

RESEARCH ARTICLE

Structure of weighted Hardy spaces on finitely connected domains

Nihat Gökhan Göğüş

Sabanci University, Tuzla, 34956 Istanbul, Turkey

Abstract

We give a complete characterization of a certain class of Hardy type spaces on finitely connected planar domains. In particular, we provide a decomposition result and give a description of such functions through their boundary values. As an application, we describe an isomorphism from the weighted Hardy space onto the classical Hardy-Smirnov space. This allows us to identify the multiplier space of the mentioned Hardy type spaces as the space of bounded holomorphic functions on the domain.

Mathematics Subject Classification (2010). 30H10, 30J99

Keywords. Hardy space, decomposition, boundary values

1. Introduction

Recently, E. A. Poletsky and M. Stessin in [9] introduced a scale of Hardy and Bergman type spaces which consists of holomorphic functions on the underlying hyperconvex domain in the *n*-dimensional complex Euclidean space \mathbb{C}^n , where $n \geq 1$ is an integer. The class of hyperconvex domains contain a wide range of classical domains, in particular the *n*dimensional unit ball and the polydisk in \mathbb{C}^n are hyperconvex. This way, the theory of Hardy and Bergman spaces in the classical settings have been unified and generalized in [9]. Further studies in this direction will help us to construct a more unified system of methods to attack the problems of Hardy and Bergman spaces. Before the works of Poletsky and Stessin, M. A. Alan has already defined using a similar construction Hardy type spaces in hyperconvex domains in \mathbb{C}^n in [1].

In this paper we concentrate on the n = 1 case for the Hardy space construction of Poletsky and Stessin. By definition to each subharmonic function u continuous near the boundary of G corresponds a space, which is denoted by H_u^p of holomorphic functions in G. Here G is a bounded regular domain in \mathbb{C} . Throughout the paper these spaces will be called Poletsky-Stessin Hardy spaces. Following the motivating work of Poletsky and Stessin, the structure and first examples on the unit disk of Poletsky-Stessin Hardy spaces were further investigated in [2], [11] and [12].

Among these recent work, the author and M. A. Alan gave a complete characterization of H_u^p spaces that live in the plane domains through the boundary values of the functions in this class or through a growth description of their harmonic majorants. As an application, a Beurling's type theorem was proved in [2]. This states roughly that if G is the unit disk

Email address: nggogus@sabanciuniv.edu

Received: 29.07.2019; Accepted: 30.10.2019

 \mathbb{D} , and u is such a subharmonic exhaustion on \mathbb{D} , there exists a bounded outer function φ so that the space H_u^p isometrically equals to $\mathcal{M}_{\varphi,p}$, p > 0. Moreover, φ belongs to the class H_u^p . Here we denote by $\mathcal{M}_{\varphi,p}$ the space $\varphi^{2/p}H^p$ together with the norm defined by

$$||f||_{\mathcal{M}_{\varphi,p}} := ||f/\varphi^{2/p}||_p, \quad f \in \mathcal{M}_{\varphi,p}.$$

Using this result, we were able to construct several examples of holomorphic spaces with certain properties. Let us remark that the space $\mathcal{M}_{\varphi,2}$ is a useful tool in the study of sub-Hardy Hilbert spaces (see [10]).

The problems and results addressed in this paper can be summarized as follows: When G is finitely connected:

- (1) We provide a decomposition result of functions which belong to $H_u^p(G)$. (Theorem 4.1).
- (2) We completely describe $H^p_{\mu}(G)$ in terms of their boundary values.
- (3) We describe an isomorphism from the classical Hardy space $H^p(G)$ onto the space $H^p_u(G)$.

The last two results extend the research in [2], [11] and [12] from the disk to finitely connected planar domains. This paper is organized as follows: Section 2 is a brief summary of the previous work which are related and will be used in the paper. In section 3 we solve the inverse balayage problem for a given weight function. The main results of the paper are stated and proved in section 4.

