈ ݀ൗ  11.8       (C20) 

 
b) Course-wise loaded samples 
i) Contraction 

݉ ൌ ቐ

ି൫ ௗൗ ିଶଶ.ହ൯

ଶ.ଶ଼ସ
; 	ݎ݂ ݈ ݀ൗ  22.75; 1	ݐݎ

൫ ௗൗ ିଶଶ.ହ൯

.ହଶସ
; 	ݎ݂ ݈ ݀ൗ  22.75; 2	ݐݎ

       (C21) 

ଶߝ ൌ ቐ

మሺሻିమሺ ்ାሻ	

బିమሺሻ
; 	ݎ݂ ݈ ݀ൗ  22.75

ିమሺሻିమሺ ்ାሻ	

బାమሺሻ
; 	ݎ݂ ݈ ݀ൗ  22.75

       (C22) 

ii) Extension 

݉ ൌ
ሺ ௗൗ ିଶሻ

ଵ.ଵ
; 	ݎ݂ ݈ ݀ൗ  20	;  (C23)        	1	ݐݎ

ଵߝ ൌ
భሺሻାభሺ ்ାሻ	

௪బିభሺሻ
; 	ݎ݂ ݈ ݀ൗ  20        (C24) 
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IV) FULL CARDIGAN DERIVATIVE 
 
a) Wale-wise loaded samples  
i) Contraction 

݉ ൌ ቐ

ି൫ ௗൗ ିଶଶ.ହ൯

ଷ.ଶ଼ଷ
; 	ݎ݂ ݈ ݀ൗ ;	 22.75; 1	ݐݎ

െ ܶ ൌ
ି൫ ௗൗ ିଶଶ.ହ൯

.ହଽହ
; 	ݎ݂ ݈ ݀ൗ 	 22.75;݉ ൏ 0

      (C25) 

ଶ௪ߝ ൌ ൞

మೢ൫ ଶൗ ൯ିమೢሺ
்ೢ

ଶൗ ା ଶൗ ሻ

௪బିమೢ൫ ଶൗ ൯
; 	ݎ݂ ݈ ݀ൗ  22.75

ିమೢሺ
்ೢ

ଶൗ ି బ்
ଶൗ ሻ

௪బ
; 	ݎ݂ ݈ ݀ൗ 	 22.75;	 ௪ܶ

2ൗ  	 ܶ
2ൗ

      (C26) 

ii) Extension 

݉ ൌ ቐ
െ ܶ ൌ

൫ ௗൗ ିଶଶ.ହ൯

ଶ.ଵହସ
; 	ݎ݂ ݈ ݀ൗ ;	 22.75;݉ ൏ 0

൫ ௗൗ ିଶଶ.ହ൯

ଵ.଼଼ଷ
; 	ݎ݂ ݈ ݀ൗ 	 22.75; 1	ݐݎ

       (C27) 

ଵ௪ߝ ൌ ൞

భೢሺ
்ೢ

ଶൗ ି బ்
ଶൗ ሻ

బ
; 	ݎ݂ ݈ ݀ൗ 	 22.75;	 ௪ܶ

2ൗ  	 ܶ
2ൗ

భೢ൫ ଶൗ ൯ାభೢሺ
்ೢ

ଶൗ ା ଶൗ ሻ

బିభೢ൫ ଶൗ ൯
; 	ݎ݂ ݈ ݀ൗ 	 22.75

      (C28) 

 
b) Course-wise loaded samples 
i) Contraction 

݉ ൌ ቐ

ି൫ ௗൗ ିଶଶ.ହ൯

ଵ.ଵ଼
; 	ݎ݂ ݈ ݀ൗ 	 22.75; 1	ݐݎ

൫ ௗൗ ିଶଶ.ହ൯

ହ.ଽ
; 	ݎ݂ ݈ ݀ൗ 	 22.75; 2	ݐݎ

       (C29) 

ଶߝ ൌ ቐ

మሺሻିమሺ ்ାሻ	

బିమሺሻ
; 	ݎ݂ ݈ ݀ൗ  22.75

ିమሺሻିమሺ ்ାሻ	

బାమሺሻ
; 	ݎ݂ ݈ ݀ൗ  22.75

      (C30) 

ii) Extension 

݉ ൌ 2.2125	ቀ݈ ݀ൗ െ 20ቁ; 	ݎ݂ ݈ ݀ൗ  20;  (C31)       	1	ݐݎ

ଵߝ ൌ
భሺሻାభሺ ்ାሻ	

௪బିభሺሻ
; 	ݎ݂ ݈ ݀ൗ  20        (C32) 
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