2. Poletsky-Stessin-Hardy spaces

In this section we will give the basic definitions to be used throughout the paper and recall some earlier results. Let $G \subset \mathbb{C}$ be a bounded domain. We say that a function $u \leq 0$ defined on G is an exhaustion on G if the level set

$$B_{c,u} := \{ z \in G : u(z) < c \}$$

is relatively compact in G for any c < 0. Let u be an exhaustion and c < 0, we set

$$u_c := \max\{u, c\}, \quad S_{c,u} := \{z \in G : u(z) = c\}.$$

Let $u \in sh(G)$ be an exhaustion function. We assume that u is continuous taking values in $\mathbb{R} \cup \{-\infty\}$ with the extended topology on this set. Following Demailly [4] we define

$$\mu_{c,u} := \Delta u_c - \chi_{G \setminus B_{c,u}} \Delta u.$$

Here χ_{ω} denotes the characteristic function for a given set $\omega \subset G$. We will denote the class of negative subharmonic exhaustion functions on G by $\mathcal{E}(G)$. Also we denote by $\mathcal{E}_0(G)$ the class of all functions $u \in \mathcal{E}(G)$ such that $\int \Delta u < \infty$.

Following [9] we set

$$sh_u(G) := sh_u := \left\{ v \in sh(G) : v \ge 0, \sup_{c < 0} \int_{S_{c,u}} v \, d\mu_{c,u} < \infty \right\},$$

and we define

$$H_{u}^{p}(G) := H_{u}^{p} := \{ f \in hol(G) : |f|^{p} \in sh_{u} \}$$

for p > 0. Let us write

$$\|v\|_{u} := \sup_{c < 0} \int_{S_{c,u}} v \, d\mu_{c,u} = \int_{G} (v\Delta u - u\Delta v)$$
(2.1)

if v is a nonnegative subharmonic function. We set

$$||f||_{u,p} := \sup_{c<0} \left(\int_{S_{c,u}} |f|^p \, d\mu_{c,u} \right)^{1/p} \tag{2.2}$$

if f is a holomorphic function on G. We list relavant recollections of basic facts below:

• H_u^p is a Banach space when $p \ge 1$.

• The Demailly measure μ_u has finite mass if and only if the constant function (equivalently, all polynomials) $f \equiv 1$ belongs to H_u^p .

• Let G be a bounded regular domain and let $w \in G$. The classical Green function $v(z) = g_G(z, w)$ is a subharmonic exhaustion for G.

• Let $G = \mathbb{D}$ be the unit disk and let $v(z) = \log |z|$. Then $H_v^p(\mathbb{D})$ is the usual Hardy space $H^p(\mathbb{D})$.

We denote by $P_G(z, w)$ the Poisson kernel for the domain G. The space of all holomorphic functions f in G so that $|f|^p$ admits a harmonic majorant in G is denoted by $H^p(G)$ (see for example [5]). By [9], $H^p_u \subset H^p$. It follows by a well-known fact that when G has a sufficiently smooth boundary, then a function f from the space $H^p_u(G)$ possesses boundary values (almost everywhere non-tangential limits), which we denote by f^* . The usual normalized arclength measure on ∂G is denoted by ν . Hence, $\nu(\partial G) = 1$.

Theorem 2.1 ([2, Theorem 2.10]). Suppose that G is a Jordan domain with rectifiable boundary or a bounded domain with C^2 boundary. Let p > 1, $f \in H^p(G)$ and let $u \in \mathcal{E}(G)$. Then the following statements are equivalent:

i.
$$f \in H^p_u(G)$$
.
ii. $f^* \in L^p(V_u\nu)$, where

$$V_u(\zeta) := \int_G P_G(z,\zeta) \Delta u(z), \quad \zeta \in \partial G.$$
(2.3)

iii. There exists a measure $\widetilde{\mu_u}$ on ∂G so that $f^* \in L^p(\widetilde{\mu_u})$. Moreover, if E is any Borel subset of ∂G with measure $\nu(E) = 0$, then $\widetilde{\mu_u}(E) = 0$ and we have the equality

$$\int_{\partial G} \gamma \, d\widetilde{\mu_u} = \int_G P_G(\gamma) \Delta u \tag{2.4}$$

for every $\gamma \in L^1(\nu)$.

In addition, if $f \in H^p_u(G)$, then $||f||_{u,p} = ||f^*||_{L^p(\widetilde{\mu_u})}$ and $d\widetilde{\mu_u} = V_u d\nu$.

Remark 2.2. i. If G is the unit disk or a Jordan domain with rectifiable boundary, then the statements in Theorem 2.1 hold true for any p > 0.

ii. Take a compact set $K \subset G$ so that $\Delta u(K) > r > 0$. Let $m := \min_{\zeta \in \partial G} \min_{z \in K} P_G(z, \zeta)$. Then $V_u(\zeta) \ge rm > 0$ for every $\zeta \in \partial G$. Hence, replacing u by u/(rm), we may assume without loss of generality that $V_u \ge 1$ on ∂G .

iii. The weight function V_u is lower semicontinuous. In fact, by Fatou's lemma

$$\liminf_{j} V_u(\zeta_j) = \liminf_{j} \int_G P_G(z,\zeta_j) \Delta u(z) \ge \int_G P_G(z,\zeta) \Delta u(z) = V_u(\zeta).$$

Note that V_u is the *balayage* of the measure Δu on ∂G .

iv. Suppose G is a bounded domain with C^2 boundary or a Jordan domain with rectifiable boundary. Let $u \in \mathcal{E}_0(G)$. Then

$$u(z) = \int_G g_G(z, w) \Delta u(w), \quad z \in G.$$

Since

$$\frac{\partial g_G(\zeta, w)}{\partial n} = P_G(w, \zeta)$$

when $\zeta \in \partial G$ and $w \in G$, $\frac{\partial u}{\partial n}(\zeta)$ exists for every $\zeta \in \partial G$. Here $\frac{\partial}{\partial n}$ denotes the normal derivative in the outward direction on ∂G and

$$\frac{\partial u(\zeta)}{\partial n} = V_u(\zeta) = \int_G P_G(w,\zeta) \Delta u(w), \quad \zeta \in \partial G.$$

Using the property (2.4) in Theorem 2.1 we see that

$$\int_{\partial G} V_u(\zeta) d\nu(\zeta) = \int_G \Delta u = \int_{\partial G} \frac{\partial u}{\partial n}(\zeta) d\nu(\zeta).$$

Let φ be a nonzero holomorphic function on the unit disk. Let $\mathcal{M}_{\varphi,p}$ denote the space $\varphi^{2/p}H^p$ which we endow with the norm

$$||f||_{\mathcal{M}_{\varphi,p}} := ||f/\varphi^{2/p}||_p, \quad f \in \mathcal{M}_{\varphi,p}$$

A function $\varphi \in H_u^2$ is called a *u*-inner function if $|\varphi^*(\zeta)|^2 V_u(\zeta) = 1$ for almost every $\zeta \in \partial \mathbb{D}$. If, moreover, $\varphi(z)$ is zero-free, we say that the function φ is singular *u*-inner. The next result is proved in Theorem 3.2 and Corollary 3.3 in [2].

Theorem 2.3. Let $u \in \mathcal{E}(\mathbb{D})$. There exists a bounded *u*-inner and outer function $\varphi \in H^2_u$ so that $H^2_u = \mathcal{M}_{\varphi,2}$. Moreover, these spaces are isometric.

The function φ is uniquely determined (up to a unit constant). We have

$$V_u(e^{i\theta}) = \frac{1}{|\varphi(e^{i\theta})|^2} = \frac{1}{\varphi^2(e^{i\theta})} \operatorname{sgn} \frac{1}{\varphi^2(e^{i\theta})}.$$
(2.5)

Here we set $sgn\alpha := |\alpha|/\alpha$ for any complex number $\alpha \neq 0$ and sgn0 := 0.

Theorem 2.4. The set $L^p(V_u d\theta)$ coincides with $\varphi^{2/p} L^p(d\theta)$ and the map $f \mapsto \varphi^{-2/p} f$ is an isometric isomorphism from the space $L^p(V_u d\theta)$ onto $L^p(d\theta)$.

The next result reveals a complete factorization of functions belonging to the space $H^p_u(\mathbb{D})$.

Theorem 2.5 ([2, Theorem 3.4]). Let $0 , <math>f \in H^p_u(\mathbb{D})$, $f \neq 0$, and B be the Blaschke product formed with the zeros of f. There are zero-free $\varphi \in H^2_u \cap H^\infty$, $S \in H^\infty$ and $F \in H^p$ such that φ is singular *u*-inner and outer, S is singular inner, F is outer, and

$$f = BS\varphi^{2/p}F.$$
(2.6)

Moreover, $||f||_{p,u} = ||F||_p$ and $H^p_u(\mathbb{D}) = \mathcal{M}_{\varphi,p}$.

Rephrasing the last statement above we have a concrete isomorphism.

Corollary 2.6. The map $f \mapsto \varphi^{-2/p} f$ is an isometric isomorphism from the space H_u^p onto H^p .

The following Lemma will be useful in the next section. Its proof is a simple calculation and we outline it here.

Lemma 2.7. Let c be a number with -1 < c < 0. Then there exists a function $\kappa = \kappa_c$ defined on $(-\infty, 0]$ with the following properties:

i. $\kappa: (-\infty, 0] \to (-\infty, 0]$ is non-decreasing, convex and C^{∞} ,

- ii. κ is real-analytic in (c, 0],
- iii. $\kappa(t) \equiv c$ when $t \leq c$, $\kappa(0) = 0$, and $\kappa'(0) = 1$.

Proof. Let $a := -\frac{\ln(-c)}{e}$, $b := \frac{-1}{\ln(-c)}$, and

$$\kappa(t) := \begin{cases} c + e^{\frac{-a}{(t-c)^b}}, & t > c, \\ c, & t \le c. \end{cases}$$

Then

$$\kappa'(t) = \frac{1}{e(t-c)^{b+1}} e^{\frac{-a}{(t-c)^{b}}}$$

and

$$\kappa''(t) = \frac{1}{e(t-c)^{2b+2}} (1/e - (b+1)(t-c)^{b+1}) e^{\frac{-a}{(t-c)^b}}$$

for t > c. For $t \le c$, $\kappa'(t) = \kappa''(t) = 0$. It can be checked that $\kappa''(t) > 0$ for $c < t \le 0$, and κ satisfies all properties in i., ii. and iii.

3. Constructing subharmonic exhaustion from a given weight function

Let G be a Jordan domain with rectifiable boundary and ψ be a given holomorphic function in $H^1(G)$. We consider in this section the problem of finding a subharmonic exhaustion u on G so that $V_u(\zeta) = |\psi(\zeta)|$ when $\zeta \in \partial G$. We can always suppose that $G = \mathbb{D}$ after a conformal map of G onto \mathbb{D} . The following result was obtained for the disk in [6] (see also [8]).

Theorem 3.1. Let G be a Jordan domain with rectifiable boundary, ψ be a lower semicontinuous function on ∂G so that $\psi \geq k$ for some constant k > 0. Then there exists a function $u \in \mathcal{E}(G)$ so that $\psi = V_u$.

- a. u is the decreasing limit of functions in $\mathcal{E}_0 \cap C^{\infty}(\overline{G})$ which converge uniformly to u on \overline{G} .
- b. $u \in \mathcal{E}_0(G)$ if and only if $\psi \in L^1(d\nu)$.

In this section we consider finitely connected domains. If Γ is the rectifiable boundary of a Jordan domain, let G^* and G be the unbounded and bounded components of $\mathbb{C}\backslash\Gamma$, respectively. By a conformal map Φ the curve Γ can be mapped onto the unit circle and G^* can be mapped onto \mathbb{D}^* , the compliment in \mathbb{C} of the closed unit disk. We say that a function u^* defined on G^* belongs to $\mathcal{E}(G^*)$ if the corresponding function $u := u^* \circ \Phi^{-1}(1/z)$ belongs to $\mathcal{E}(\mathbb{D})$. A holomorphic function f on G^* belongs to $H^p_{u^*}(G^*)$ if the function $f \circ \Phi^{-1}(1/z)$ belongs to $H^p_u(\mathbb{D})$. Clearly $H^p_{u^*}(G^*) \subset H^p(G^*)$. We write $a \approx b$ if there exists an absolute constant C > 0 so that $C^{-1}b \leq a \leq Cb$.

Lemma 3.2. Let Γ be the $C^{1+\varepsilon}$ boundary of a Jordan domain for some $\varepsilon > 0$. Let G^* be the unbounded component of $\mathbb{C}\backslash\Gamma$ and let ψ be a lower semicontinuous function on Γ so that $\psi \ge k$ for some constant k > 0. Then there exists a function $v \in \mathcal{E}(G^*)$ so that $\frac{\partial v(\zeta)}{\partial n} \approx \psi(\zeta)$ on Γ .

Proof. Suppose first that Γ is the unit circle. Let $u \in \mathcal{E}(\mathbb{D})$ be the function proved for ψ in Theorem 3.1. The function v(z) = u(1/z) belongs to $\mathcal{E}(\mathbb{D}^*)$ and satisfies $\frac{\partial v(\zeta)}{\partial n} = \psi(\zeta)$ on Γ . If Γ is a Jordan curve with $C^{1+\varepsilon}$ boundary and if Φ is a conformal map of G onto \mathbb{D} , let $v(z) := u \circ \Phi(1/z)$, where $u \in \mathcal{E}(\mathbb{D})$ is so that $\frac{\partial u(\zeta)}{\partial n} = \psi \circ \Phi^{-1}(1/\zeta)$ for $|\zeta| = 1$. By a classical result of Painlevé (cf. [7, Theorem 5.2.4]) Φ extends to a C^1 map on the closed set \overline{G} . Thus, the estimate holds.

Let G be a bounded domain so that $\partial G = \bigcup_{j=0}^{N} \Gamma_j$, where each Γ_j is a Jordan curve and $\Gamma_j \cap \Gamma_k = \emptyset$ when $j \neq k$. Let G_0 be the bounded component of $\mathbb{C} \setminus \Gamma_0$. We assume that each Γ_j , $j \neq 0$, is contained in G_0 . Let G_j^* be the domain with boundary Γ_j which contains G. For simplicity, in the following theorem and in the rest of the paper we will assume that all Γ_j are at least $C^{1+\varepsilon}$ for some $\varepsilon > 0$, for all $j = 0, 1, \ldots, N$. The following theorem gives a full description of those weight functions produced by a subharmonic exhaustion (see Remark 2.2).

Theorem 3.3. Let ψ be lower semicontinuous on ∂G so that $\psi \geq s$ for some s > 0. Then there exists a function $u \in \mathcal{E}(G)$ so that $\psi = V_u \approx \frac{\partial u}{\partial n}$. Moreover $u \in \mathcal{E}_0(G)$ if and only if $\psi \in L^1(\partial G, d\nu)$.

Proof. For any $j \in \{0, 1, \dots, N\}$ let $\psi_j(\zeta) = \psi(\zeta)$ if $\zeta \in \Gamma_j$. Let $v_j \in \mathcal{E}(G_j^*)$ be the function for ψ_j given in Lemma 3.2 so that $V_{v_j} = \psi_j$ on ∂G_j . We can choose $c_j < 0$ close to 0 so that the level set B_{c_j,v_j} contains all Γ_k for $k \neq j$. Let $c = \max\{c_0, \dots, c_N\}$. Set $u_j(z) := \kappa_c(v_j(z))$ and $u(z) := \sum_{j=0}^N u_j(z) - cN$ for $z \in G$. If $\zeta \in \Gamma_j$, then $u_j(\zeta) = 0$ while

 $u_k(\zeta) = c$ when $k \neq j$. Hence $u(\zeta) = 0$ and $u \in \mathcal{E}(G)$. On the other hand if $k \neq j$, then $u_j(z) \equiv c$ on an open set containing Γ_k , therefore by Lemma 3.2 and Lemma 2.7

$$\frac{\partial u(\zeta)}{\partial n} = \frac{\partial u_j(\zeta)}{\partial n} = \frac{\partial v_j(\zeta)}{\partial n} \thickapprox \psi(\zeta)$$

when $\zeta \in \Gamma_j$. Together we have that $V_u = \psi$ on ∂G . The equivalence of $u \in \mathcal{E}_0$ and $\psi \in L^1$ follows directly from the identity

$$\int_{\partial G} V_u(\zeta) d\nu(\zeta) = \int_G \Delta u.$$

4. Decomposition results and the multiplier algebra of $H^p_u(G)$

From the Cauchy integral formula if $f \in H(G)$, then f has a unique decomposition of the form

$$f(z) = f_0(z) + \ldots + f_N(z),$$
 (4.1)

where $f_0 \in H(G_0)$, $f_j \in H_0(G_j^*)$ if $j \in \{1, \ldots, N\}$, and $H_0(G_j^*)$ denotes the class of holomorphic functions in $H(G_j^*)$ that vanish at infinity. This holds true for bounded holomorphic functions; from [3] we see that

$$H^{\infty}(G) = H^{\infty}(G_0) + H^{\infty}_0(G_1^*) + \ldots + H^{\infty}_0(G_N^*),$$

where $H_0^{\infty}(G_j^*) = H^{\infty}(G_j^*) \cap H_0(G_j^*)$.

The next theorem tells us that if G is finitely connected, the space $H^p_u(G)$ has a similar decomposition.

Theorem 4.1. Let G be a finitely connected domain whose boundary consists of disjoint Jordan curves Γ_j , $0 \leq j \leq N$, with rectifiable boundary so that Γ_0 surrounds G. Let G_0 be the bounded component of $\mathbb{C}\setminus\Gamma_0$ and for $j \in \{1,\ldots,N\}$, let G_j^* be the domain with boundary Γ_j which contains G. Let $u \in \mathcal{E}_0(G)$ and p > 0. Then there exists $u_0 \in \mathcal{E}_0(G_0)$, $u_j \in \mathcal{E}_0(G_i^*)$, $j = 1, \ldots, N$, so that every $f \in H^p_u(G)$ can be represented in the form

$$f(z) = f_0(z) + \dots + f_N(z),$$
(4.2)

where $f_0 \in H^p_{u_0}(G_0), f_j \in H^p_{u_j}(G^*_j) \cap H_0(G^*_j)$ for $j \in \{1, \dots, N\}$.

Proof. Let $u \in \mathcal{E}_0(G)$ and $f \in H^p_u(G)$. Then the function V_u is lower semicontinuous and $V_u \geq s$ on ∂G for some s > 0 (see Remark 2.2). By the proof of Theorem 3.3 it is deduced that there exists $\omega \in \mathcal{E}_0(G)$ so that $V_\omega = V_u$ and ω is of the form

$$\omega = u_0 + \dots + u_N - cN$$

where c < 0, $u_j \in \mathcal{E}_0(G_j^*)$ and $V_{u_j} = V_u|_{\Gamma_j}$ for $0 \le j \le N$.

Since $H^p_u(G) \subset H^p(\check{G})$ it is well-known that (see for example [5, Theorem 10.12]) $f(z) = f_0(z) + \cdots + f_N(z)$, where $f_j \in H^p(G^*_j)$. In fact, each f_j is of the form (after analytic continuation)

$$f_j(z) = \int_{\Gamma_j} \frac{f(\zeta)}{\zeta - z} d\nu(\zeta).$$

Hence for each j the functions $f_0, f_1, \dots, \hat{f}_j, \dots, f_N$ are bounded on Γ_j . Here \hat{f}_j means that f_j is not in the list. Therefore, $|f_j(\zeta)|^p \leq |f(\zeta)|^p + m$ when $\zeta \in \Gamma_j$ for some constant m. The norm of f_j is estimated as

$$\|f_j\|_{H^p_{u_j}(G^*_j)}^p = \int_{\Gamma_j} |f_j(\zeta)|^p V_u(\zeta) d\nu \le \int_{\Gamma_j} |f(\zeta)|^p V_u(\zeta) d\nu + m \|V_u\|_{L^1}$$

$$\le \|f\|_{H^p_u(G)}^p + m \|V_u\|_{L^1}.$$

Since $f \in H^p_u(G)$ and $u \in \mathcal{E}_0(G)$, $||f||_{H^p_u(G)} < \infty$ and $||V_u||_{L^1} < \infty$, hence $||f_j||_{H^p_{u_j}(G^*_j)} < \infty$ and $f_j \in H^p_{u_j}(G^*_j)$.

Finally, we describe the boundary values of functions from $H^p_{\mu}(G)$ and describe an isomorphism from $H^p_{\mu}(G)$ onto $H^p(G)$. We use the same assumptions and notations of Theorem 4.1 in the next statement.

Theorem 4.2. Let $u \in \mathcal{E}_0(G)$ and p > 0. Then there exists $u_0 \in \mathcal{E}_0(G_0)$, $u_j \in \mathcal{E}_0(G_j^*)$, and zero-free functions $\varphi_0 \in H^{\infty}(G_0) \cap H^2_{u_0}(G_0)$ and $\varphi_j \in H^{\infty}_0(G_0) \cap H^2_{u_j}(G^*_j), j = 1, \ldots, N,$ so that

- i. $H_u^p(G) = \varphi_0^{2/p} H^p(G_0) + \varphi_1^{2/p} H^p(G_1^*) + \ldots + \varphi_N^{2/p} H^p(G_N^*).$ ii. If $f \in H_u^p(G)$, then $f^*|_{\Gamma_j} \in L^p(V_{u_j} d\nu)$ for $j = 0, 1, \ldots, N.$
- iii. $||f||_{H^p_u(G)} \approx ||f_0||_{H^p_{u_0}(G_0)} + \sum_{j=1}^N ||f_j||_{H^p_{u_j}(G^*_j)}$ for $f \in H^p_u(G)$, where $f(z) = f_0(z) + f_0(z)$ $\cdots + f_N(z)$ denotes the unique decomposition in (4.2).
- iv. The mapping $T: H^p_u(G) \to H^p(G)$ given by

$$Tf = \sum_{j=0}^{N} f_j / \varphi_j^{2/p}$$

is a linear isomorphism of $H^p_u(G)$ onto $H^p(G)$.

Proof. Statements *i*. and *ii*. are direct consequences of Theorem 2.1, Theorem 2.5 and the discussions in this section. For the third statement, let X denote the vector space $H^p_u(G)$ endowed with the norm

$$||f||_X = ||f_0||_{H^p_{u_0}(G_0)} + \sum_{j=1}^N ||f_j||_{H^p_{u_j}(G^*_j)}.$$

For $p \geq 1$, both $H_{\nu}^{p}(G)$ (with the usual norm) and X are Banach spaces. For 0 , wedon't have normed spaces, however, these are complete metric spaces. In fact, $H^{p}_{\mu}(G)$ and X are closed subspaces of $L^p(V_u d\nu)$ and several consequences of Baire category theorem, such as closed graph theorem, carry over to both of these spaces. Notice that as sets both $H^p_{\mu}(G)$ and X are the same. By closed graph theorem, we deduce that there exists a constant C > 0 such that

$$1/C||f||_X \le ||f||_{H^p_u(G)} \le C||f||_X$$

for every $f \in H^p_u(G)$. This proves *iii*.

By Corollary 2.6, after a conformal mapping of G_i^* onto \mathbb{D} , any function $g \in H^p(G_i^*)$ is of the form $g = \varphi_j^{2/p} h$ for some $h \in H^p(G_j^*)$ and $\|g\|_{H^p(G_j^*)} \approx \|h\|_{H^p(G_j^*)}$. It follows from statements *i*. and *iii*. that *T* gives an isomorphism of $H^p_u(G)$ onto $H^p(G)$. This fisinishes the proof.

Let X be a Banach space of holomorphic functions on G. The multiplier algebra M(X)of X is defined to be the class of holomorphic functions g on G such that $gf \in X$ for every $f \in X$. By the closed graph theorem a function $g \in H(G)$ belongs to the multiplier algebra $M(H^p_u(G))$ if and only if the multiplication operator M_g which assigns to a function $f \in H(G)$ the product gf is a bounded operator on $H^p_u(G)$.

Corollary 4.3. For p > 0, $M(H^p_u(G)) = H^{\infty}(G)$.

Proof. It is well-known that $M(H^p(\mathbb{D})) = H^{\infty}(\mathbb{D})$. Hence, if Γ is the rectifiable boundary of a Jordan domain and if U is a connected component (bounded or unbounded) of Γ , then $M(H^p(U)) = H^{\infty}(U)$. This can be seen by considering a conformal mapping from \mathbb{D} onto U. By Theorem 4.2 (i), $H_u^p(G) = \varphi_0^{2/p} H^p(G_0) + \varphi_1^{2/p} H^p(G_1^*) + \ldots + \varphi_N^{2/p} H^p(G_N^*)$. Let $g \in M(H_u^p(G))$. Then from Theorem 4.2 (iii), if $f \in H_u^p(G)$, then

$$\|gf\|_{H^p_u(G)} \approx \|gf_0\|_{H^p_{u_0}(G_0)} + \sum_{j=1}^N \|gf_j\|_{H^p_{u_j}(G^*_j)} < \infty$$
(4.3)

where f_j 's are as in (4.2). Let $g(z) = \sum_{j=0}^N g_j(z)$ be the unique decomposition of g as described in (4.1). Fix $j \in \{0, ..., N\}$. If $i \neq j$, then g_i is bounded near Γ_j , therefore, $\|g_i f_j\|_{H^p_{u_j}(G^*_j)} < \infty$. Combining with (4.3), this means that $\|g_j f_j\|_{H^p_{u_j}(G^*_j)} < \infty$. Since $g_j \in H(G^*_j)$ and f_j can be an arbitrary element of $H^p_{u_j}(G^*_j)$, we see that $g_j \in M(H^p_{u_j}(G^*_j))$, therefore it is bounded on G^*_j . Hence, $g \in H^\infty(G)$ and we have proved that $M(H^p_u(G)) \subset$ $H^\infty(G)$. The reverse inclusion clearly holds from Theorem 4.2(iii). The proof is finished.

Acknowledgment. This work was supported by a TUBITAK grant project 118F405.

References

- M.A. Alan, Hardy spaces on hyperconvex domains, M.Sc. Thesis, Middle East Technical University, Ankara, 2003.
- [2] M.A. Alan and N.G. Göğüş, Poletsky-Stessin-Hardy spaces in the plane, Complex Anal. Oper. Theory, 8 (5), 975–990, 2014.
- [3] B. Chevreau, C.M. Pearcy and A.L. Shields, *Finitely connected domains G, representations of H[∞](G), and invariant subspaces*, J. Operator Theory, 6, 375–405, 1981.
- [4] J.P. Demailly, Mesure de Monge Ampère et mesures plurisousharmonique, Math. Z. 194, 519–564, 1987.
- [5] P.L. Duren, *Theory of H^p spaces*, Pure and Applied Mathematics 38, Academic Press, New York-London, 1970.
- [6] N. G. Göğüş, Structure of weighted Hardy spaces in the plane, Filomat, 30 (2), 473–482, 2016.
- [7] S. Krantz, Geometric function theory. Explorations in complex analysis, Cornerstones, Birkhäuser Boston, Inc., Boston, MA, 2006.
- [8] E.A. Poletsky and K. Shrestha, On weighted Hardy spaces on the unit disk, Constructive approximation of functions, 195–204, Banach Center Publ. 107, Polish Acad. Sci. Inst. Math., Warsaw, 2015.
- [9] E.A. Poletsky and M.I. Stessin, Hardy and Bergman spaces on hyperconvex domains and their composition operators, Indiana Univ. Math. J. 57 (5), 2153–2201, 2008.
- [10] D. Sarason, Sub-Hardy Hilbert spaces in the unit disk, University of Arkansas Lecture Notes in the Mathematical Sciences, 10, John Wiley and Sons, Inc., New York, 1994.
- [11] K.R. Shrestha, Weighted Hardy spaces on the unit disk, Complex Anal. Oper. Theory, 9 (6), 1377–1389, 2015.
- [12] S. Şahin, Poletsky-Stessin Hardy spaces on domains bounded by an analytic Jordan curve in C, Complex Var. Elliptic Equ. 60 (8), 1114–1132, 2015.